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Rotational wave-packet imaging of molecules
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We propose and illustrate numerically the possibility of imaging rotational wave packets in angular space
and time by using different pump-probe spectroscopic techniques. A general theoretical framework to perform
such rotational mapping is derived and three specific spectroscopies, namely, birefringence, high harmonic
generation, and angle-resolved photoelectron spectroscopy, are numerically explored. All three approaches are
shown to provide direct mapping of the rotational coherences of molecules but they are not equivalent; comparison
of their results yields interesting insights into their relative merits. Finally, we illustrate the role played by the
symmetry of the molecular orbitals in determining the quality of the images generated by high harmonic and
photoelectron signals. The potential of rotational imaging as a route to both intramolecular coupling mechanisms
and the interaction of molecules with different environments is discussed.
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I. INTRODUCTION

Wave-function imaging has been the subject of increasing
excitement in recent years [1–4]. Several well-established
approaches provide a view of the amplitude associated with
stationary electronic wave functions [1–3] or the probability
density of vibrational wave functions [4]. Yet more interest-
ingly, the possibility of extracting information about the phase
and modulus of wave functions [5] or wave packets [6–12] has
been demonstrated via different experimental techniques.

The spatiotemporal evolution of a wave packet arises due
to the coherent superposition of several stationary eigenstates.
One can image the time-dependent probability distribution
in coordinate space or go further and extract the amplitude
and relative phases of all the individual states that comprise
the wave packet, amounting to quantum state tomography
or holography [7,8]. The possibility of imaging Rydberg
electronic wave packets in atoms, by measuring the underlying
amplitudes and phases, for instance, was illustrated in Refs.
[9,10,12,13]. More recently, tomography of an electronic wave
packet of a molecule has been performed using high-order
harmonics [14]. A complete quantum state reconstruction of
vibrational wave packets has been demonstrated in Refs. [7,11]
and time-dependent vibrational probability distributions have
been imaged using laser-induced fluorescence in Refs. [15,16]
and via Coulomb explosion methods in Refs. [17–20].

A particularly interesting case is that of rotational wave
packets, namely, broad coherent superpositions of eigenstates
of the total material angular momentum. Rotationally broad
coherent wave packets are formed via sequential rotational
excitation induced by the interaction of a moderately intense
laser pulse with the (permanent, transition, or induced) dipole
of the molecular system [21,22]. The phase relations between
the rotational components of the wave packet guarantee that
the molecular axis (axes) will align with the field polarization
vector(s). In the nonadiabatic limit, where the pulse is short
with respect to the rotational period(s) of the molecule, the
superposition of rotational states coherently excited during
the pulse continues to beat after the turn-off, leading to an
early field-free alignment period and a subsequent revival
pattern. In the case of linear or symmetric top molecules,
the early field-free alignment is precisely reconstructed at

multiples of the rotational period. Experimentally, coherent
wave-packet alignment has been explored via a variety of
approaches, including Coulomb explosion techniques [23–25],
birefringence studies [26,27], resonant-enhanced multiphoton
ionization (REMPI) [28,29], x-ray spectroscopy [30], and
strong-field approaches to the determination of the refractive
index [31,32].

To date, the vast majority of studies of rotational wave
packets have focused on applications of the associated sharp
alignment in fields ranging from attosecond pulse generation
[33] and orbital tomography [1,3,14] to control of unimolec-
ular chemistry [34] and electron transport via molecular
junctions [35,36]. The interest in rotationally broad wave
packets as such, however, has been noted. In particular, it was
illustrated that rotational coherences can serve to explore in-
tramolecular coupling mechanisms, such as rotation-vibration
coupling [37–42]. More interestingly, rotational coherences
were shown to contain unique information regarding the
interaction of solvated molecules with their environment,
hence, potentially, a route to the dissipative properties of exotic
media [43,44]. In the weak-field limit, nonadiabatic alignment
reduces to the method of rotational coherence spectroscopy—a
well-established approach to determining rotational constants
(and hence molecular structures) that was successfully applied
to a large variety of complex molecules [45–47]. Our interest
in rotational wave-packet imaging is thus not only for the
extension of the imaging concept to new modes of motion but
also as a potential diagnostic tool in molecular research.

A question that has been debated in the past in the context
of strong-field-induced alignment, and is relevant also to the
discussion below, is that of a quantitative measure of the
degree of alignment. The vast majority of the theoretical
and experimental studies have used the expectation value
of cos2 θ in the time-evolving wave packet to that end,
where θ is the polar Euler angle between the space-fixed
and body-fixed z axes. The expectation value 〈cos2 θ〉 is
proportional (up to a constant) to the second moment of
the rotational distribution, hence providing a convenient and
transferable one-dimensional (1D) measure that is accessible
by several experiments. It was noted in the past, however,
that the complete rotational distribution (which contains all
moments) provides a wealth of information that is not exhibited
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in 〈cos2 θ〉 [48]. In particular, the latter observable exhibits
only second-order rotational coherences (since cos2 θ couples
angular momentum states J,J ′ only for |J − J ′| = 0,2),
whereas the rotational probability exhibits all high-order
rotational coherences. This argument will be made sharper
through discussion of Figs. 1(a) and 1(b) below. As shown
in the next section, 〈cos2 θ〉 is a measure of the probability
that the molecular axis is aligned along the space-fixed z-axis
and properly approximates that probability when the rotational
wave packet contains no more than second order coherences
(|J − J ′| = 2). In order, however, to appreciate the rotational
dynamics at angles other than θ = 0 vs time, or the structure
arising from higher than second order interferences, the
complete rotational probability distribution is needed. Here,
the Coulomb explosion imaging approach has proved a useful,
readily visualized route to exploring additional facets of the
rotational distribution. While informative and successful, this
approach requires careful choice of the molecule [very specific
bond(s) need to break through the explosion], tight control of
the experimental conditions, and nontrivial analysis, [25] in
addition to being limited to the gas phase. The development
of a more general and less experimentally demanding imaging
approach is thus pertinent.

In the present work we propose three different approaches
to image the time-evolving probability density of rotational
wave packets, develop a theoretical framework to simulate
these images, explore their information content, and compare
their resolution. Throughout we restrict attention to linear
molecules. In the next section we provide a qualitative
discussion of the rotational imaging concept that serves
to motivate our approach and place the different imaging
approaches introduced in context. Section III derives the
theory, beginning with the case of Raman-induced polarization
spectroscopy (RIPS) (Sec. III A), proceeding to high harmonic
generation (HHG) (Sec. III B), and ending with angle-resolved
photoelectron spectroscopy (PES) (Sec. III C). Our results are
presented in Sec. IV, and the final section summarizes our
conclusions, pointing to avenues for future research. Several
derivations that we expect to interest our readers but are not
essential to follow the text are deferred to the Appendix.

II. BASIC PRINCIPLE OF ROTATIONAL IMAGING

We consider a pump-probe scenario, where the pump is
a linearly polarized, moderately intense pulse of duration
that is short with respect to the rotational period. This pulse
serves to excite a rotationally broad, coherent wave packet
via sequential, angular momentum nonconserving transitions.
The time-evolving rotational probability density is imaged by
means of a time-delayed probe, whose nature and mathemati-
cal description are discussed in the next section. The rotational
density operator ρ̃r (τ ), a vector in Liouville space, subsequent
to the pump pulse, is given as

ρ̃r (τ ) =
∑

JMJ ′M ′
ρJMJ ′M ′(τ )|JM〉〈J ′M ′|, (1)

where ρJMJ ′M ′ represent elements of the rotational density
matrix, J and M being the quantum numbers corresponding
to the total material angular momentum and its projection onto
the space-fixed z axis, respectively, and τ is the time delay with

respect to the pump pulse. The rotational probability density
ρr (θ,φ,τ ), a scalar in angular coordinate space, is thus

ρr (θ,φ,τ ) = 〈θ,φ|ρ̃r |θ,φ〉
=

∑
JMJ′M ′

ρJMJ ′M ′ (τ )YJM (θ,φ)Y ∗
J ′M ′ (θ,φ), (2)

where 〈θ,φ|JM〉 = YJM(θ,φ) are spherical harmonics, θ is the
polar Euler angle between the space-fixed and body-fixed z

axes, and φ is the azimuthal angle of rotation about the space-
fixed z axis. In Eq. (2) the latter axis is taken to be the pump-
field polarization vector, but another definition will be more
physically natural and mathematically convenient below.

Spectroscopic signals from rotational wave packets are
shown below to be expressible quite generally in terms of the
expectation value of a rotational operator in the time-evolving
rotational density. The functional form of the rotational
operator, denoted M(θ,φ) below, as a function of the Euler
angles, depends on the direction of the polarization vector
of the probe pulse and the experimental probe envisioned;
several specific examples are derived in the next section. The
observable optical signal is then

Isignal(τ,γ ) ∝
∣∣∣∣∣

∑
JMJ ′M ′

ρ
γ

JMJ ′M ′(τ )
∫

sin θdθdφ YJM (θ,φ)

×Y ∗
J ′M ′(θ,φ)M(θ,φ)

∣∣∣∣∣
2

, (3)

where γ is the angle between the space-fixed z axis and
the alignment pulse polarization vector. (In the case of
photoelectron spectroscopy, discussed in Sec. III C, the signal
depends on the rotational density, rather than on its square.)
Rotational imaging could be envisioned as sampling the rota-
tional probability of Eq. (2) by rotating the probe polarization
vector with respect to the rotational density quantization axis
in Eq. (2). An equivalent and mathematically more convenient
description entails rotation of the pump polarization, and hence
the rotational probability density, with respect to a fixed spatial
axis that is defined by the probe (vide infra) and serves as the
quantization axis (the space-fixed z axis). Thus, the probability
density can be equivalently written

ργ
r (θ,φ,τ ) = ρr (θ − γ,φ,τ ). (4)

As the pump polarization axis is rotated with respect to the
space-fixed z axis, M is no longer conserved and the elements
of the density matrix are parametrized by rotation angle γ .

In the limit where the rotational operator is nearly as sharply
peaked as the Dirac-delta function, that is, M(θ,φ) ≈ δ(θ −
θ0)δ(φ − φ0)/ sin θ about a specific set of Euler angles θ0,φ0,

Isignal(τ,γ ) ≈
∣∣∣∣∣

∑
JMJ ′M ′

ρ
γ

JMJ ′M ′(τ )YJM (θ0,φ0)Y ∗
J ′M ′(θ0,φ0)

∣∣∣∣∣
2

≈ ∣∣ργ
r (θ0,φ0,τ )

∣∣2 = |ρr (θ0 − γ,φ0,τ )|2, (5)

i.e., the signal is proportional to the squared modulus of
the rotational probability density along a certain direction
specified by the (experimentally variable) angle γ for any
time τ . In reality the rotational operator M(θ,φ) will not be as
sharply peaked as a Dirac-delta function. Rather, one expects
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a moderately peaked function that will allow the signal to
probe not the precise rotational density as a function of the
Euler angles but rather a coarse-grained version of it. We will
find below that the probe may peak about an angle θ0 �= 0
(while exhibiting an angular breadth). This nonzero peak angle
translates into a shift of the image (considered as a function
of γ ) with respect to the probability density map. Often,
however, the rotational operator in Eq. (3) will be independent
of the azimuthal angle φ, M(θ,φ) = M(θ ). In that case the
spectroscopic signal does not have a preferred direction in
azimuthal space and integration of the signal over φ leads to
disappearance of the θ0 rotational shift in the obtained image.
In either case, in the limit of a sharply defined M(θ ), the

(γ,τ ) dependence of I
γ

signal(τ ) maps the (θ,τ ) dependence of
the rotational probability density.

To further motivate our discussion, and also to serve as
a basis for testing the fidelity of the imaging techniques
introduced below, we show in Figs. 1(a) and 1(b) the rotational
probability density of Eq. (2) versus the polar Euler angle θ

and the time delay τ . Here and below we consider specifically
the cases of N2 and O2 molecules, as these two systems
have been intensively studied in the alignment context, both
experimentally and numerically, and since they represent two
common and very different molecular symmetries. Shown
to the left of Figs. 1(a) and 1(b) are the corresponding
averaged alignment measures 〈cos2 θ〉(τ ). As discussed in
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FIG. 1. (Color online) The rotational probability density for (a) N2 and (b) O2 vs time and the polar Euler angle θ compared with the
averaged alignment measure 〈cos2 θ〉 (left). The Gaussian pump pulse of 25 fs pulse width and a peak intensity of 75 TW cm−2 for N2 and
25 TW cm−2 for O2 and a rotational temperature of 30 K is used in the calculations.
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Sec. I, 〈cos2 θ〉(τ ) exhibits several, but not all, features of the
time-evolving wave packet. The expectation value of cos2 θ

in the rotational density of Eq. (2) provides a coarse-grained
image of the rotational probability density about the θ = 0
point. It therefore conveys the probability of the molecular axis
being parallel to the space-fixed z axis at any given time in an
averaged sense. Although it is an extremely useful and a very
popular observable for quantifying the degree of alignment
with respect to the space-fixed z axis, it mirrors the probability
density only in the vicinity of θ = 0. Further, as Fig. 1
illustrates, the probability distribution exhibits a structure that
is not observed in cos2 θ since cos2 θ couples only rotational
levels J and J ′ with |J − J ′| = 0,2 and hence exhibits only
second-order rotational interferences, whereas a wave packet
excited by a pulse of sufficient amplitude and duration contains
a broad range of high-order rotational coherences. The contour
figures characterizing the rotational probability densities for
the two molecules considered motivate the development of
rotational wave-packet imaging approaches and will also serve
in the analysis of the results below.

III. THEORY

To realize the imaging of the rotational probability density
of linear molecules we now turn to deriving expressions
for the signals corresponding to different potential rotational
imaging experiments. Specifically, we derive the form of
the rotational operator, M(θ,φ) in Eq. (3), for three time-
resolved spectroscopic techniques. The functional dependence
of M(θ,φ) on θ and φ differs in the three cases and determines
the resolution of the rotational image in angular space.

A. Extended Raman-induced polarization spectroscopy

An optical spectroscopy that has emerged in recent years as
a powerful approach to probe field-free alignment dynamics
induced by a strong pulse is one that is similar to the optical
Kerr effect and measures the birefringence produced by the
alignment of the molecular sample [26,27]. The experimental
geometry for this spectroscopy, termed Raman-induced polar-
ization spectroscopy (RIPS), consists of a linearly polarized
aligning pulse followed by a time-delayed, linearly polarized
probe pulse whose polarization vector is tilted with respect
to the aligning pulse by π/4. The signal is collected along
a direction n̂ that is perpendicular to the probe polarization
vector and lies in the plane defined by the pump and probe
polarization vectors. The observed signal IRIPS is proportional
to the squared magnitude of the expectation value of the n̂

projection of the induced dipole operator 	μind,

IRIPS(τ ) ≈ |〈n̂ · 	μind〉|2 = |Tr{n̂ · 	μind ρ̃r (τ )}|2. (6)

In the context of conventional RIPS experiments, where the
pump polarization direction is fixed with respect to that of the
probe and the observation direction, it is conventional (and
convenient) to define the pump pulse polarization vector as
the space-fixed z axis, with the plane spanned by the pump
and probe polarization vectors defining the space-fixed z-y
plane. Thus, ε̂pr = εzẑ + εyŷ with εz = εy and the polarization
vector of the analyzer is n̂ = nzẑ + nyŷ, where nz = −ny .
Here and below ε̂pr denotes a unit vector along the probe field

polarization direction. Equation (6) can thus be recast as

IRIPS(τ ) ≈
∣∣∣∣∣

∑
JMJ ′M ′

ρJMJ ′M ′(τ )
∫

sin θdθdφYJM (θ,φ)

×Y ∗
J ′M ′(θ,φ)(cos2 θ − sin2 θ sin2 φ)

∣∣∣∣∣
2

. (7)

Given, however, that the pump field is linearly polarized along
the space-fixed z axis, the projection of the angular momentum
on the z axis, given by the quantum number M , is conserved
and hence 〈sin2 φ〉 = 0. Thus, the conventional RIPS signal is
proportional to 〈cos2 θ〉. Past work on the characterization of
the alignment induced by moderately intense laser pulses has
successfully applied RIPS to measure and control the time-
evolving expectation value 〈cos2 θ〉 [26,27].

As noted above, although 〈cos2 θ〉 has been the most
popular measure of strong-field-induced alignment, it provides
only the second moment of the rotational wave packet and
hence does not convey the complete information contained
in the wave packet. Here we envision a modified approach,
based on the standard RIPS concept [27], where the pump-
field polarization vector is stepwise rotated with respect to
the weak-field, time-delayed probe polarization vector, the
latter remaining perpendicular to n̂, to record the polarization
signal versus the time delay and the angle (γ ) between the
space-fixed z axis and the pump polarization vector (ε̂pu), γ =
cos−1 ε̂pu · ẑ. As the pump polarization vector is rotated with
respect to the space-fixed z axis (〈sin2 φ〉 �= 0), the rotational
operator M(θ,φ) = cos2 θ − sin2 θ sin2 φ peaks around both
θ = 0 and θ = π/2. This leads to a mirror reflection of the
probability density map about a symmetry plane passing
through θ = π/4. If, however, one records only the component
of the RIPS signal that is parallel to the space-fixed z axis (e.g.,
by using a second analyzer), the rotational density mapping is
significantly improved. It is readily shown that the intensity of
the z component of the RIPS signal is given by

I
‖
RIPS(τ,γ ) ≈

∣∣∣∣∣
∑

JMJ ′M ′
ρ

γ

JMJ ′M ′(τ )
∫

sin θdθdφ,

×YJM (θ,φ)Y ∗
J ′M ′ (θ,φ) cos2 θ

∣∣∣∣∣
2

=
∣∣∣∣∣

∑
JMJ ′M ′

ρJMJ ′M ′(τ )
∫

sin θdθdφ,

×YJM (θ − γ,φ)Y ∗
J ′M ′(θ − γ,φ) cos2 θ

∣∣∣∣∣
2

, (8)

irrespective of the relative orientation of the pump polarization
vector in space (that is, for all γ ). Equation (8) illustrates that
the γ dependence of the extended RIPS signal thus generated
maps the θ dependence of the rotational probability density.
One can also use the perpendicular component of the RIPS
signal alone in mapping the rotational density but, as will be
discussed in the next section, the same information (with the
same resolution) is obtained using either component.
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B. High-order harmonic signals

High harmonic signals from nonadiabatically aligned
molecules have been the topic of intensive study over the past
7 years, and continue to offer new questions for research. High
harmonic generation (HHG) is well understood in terms of a
three-step process [49,50], wherein ionization takes place close
to the maximum of the electric field, generating a free-electron
wave packet in the continuum that follows the electric-field
oscillations. If the field is linearly (or close to linearly)
polarized, the electronic wave packet will revisit the vicinity of
the core, and, with a small probability, undergo recombination,
thus emitting harmonics of the driving field. The intense
(and very fruitful) interest in HHG from nonadiabatically
aligned linear molecules has been largely inspired by the early
report of tomographic imaging of molecular orbitals based
on measurements of harmonic spectra at a series of angles
between the alignment and ionization polarization vectors [1].
Of specific interest for the focus of the present study are
subsequent experiments that recorded harmonic signals as
a function of the time delay between an alignment (pump)
pulse and a subsequent ionization (probe) pulse, seeking to
understand the functional form of the τ -dependent spectra
and their relation to molecular properties. While tomographic
imaging of orbitals remains a topic of controversy, it has been
shown that HHG from aligned molecules contains interesting
structural and dynamical information about the underlying
molecular system.

In particular, of relevance to the present work, Refs. [51,52]
point out the information content of harmonic signals with
regard to the rotational coherences responsible for the wave-
packet alignment. Specifically, the theory of Refs. [51,52]
predicts that harmonic spectra would exhibit much higher-
order fractional rotational revivals than have been observed
so far, due to the involvement of rotational operators of more
complex form than the conventional cos2 θ in determining the
spectrum (see the discussion of Sec. I; explicit forms of such
operators are provided below). Very recently, these predictions
were confirmed experimentally [53]. An interesting question,
thus, is the extent to which, and the way in which, HHG can
serve to map the rotational density of wave packets.

The theory of HHG from aligned molecules is derived
elsewhere [51,52] and is not reproduced here. We provide
only the results that are required in order to reformulate the
signal in the general form (3). The intensity of the emitted
harmonic polarized along a direction n̂ is proportional to the
squared magnitude of the Fourier transform of the expectation
value

Tr{ 	μ · n̂ ρ̃(τ,t)} = Tr{ 	μ · nzẑ ρ̃(τ,t)}
+ Tr{ 	μ · nyŷ ρ̃(τ,t)}, (9)

where 	μ is the dipole operator, ρ̃(τ,t) is the complete (elec-
tronic rovibrational) density operator of the molecule, ŷ and ẑ

are unit vectors along the space-fixed y and z axes, respectively,
and we consider the common setup of HHG experiments
from aligned molecules, where the alignment (pump) pulse
polarization vector, the ionization (probe) polarization vector,
and the detection direction are coplanar. The polarization
vector of the ionization (probe) pulse defines the space-fixed
z axis and the common plane of the polarization vectors is

taken to define the (y,z) plane with γ = cos−1(ε̂pu · ε̂pr) =
cos−1(ε̂pu · ẑ). The two components of the signal amplitude in
Eq. (9) for linear molecules are given as [54]

Tr{ 	μ · nzẑ ρ̃(τ,t)}

=
∫

dR̂ ργ
r (θ,φ,τ )

{
cos2 θ

∑
ll′kl

Ylkl
(θ,χ )

×Y ∗
l′kl

(θ,χ )F‖(l,l′,kl,t)

+ sin2 θ
∑
ll′kl

Ylkl
(θ,χ )Y ∗

l′kl
(θ,χ )F⊥(l,l′,kl,t)

}
+ c.c.

(10)

and

Tr{ 	μ · nyŷ ρ̃(τ,t)}

=
∫

dR̂ ργ
r (θ,φ,τ ) sin φ sin θ cos θ

{∑
ll′kl

Ylkl
(θ,χ )

×Y ∗
l′kl

(θ,χ )F‖(l,l′,kl,t)

−
∑
ll′kl

Ylkl
(θ,χ )Y ∗

l′kl
(θ,χ )F⊥(l,l′,kl,t)

}
+ c.c.,

(11)

where R̂ denotes collectively the Euler angles of rotation,
R̂ = (θ,φ,χ ), and χ is the azimuthal angle of rotation about
the body-fixed z axis. In Eqs. (10) and (11) l and kl are the
electronic angular momentum and its projection onto the body-
fixed z axis, and the electronic-vibrational factors are given as

F‖(⊥)(l,l
′kl,t)

= 2

π
il−l′−1

∑
vc

|〈v|vc〉|2ρvv(τ )
∫

dk 〈b|μ‖(⊥)|�lkl
〉

×
∫ t

dt ′ρbb(t ′)εpr(t
′)〈�l′kl

|μ‖(⊥)|b〉e−iS(t,t ′), (12)

where v and vc denote the vibrational indexes of the bound
and ionic states, respectively, ρvv and ρbb are the bound-
state vibrational and electronic densities, respectively, and
S = ∫ t

t ′ (E
k(t ′′) + Evc + Ip − Evb )dt ′′, Ip being the ionization

potential and Ek(t) the continuum electronic energy. As above,
we reserve the variable τ to denote the delay between
the alignment and probe pulses, and use t to denote time
with respect to the ionization pulse. Assuming that Born-
Oppenheimer separability is valid for the bound state, we
express the complete probability density as

ργ (θ,φ; τ,t) = ργ
r (θ,φ; τ )ρvv(τ )ρbb(t). (13)

Thus, the ρr (θ,φ,τ ) in Eqs. (10) and (11) contains the response
of the rotational subspace to the alignment pulse and evolves
on rotational time scales, whereas the F‖(⊥)(l,l′kl,t) contain
the response of the electronic subspace to the ionization
pulse and evolve on the electronic time scales. Although in
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principle the partial-wave expansion in Eqs. (10) and (11)
involves an infinite series, in practice it often converges
rapidly.

Equations (10) and (11) thus formulate the harmonic spectra
in the general form (3), where, however, the rotational operator
M(θ,φ) depends not only on the geometry of the experiment,
as in the RIPS case, but involves also the electronic symmetry
of the bound state of the molecule. Each electronic-vibrational
factor F‖(⊥) describes (i) the process of tunnel ionization
of the bound electronic state |b〉 into the continuum partial
waves |�l,kl

〉 subject to the interaction of the probe laser field
εpr(t ′) with the dipole moment μ‖(⊥) parallel (perpendicular)
to the molecular axis, (ii) propagation of the electron in the
continuum under the action of the laser field, in the course
of which its phase S and momentum k evolve, and finally
(iii) recombination with the bound state. Since the electronic
dynamics is entangled with the rotational dynamics (although
evolving on widely disparate time scales), the rotational
response depends on both the electron energy (hence the
harmonic order) and the orbital symmetry. On the one hand,

this feature may serve to extract valuable information about the
electronic dynamics from measurements of the τ dependence
of harmonic spectra [53]. On the other, it suggests that the
resolution of rotational mapping based on HHG will be system
dependent.

The two cases most intensively studied in the context of
HHG from aligned molecules are those of the N2 and the O2

molecules. In the former case, Eqs. (10) and (11) reduce to

Tr{ 	μN2 · nzẑ ρ̃N2 (τ,t)}
∝

∫
dR̂,ργ

r (θ,φ; τ ) cos4 θF‖(1,1,0,t) (14)

and

Tr{ 	μN2 · nyŷ ρ̃N2 (τ,t)}
∝

∫
dR̂ ργ

r (θ,φ; τ ) cos3 θ sin θ sin φF‖(1,1,0,t), (15)

where attention is restricted to the first (dominating) term in
the partial-wave expansion. In the latter case, one finds

Tr{ 	μO2 · n̂zẑ ρ̃O2 (τ,t)} ≈
∫

dR̂ ργ
r (θ,φ; τ ){cos2 θ [Y11Y

∗
11(F‖(1,1, − 1,t) + F‖(1,1,1,t))

+Y11Y
∗
31(F‖(1,3, − 1,t) + F‖(1,3,1,t)) + · · ·]

+ sin2 θ [Y10Y
∗
10F⊥(1,1,0,t) + Y10Y

∗
30F⊥(1,3,0,t) + · · ·]} + c.c. (16)

and

Tr{ 	μO2 · n̂y ŷ ρ̃O2 (τ,t)} ≈
∫

dR̂ ργ
r (θ,φ; τ ) cos θ sin θ sin φ{[Y11Y

∗
11(F‖(1,1, − 1,t)

+F‖(1,1,1,t)) + Y11Y
∗
31(F‖(1,3, − 1,t) + F‖(1,3,1,t)) + · · ·

− [Y10Y
∗
10F⊥(1,1,0,t) + Y10Y

∗
30F⊥(1,3,0,t) + · · ·]} + c.c., (17)

where several terms, whose magnitudes do not differ widely,
have been retained. As a consequence of orbital symmetry the
first term (the l = 1,kl = 0 partial wave) dominates in the case
of N2, whereas several initial terms contribute for O2, including
the perpendicular component of the dipole element. Thus, in
the case of N2 the rotational operator M(θ,φ) [see Eq. (3)]
does not differ qualitatively from its analog in the RIPS case,
cos4 θ being only slightly better spatially defined than cos2 θ .
In the case of O2, by contrast, higher-order rotational moments
can dominate and better spatial resolution may be expected,
depending, however, on the harmonic order.

C. Angle-resolved photoelectron spectroscopy

Time- and angle-resolved photoelectron spectroscopy
(PES) has been proposed in the past as a route to the
rotational composition of wave packets [37–42,55,56] and
their time-evolving electronic symmetry [41,48,57–62]. Here,
the pump pulse aligns the molecule and the (weak) probe
pulse leads to photoejection of electrons that are resolved
with respect to both angle and energy (the latter to within

the probe pulse bandwidth) and can be recorded as a
function of the pump-probe time delay. As in the previous
sections, we define the space-fixed z axis as the probe pulse
polarization vector, ε̂pr = ẑ, with the pump (alignment) pulse
polarization vector ε̂pr defining the space-fixed zy plane and
γ = cos−1(ε̂pu · ẑ).

The time-evolving population of ejected photoelectrons as
a function of the continuum momentum 	k is given as

PPES(	k,{c},τ,t,γ ) = Tr{|	k,{c}〉〈	k,{c}|ρ̃γ (τ,t)}, (18)

where {c} denotes collectively the electronic, vibrational, and
rotational indices of the ion core, {c} = (c,vc,Jc,Mc), and
the signal is proportional to the long-time limit of Eq. (18),
limt→∞ PPES(	k,{c},τ,t,γ ). To facilitate comparison with the
previous sections, we use the subscripts c to denote the ion
core quantum numbers, retaining the set (b,v,J,M) to specify
the bound-state quantum numbers. Equation (18) reduces to
evaluating the density-matrix element pertaining to a contin-
uum electron occupying a well-defined momentum state and
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the associated rotational and vibrational density matrices of
the ion core, namely, ρ

γ

	k{c},	k{c}(t). Experimental measurements
of time-resolved PES signals, however, are mostly focused on
less detailed observables that are not resolved with respect to

the final-state rotational and vibrational levels. Proceeding to
sum Eq. (18) over the collection of quantum indexes {c}, we
make use of the quantum Liouville equation as detailed in the
Appendix to find

PPES(	k,τ,t,γ ) =
∑
{c}

ρ
γ

	k{c},	k{c}(τ,t) =
∑
{c}{b}

− i

h̄
〈{b}| 	μ · ε̂pr|	k,{c}〉

∫ t

−∞
dt ′εpr(t

′)ργ

	k{c},{b}(τ,t
′) + H.c., (19)

where {b} labels the bound electronic state along with its associated rotational-vibrational manifold, {b} = (b,v,J,M), 	μ, as
above, is the molecular dipole vector, and ε̂pr is a unit vector in the direction of polarization of the probe pulse, ε̂pr = ẑ. As
Eq. (19) illustrates, the population of photoelectrons in a continuum state |	k,{c}〉 is determined by the coherence term ρ

γ

	k{c},{b},
which is an off-diagonal density-matrix element. Making use of the quantum Liouville equation and following the derivation of
the Appendix, we arrive at an approximate expression for the element of interest,

ρ
γ

	k{c},{b}(τ,t
′) ≈

∑
{b′}

i

h̄
〈	k,{c}| 	μ · ε̂pr|{b′}〉

∫ t ′

−∞
dt ′′εpr(t

′′)ργ

{b′},{b}(τ,t
′′)e

i
h̄

(E{c}−E{b})(t ′′−t ′), (20)

where E{c} and E{b} denote the continuum and bound-state energy eigenvalues and the probe pulse has been expressed as
	εpr(t) = ε̂prεpr(t). In deriving Eq. (20), we have assumed that (1) the pump and probe pulses do not overlap in time and hence
the pump field does not affect the photoelectron dynamics, and (2) the probe intensity is below saturation, hence continuum
coherences and populations are negligible as compared to the bound-state analogs.

Using Eqs. (19) and (20) we have

PPES(	k,τ,t,γ ) ≈ 2

h̄2 Re
∑

{c}{b}{b′}

{
〈{b}| 	μ · ε̂pr|	k,{c}〉〈	k,{c}| 	μ · ε̂pr|{b′}〉

∫ t

−∞
dt ′εpr(t

′)

×
∫ t ′

−∞
dt ′′εpr(t

′′)ργ

{b′},{b}(τ,t
′′)e

i
h̄

(E{c}−E{b})(t ′′−t ′)

}
. (21)

We proceed by factorizing the bound component of the density matrix into electronic, vibrational, and rotational components in
the spirit of the Born-Oppenheimer approximation as

ρ
γ

{b},{b′}(τ,t
′′) = ρbb(t ′′)ργ

JMJ ′M ′ (τ )ρvv′(τ ), (22)

where, as in the above, ρbb is the electronic, ρ
γ

JMJ ′M ′ the rotational, and ρvv′ the vibrational density-matrix elements of the
bound state. Given that the bound-state rotational and vibrational density-matrix elements are not changed during the brief
ionization time, the equation of motion for the rotational and vibrational density-matrix elements are determined by a quantum
Liouville equation that involves solely the pump pulse. Finally, neglecting the molecular-ion rotational energies as compared to
the electronic energies in the exponential term (for O2, for instance, the ratio of these energies is 10−5), and making use of the
closure property of spherical harmonics,∑

JcMc

〈θ,φ
∣∣JcMc〉〈θ ′,φ′∣∣JcMc〉∗ = δ(θ − θ ′)δ(φ − φ′)/ sin θ, (23)

one finds

PPES(	k,τ,t,γ ) ≈ 2

h̄2 Re

⎧⎨
⎩

∑
vcvv′

ρvv′ (τ )〈v|vc〉〈vc|v′〉
∑

JMJ ′M ′
ρ

γ

JMJ ′M ′ (τ )
∫

dR̂YJM (θ,φ)Y ∗
J ′M ′(θ,φ)

×
[
〈b|μ‖|	k〉〈	k|μ‖|b′〉 cos2 θ + 〈b|μ⊥|	k〉〈	k|μ⊥|b′〉 sin2 θ

] ∫ t

−∞
dt ′εpr(t

′)

×
∫ t ′

−∞
dt ′′εpr(t

′′)ρbb(t ′′)e
i
h̄

(E{c}−E{b})(t ′′−t ′)

}
, (24)

where μ‖ and μ⊥ are the components of the dipole operator parallel and perpendicular to the molecular axis and we have assumed
that the matrix elements of these operators in the electronic basis [the 〈b|μ‖|	k〉 in Eq. (24)] are independent of the vibrational
coordinates.

The continuum electron wave function is conveniently expanded in a partial-wave series as

〈 Q|	k〉 =
√

2

π

∑
lmlkl

ilDl∗
mlkl

(R̂)Y ∗
lml

(k̂)�lkl
(k, Q,t), (25)
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where Q denotes the electronic coordinates with respect to the body-fixed frame, l and kl are the electronic angular
momentum and its body-fixed z projection (see Sec. III B), �lkl

(k, Q,t) is the corresponding partial wave with k = |	k|, and ml

denotes the projection of l onto the space-fixed z axis. Using Eq. (25) in Eq. (24) we have

PPES(	k,τ,t,γ ) ≈ 4

πh̄2 Re

⎧⎨
⎩

∑
vv′vc

ρv′v(τ )〈v|vc〉〈vc|v′〉
∑

ll′klmlm
′
l

Y ∗
lml

(k̂)Yl′m′
l
(k̂)

∑
JMJ ′M ′

ρ
γ

JMJ ′M ′(τ )

×
∫

dR̂ YJM (θ,φ)Y ∗
J ′M ′(θ,φ)Dl′

m′
l kl

(R̂)Dl∗
mlkl

(R̂)
[
cos2 θμ‖(l,kl)μ

∗
‖(l′,kl) + sin2 θμ⊥(l,kl)μ

∗
⊥(l′,kl)

]

× il−l′
∫ t

−∞
dt ′εpr(t

′)
∫ t ′

−∞
dt ′′εpr(t

′′) exp

[
i

h̄
(E{c} − E{b})(t ′′ − t ′)

]
ρb′b(t ′′)

}
, (26)

where the partial-wave electronic dipole matrix elements
are defined as μ‖(l,kl) = 〈φb|μ‖|�lkl

〉 and μ⊥(l,kl) =
〈φb|μ⊥|�lkl

〉. Considerable simplification has been obtained
in Eqs. (24) and (26) from the fact that cross products of
dipole matrix elements such as μ‖(l,kl)μ∗

⊥(l′,kl) cancel out.
Equation (26) is of the form (3), where, however, the rotational
operator M(θ,φ) is a complex function of the Euler angles.
Similar to the HHG case of Sec. III B, M(θ,φ), and hence
the resolution of the mapping depend on both the molecular
symmetry and the electron dynamics.

To gain qualitative insight into the form of Eq. (26), and
hence its potential to serve as a rotational imaging, it is useful
to introduce several assumptions and approximations that will
simplify and make more explicit the functional dependence
of M(θ,φ) on the Euler angles. Assuming that the pump
pulse is detuned far from vibrational transition frequencies
(which is the case in most alignment experiments), vibrational
coherences in the bound state are not excited and the double
sum over v,v′ reduces to a single term (corresponding to
the initial vibrational state in experiments where the parent
state is vibrationally selected). The incoherent sum over vc

becomes redundant if the final vibrational state of the ion is
resolved. In this situation, the long-time limit of the double
integral in Eq. (26) reduces to a constant that is primarily
determined by the pulse envelope. Assuming further that the
detection direction [k̂ in Eq. (26)] is chosen to lie along the
space-fixed z axis (defined above by the probe polarization
direction), k̂ = ε̂pr = ẑ, the double sum over ml,m

′
l reduces to

a single term, ml = m′
l = 0, and one finds for the PES signal

IPES(	k,τ,t,γ ) = limt→∞ PPES(	k,τ,t,γ ),

IPES(k,k̂ = ẑ,τ,γ )

∝ Re

{∑
ll′kl

il−l′
∑

JMJ ′M ′
ρJMJ ′M ′(τ )

×
∫

dR̂ YJM (θ,φ)Y ∗
J ′M ′(θ,φ)Ylkl

(θ,χ )Y ∗
l′kl

(θ,χ )

× [cos2 θμ‖(l,kl)μ
∗
‖(l′,kl) + sin2 θμ⊥(l,kl)μ

∗
⊥(l′,kl)]

}
,

(27)

where, in order to simplify the notation and focus on the
components that are relevant for our purpose, we have omitted

all the constants. Equation (27) is reminiscent of the expression
for the amplitude of the HHG signal along the space-fixed z

axis, given by Eq. (10). A similar series of rotational operators
is obtained for the two cases, the important difference between
them arising from the respective dipole matrix elements. As
discussed in the context of HHG above, although in principle
the partial-wave expansion of the continuum electronic wave
function is infinite, in practice it often converges rapidly.
Assuming, as in the HHG case, that due to the orbital
symmetry of N2 and O2 the first term (the l = 1,kl = 0 partial
wave) dominates for the former whereas several initial terms
contribute for the latter, we find

I
N2
PES(k,k̂ = ẑ,τ,γ )

∝ Re

{∫
dR̂ ργ

r (θ,φ,τ ) cos4 θ |μ‖(l = 1,kl = 0)|2
}

,

(28)

P
O2
PES(k,k̂ = ẑ,τ )

∝ Re

{∫
dR̂ ργ

r (θ,φ,τ )(cos2 θ{Y11Y
∗
11(|μ‖(1,1)|2

+ |μ‖(1, − 1)|2) − ([Y11Y
∗
31(μ‖(1,1)μ∗

‖(3,1)

+μ‖(1, − 1)μ∗
‖(3, − 1))] + c.c.) + · · ·}

+ sin2 θ{Y10Y
∗
10|μ⊥(1,0)|2 − Y10Y

∗
30μ⊥(1,0)μ∗

⊥(3,0)

−Y30Y
∗
10μ⊥(3,0)μ∗

⊥(1,0) + · · ·})
}

, (29)

for the O2 symmetry. Unlike in the case of N2, the perpen-
dicular component of the dipole element, μ⊥, need not be
small compared to the parallel in the case of O2, owing to
its πg symmetry. For instance, |μ‖(1, ± 1)|2 = |μ⊥(1,0)|2.
Thus, for the setup envisioned above (k̂ = ε̂pr), assuming that a
single partial wave dominates the signal, the operator M(θ,φ)
behaves as cos4 θ in the case of N2 and as a superposition
of quadratic and quartic powers of cos θ in the case of O2

molecules. The former is a relatively well-defined function
of θ , peaked at θ = 0, whereas the latter depends on the
composition of the superposition. In practice, whereas the
assumptions introduced in the derivation of Eq. (27) are readily
realized, the assumption that a single partial wave determines
the signal, Eqs. (28), is typically invalid. The response of the
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images to the number of partial waves contributing to the
spectrum is explored in Sec. IV C.

IV. RESULTS AND DISCUSSION

In this section we proceed to apply the theory derived
in the previous section to explore possibilities of mapping
the density of rotational wave packets onto experimental
observables. As above, we use the N2 and O2 molecules as
simple complementary examples. We begin in Sec. IV A with
a discussion of RIPS, continue in Sec. IV B to the case of
HHG, and conclude with a discussion of rotational imaging
by means of PES. The rotational wave packets are created
with a Gaussian pump pulse of 25 fs pulse width and a
peak intensity of 75 TW cm−2 for N2 and 25 TW cm−2

for O2. All calculations are carried out at a relatively high
rotational temperature (30 K), where about 15 rotational states
are thermally populated. Since our goal is to explore a general
concept, rather than to describe the properties of specific
molecules, we compute the dipole matrix elements for the
HHG case within the strong-field approximation and for the
PES case using a Coulomb wave-function description for the
continuum states. Thus, our results do not provide quantitative
signals for either molecule, but can assess the potential of
the proposed imaging methods, clarify their differences and
similarities, and illustrate the sense in which and degree to
which they depend on the system details.

A. Rotational wave-packet imaging using RIPS

Figures 2(a) and 2(b) show contour plots of the parallel
component of the (extended) RIPS signal versus the pump-
probe time delay τ and the angle γ = cos−1(ε̂pu · ẑ) between
the pump polarization vector and the space-fixed z axis,
calculated as detailed in Sec. III A. The rotational operator
in question is M(θ,φ) = cos2 θ , a function that is peaked at
θ = 0, but is a relatively broad function of θ . A comparison
of Figs. 1(a) and 1(b) with Figs. 2(a) and 2(b) illustrates the
concept of rotational mapping; the signal as a function of (γ,τ )
reproduces the structure of the rotational density in (θ,τ ) space
rather faithfully, tracing the fractional revival structure as well
as the structure of ρr in angular space. The finite angular
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FIG. 2. (Color online) Rotational mapping using RIPS for (a) N2,
(b) O2. The pulse and system parameters are as in Fig. 1.
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FIG. 3. (Color online) Cuts through the N2 rotational probability
distributions (RPD) of Fig. 1(a) (black) compared with cuts through
the RIPS signal of Fig. 2(a) (red dashed) and the HHG signal of
Fig. 5(a) (solid blue/gray) at polar angles (a) θ = 0, (b) θ = 30◦,
(c) θ = 60◦, and (d) θ = 90◦. The rotational shift discussed in the
text is included in the HHG cuts to simplify the comparison.

width of the M(θ,φ) = cos2 θ leads to a certain degree of
coarse graining, but this is barely discerned. The result of
Figs. 2(a) and 2(b) is remarkable considering the fact that it
is obtained from a nonintrusive optical signal that is more
general and significantly simpler to measure and analyze than
imaging via Coulomb explosion. Similar results are obtained
by using the component of the signal that is perpendicular
to the space-fixed z axis to map the rotational density (not
shown), in which case the rotational operator in question is
M(θ,φ) = − sin2 θ sin2 φ. The map is reversed in angular
space but its resolution is unaltered.

To compare more quantitatively the RIPS signal with the
rotational density, we consider, in Figs. 3 and 4, constant angle
cuts of the contour plot in Figs. 2(a) and 2(b), respectively, and
compare them with the temporal evolution of cuts through the
contour plots of the corresponding rotational densities of N2

and O2, Figs. 1(a) and 1(b). The traces corresponding to the
RIPS signal (red dashed curves in Figs. 3 and 4) are seen
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FIG. 4. (Color online) As in Fig. 3 for the case of O2 molecules.
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to capture the temporal behavior of the rotational probability
(shown in black), although the fine structure of ρr is largely
averaged out. As expected, the mapping is accurate in the
regions of maximum alignment and antialignment, but suffers
in the region of θ = π/3, where the probability oscillations
about the isotropic value is a minimum. The plots have been
normalized with respect to the isotropic value and the smaller
variations of the RIPS signal in relation to the rotational wave
packet are consistent with the lesser contrast seen in the contour
plots of Figs. 2(a) and 2(b).

Although the present imaging calculations are obtained
specifically for the cases of N2 and O2, the precision with which
the rotational mapping via (extended) RIPS is achieved for lin-
ear systems is molecule independent, as the rotational operator
considered depends only on the geometry of the experiment.
The results of Figs. 2(a) and 2(b) are therefore general.

B. Rotational wave-packet imaging using HHG

Rotational mapping via harmonic signals is conceptually
similar to mapping via RIPS [see Eq. (3)], the major difference
being that the rotational operator in question depends on
both the detection direction [n̂ in Eqs. (10)and (11)] and the
symmetry of the molecular orbital(s) involved. The former
dependence offers, as illustrated below, the possibility to tune
the rotational operator so as to have advantageous spatial
dependence that will improve the resolution of the mapping.
The latter dependence renders the mapping less general but
more controllable than the RIPS analog.

Figure 5(a) illustrates the 23rd harmonic of N2 versus
the angle γ = cos−1(ε̂pu · ε̂pr) = cos−1(ε̂pu · ẑ) and the pump-
probe time delay τ , as calculated within the theory of Sec.
III B. As is evident from the discussion of Sec. III B, for a
detection angle n̂ = ẑ, the resolution of the mapping is only
marginally improved as compared to the case of RIPS [the
rotational operator in question, M(θ,φ) ≈ cos4 θ , being only
slightly better defined spatially than the one corresponding to
RIPS, M(θ,φ) = cos2 θ ]. If, however, the detection direction
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FIG. 5. (Color online) Rotational mapping using HHG for (a) N2

and (b) O2. The pump pulse and system parameters are as in Fig. 1,
the probe pulse used to calculate the matrix elements is long (akin to
continuous wave) with an intensity of 200 TW, and the 23rd harmonic
is detected at an angle of 45◦ with respect to the probe polarization
vector.

is rotated with respect to the space-fixed z axis, the rotational
operator becomes a function of the azimuthal Euler angle
φ, leading to much enhanced resolution. This is shown in
Fig. 5(a), where the harmonic emission is detected at an angle
of π/4 from the z axis. A comparison of Fig. 5(a) with the
N2 rotational density of Fig. 1(a) and the corresponding RIPS
mapping of Fig. 2(a) illustrates much improved contrast as
compared to RIPS mapping. The higher contrast is achieved
due to the sin φ term in the perpendicular component of the
harmonic spectrum [see Eq. (11)]. As the signal is averaged
over the entire range of the azimuthal angular space, the
presence of sin φ effectively confines it to the vicinity of the z-y
symmetry plane, as the sin function peaks at φ = π/2,3π/2.

Figure 5(a) exhibits also the mapping shift predicted
in Sec. III B. The shift is readily seen to arise from the
perpendicular component of the emission, whose leading term
is proportional to cos3 θ sin θ sin φ, a function that peaks
around π /6. Combined with the parallel component, whose
dominating term behaves as cos4 θ , along with other terms in
the series expansion, this term leads to a peak around θ0 ≈ 25◦,
which expresses itself as a ca. 25◦ shift of the map.

A more quantitative comparison of the RIPS and the HHG
mapping strategies is provided in Fig. 3, where we show
constant angle cuts through the contour maps of Figs. 1(a),
2(a), and 5(a). The blue (solid gray) curves, corresponding
to the harmonic spectrum, illustrate the anticipated enhanced
contrast as compared to the RIPS case. Except in regions where
the probability density oscillations is close to its isotropic
value, the HHG mapping is seen to reproduce all the gross
features and much of the fine structure of the rotational density.
Here too a rotational shift is noted in comparison of the cuts
through the probability density and the HHG signals.

In the case of O2 molecules, rotational imaging via
harmonic signals is less mathematically transparent than in the
N2 case, due to the involvement of several terms of comparable
magnitude in the partial-wave expansion of the observable [see
Eqs. (16) and (17)]. At the same time, the participation of
higher angular momentum states of the continuum electron
results in the involvement of rotational operators that include
higher powers of the trigonometric functions and are hence
better localized in angular space. An example is provided in
Fig. 5(b), which displays the 23rd harmonic of O2 vs γ and
τ for an emission direction n̂ in the z-y plane, rotated by
π/4 with respect to the space-fixed z axis. A comparison with
the corresponding rotational density, Fig. 1(b), illustrates that
the HHG mapping reproduces relatively accurately even the
fine structure of ρr . Consistent with our expectations based
on the discussion of the N2 results above, we find that for an
observation direction n̂ = ẑ (not shown), the fine structure is
lost, as the φ integration averages it out. It is the localization
in the z-y plane that the perpendicular component of the
signal introduces which sharpens the contrast and leads to
the emergence of the fine structure. As anticipated by the
discussion of Sec. II, if emission parallel to the z axis alone is
considered, no rotational shift occurs as a result of averaging
of the signal over all φ values, as the rotational operator M has
no φ dependence. Similar to the case of N2, when the emission
direction includes a component perpendicular to the z axis, a
rotational shift of θ0 ≈ 20◦ is observed [see Fig. 5(b)]. These
conclusions are again substantiated by Fig. 4, which compares
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constant angle cuts through the contour maps of Figs. 1(b),
2(b), and 5(b). Unlike in the case of N2, the mapping does not
lose its fine structure in regions where the probability density
is small but captures all features. A similar rotational shift to
that discussed above is again evident through a comparison of
the cuts through the rotational probability and the HHG signal.

The results summarized in this section illustrate the relative
merits of RIPS and HHG as potential rotational imaging
techniques. The former is independent of the molecular details
and is general, being fully determined by the experimental
geometry, whereas the latter is less coarse grained and hence
leads to better resolution, at least for the molecular symmetries
considered here.

C. Rotational imaging via PES

As the ejected photoelectron momentum vector is angle re-
solved, rotational imaging via PES can in principle afford bet-
ter resolution and sensitivity as compared to RIPS, similar to
HHG imaging. We remark, however, that the rotational opera-
tors involved are generally different in the PES and HHG cases;
the former depend on the angular momentum of the ejected
electron whereas the latter depend on the angular momenta of
both the ionizing and the recombining continuum states.

Figure 6(a) shows the photoelectron signal for N2 molecules
versus the angle γ = cos−1(ε̂pr · ẑ) (see Sec. III C) and the
pump-probe time delay τ for detection parallel to the space-
fixed z axis (defined in Sec. III C as the probe polarization
vector), k̂ = ẑ. For the specific case of the N2 molecule and
the configuration considered here, the leading term in M(θ,φ)
is the same in the HHG and PES cases. Accordingly, the
rotational mapping obtained via PES for the N2 molecule
is quite similar to the one obtained via HHG, where an
emission parallel to the space-fixed z axis is detected. Similar
conclusions are reached by examining the constant angle cuts
shown in Fig. 7. The PES signals are marginally sharper
compared to the HHG analogs (and do not exhibit a rotational
shift, as only the emission direction parallel to the z axis is
detected), but their overall structure is essentially the same.
Clearly, this is not a general result but rather depends on
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FIG. 6. (Color online) Rotational mapping using PES for (a) N2

and (b) O2. The pump pulse and system parameters are as in Fig. 1,
and the photoelectron signal is detected at an angle of 0◦ with respect
to the probe polarization vector.
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FIG. 7. (Color online) Cuts through the N2 rotational probability
distributions of Fig. 1(a) (black) compared with cuts through the PES
signal of Fig. 6(a) (red dashed) and the HHG signal (solid blue/gray)
at polar angles (a) θ = 0, (b) θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.
The HHG emission direction is along the probe polarization vector.

the bound orbital(s) considered and the angular momenta
dominating the electronic continuum.

We conclude this section with a discussion of rotational
imaging of O2 wave packets via PES, using this example
to illustrate the limitation of PES as an imaging tool while
also clarifying the conditions under which PES is expected
to provide enhanced contrast as compared to RIPS imaging.
Figure 6(b) considers the case where the continuum electron
partial-wave series is strongly dominated by the lowest allowed
term, illustrating that, whereas the main features of the
rotational density are reproduced, the map lacks contrast
compared to that obtained by HHG and fails to capture the fine
structure of the probability density. This result is accentuated in
Fig. 8, which shows constant angle cuts through the probability
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FIG. 8. (Color online) Cuts through the O2 rotational probability
distributions of Fig. 1(b) (black) compared with cuts through the PES
signal of Fig. 6(b) (red dashed) and the RIPS signal (solid blue/gray)
at polar angles (a) θ = 0, (b) θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.
The RIPS signal shown as red dashed curves in Fig. 4 is included to
simplify comparison.
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density, the RIPS map, and the PES map, illustrating that the
PES resolution is comparable to that of RIPS and inferior
compared to the analogous HHG map. The reason for the poor
imaging performance of PES signals compared to HHG for
this system, is a combination of two features, the elimination
of either which improves the contrast. First, the dominant
rotational operator in the PES signal is cos2 θ sin2 θ , which
peaks in the z-y plane. Due to that lack of φ dependence
for this operator, integration over φ averages out the details,
leading to a loss of contrast. Thus, if one uses, for instance,
the dipole matrix elements of N2, instead of those of O2 (with
all other parameters retained as those corresponding to O2),
φ integration leads to insignificant azimuthal angle averaging
leading to very good contrast (results not shown here). Thus,
the symmetry of the bound orbital determines if and to
what extent azimuthal averaging will degrade the contrast.
Second, since, as discussed above, low angular momenta of the
continuum electronic wave function are associated, via angular
momentum conservation, with low-order rotational operators
(ones that include low powers of trigonometric functions and
are hence less well localized in angular space), the dominance
of the lowest partial wave in the calculations leading to
Fig. 6(b) limits the attainable contrast. Thus, we found that
even when a single but higher photoelectron partial wave is
used in calculation (e.g., the l = 1(3),l′ = 3(1) rather than the
l = l′ = 1 term) the contrast of the map improves. Finally,
we remark that the availability of the emission direction
as an experimentally tunable parameter in PES provides
an opportunity to probe different rotational operators, but
(depending on the form and combination of the rotational
operators involved) may either improve or degrade the contrast
of the image [56].

V. SUMMARY AND CONCLUSIONS

Our goal in the research described in the previous sections
was to introduce and explore theoretically and numerically
an approach for imaging rotational probability distributions,
hence rotational coherences and their evolution in time and
space. While developing the concept of rotational imaging
as part of the general, and fundamentally valuable, field of
wave-function imaging, we attempted to focus on experimental
realizations that only slightly extend, or differently analyze,
established experimental methods. As such, we considered
three approaches: an extension of strong pump laser Raman-
induced polarization spectroscopy (RIPS), high harmonic
generation (HHG) from aligned molecules, and angle-resolved
photoelectron spectroscopy (PES). The extended RIPS ap-
proach offers the advantages of simplicity of analysis and
generality, the quality of the mapping being independent of the
system. Numerically and analytically it was shown to capture
the basic features of the rotational probability distribution
while entailing a certain degree of coarse graining. Both
HHG and PES offer the potential to generate better resolved
images than the RIPS method, mapping both the gross features
and the fine details of the rotational probability distribution,
hence a direct map of high-order rotational coherences. These
techniques, however, do not share the generality of RIPS nor
its simple analysis, as the quality of the mapping depends

not only on the geometry of the experiment but also on the
molecule and its electronic structure.

In essence, the extended RIPS method provides a P2(cos θ )-
weighted measure of the probability density [P2(cos θ ) being a
Legendre polynomial of order 2], hence probing second-order
rotational coherences. HHG and PES, by contrast, introduce
higher-order rotational expectation values through the involve-
ment of higher angular momentum electrons in the underlying
physical process, and therefore contain information regarding
higher-order rotational coherences, hence the potential for
higher resolution at the cost of loss of generality and simplicity.
The latter two approaches differ in detail, since the HHG
rotational expectation values depend on both the angular
momentum of the tunnel-ionized electronic partial wave and
that of the recombining one, whereas the PES analogs contains
information regarding the angular momentum of a single
continuum electron partial wave.

With the concept of rotational wave-packet imaging estab-
lished via the simplest case scenario of a diatomic molecule,
it will be an interesting challenge for future research to
extend the approach to the richer case of general, nonlinear
molecules. As discussed in the previous sections, rotational
wave-packet imaging provides considerably more information
than the conventional 〈cos2 θ〉 measure (although it does not
share the convenient transferability of the latter observable)
while offering generality and simplicity as compared to the
(already established) Coulomb imaging technique. Much more
interestingly, as a sensitive probe of rotational coherences,
the imaging approach provides potentially a probe of both
intramolecular rotational perturbations (such as Coriolis and
centrifugal couplings) and the response of rotational modes to
different media. Finally, an experimental study of the mapping
introduced above would be clearly exciting.
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APPENDIX: DENSITY-MATRIX APPROACH
TO PES SIGNALS

The Hamiltonian of the molecular system can be simplified
as comprising an active bound electronic state and an electronic
continuum with their respective associated vibrational and
rotational manifolds as

H0 =
∑
{b}

E{b}|{b}〉〈{b}| +
∑
{c}

∫
d	k E{c}|	k,{c}〉〈	k,{c}|,

(A1)

where all variables are defined in Sec. III C. The interaction
of the ionizing (probe) pulse 	εpr(t) with the molecular dipole
vector operator 	μ can be expressed as

Hint(t) = −
∑
{c}{b}

∫
d	k μ{b},	k{c}|{b}〉〈	k,{c}|εpr(t) + H.c.,

(A2)

where

μ{b},	k{c} = 〈{b}| 	μ · ε̂pr|	k,{c}〉, (A3)
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and the probe pulse has been written as 	εpr(t) = ε̂prεpr(t), ε̂pr

being a unit vector in the direction of polarization of the
probe pulse. The coherent quantum Liouville equation for the
molecular density operator ρ̃(τ,t) is given in terms of Eqs.
(A1) and (A2) as

dρ̃(τ,t)

dt
= − i

h̄
[H0 + Hint,ρ̃(τ,t)] . (A4)

Expanding the molecular density operator in terms of
the relevant bound and continuum states, one obtains from
the quantum Liouville equation an equation of motion for the
density-matrix element pertaining to the population of a
continuum state |	k,{c}〉 as

dρ	k{c},	k{c}(τ,t)

dt
= − i

h̄

∑
{b}

μ{b},	k{c}εpr(t)ρ	k{c},{b}(τ,t) + H.c.

(A5)

Integrating Eq. (A5) over time leads to Eq. (19), where the
density-matrix element for the continuum state population
is given in terms of the coherences between the bound and
continuum electronic states, ρ	k{c},{b}(τ,t). The latter elements
are given through the quantum Liouville equation as

dρ	k{c},{b}(τ,t)

dt

= − i

h̄
(E{c} − E{b})ρ	k{c},{b}(τ,t)

+ i

h̄

∑
{b′}

μ	k{c},{b′}εpr(t)ρ{b′}{b}(t)

− i

h̄

∑
{c′}

∫
d	k′ μ	k′{c′}{b}εpr(t)ρ	k{c},	k′{c′}(t). (A6)

Ignoring the third term, as ρ	k{c},	k′{c′}(t) � ρ{b′},{b}(t) for below
saturation probe intensities, one obtains Eq. (20).
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