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A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for
bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main
component originates in scattering of the virtual photons of screened target nuclei on the projectile. It appears at,
approximately, 2γ times the energy of the giant dipole resonance of the projectile, approximately 25γ MeV for
a lead nucleus (γ ≡ E/Mc2, where E and M denote the projectile energy and mass). The emission pertains to
relatively close impacts, with impact parameters ranging to, at maximum, the screening radius of the target atoms.
As a result, the main bremsstrahlung component shows channeling dips, that is, dips in yield upon variation of
the incidence angle to major crystallographic directions of a single crystal. The minimum yield increases with γ

but saturates at a very low value. Incoherent interaction with single target electrons gives rise to two additional
bremsstrahlung components, a modest component due to scattering of virtual photons of the electrons on the
projectile and a strong low-energy component due to scattering of the virtual photons of the projectile on the
electrons. The difference in radiation levels can be traced to the mass of the scatterer. Since target electrons
are more widely distributed than nuclei in a crystal channel the variation of the electron component of the
bremsstrahlung with incidence angle to a major crystallographic direction is less abrupt than the variation of the
nuclear component. In consequence, the shape of the total bremsstrahlung spectrum changes when the crystal
is tilted and the individual components may be singled out. Pair creation is also sensitive to the orientation of a
crystalline material, resulting in a pronounced directional dependence of the energy loss of bare heavy ions at
extreme relativistic energies.
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I. INTRODUCTION

Bremsstrahlung is the major energy-loss channel for high-
energy electrons. For relativistic heavy nuclei the requirement
of coherent action of constituents limits bremsstrahlung to
relatively soft photons, that is, photons of energy much
less than the primary [1]. The implication is that, despite a
series of previous claims, bremsstrahlung never dominates the
energy loss for bare heavy ions penetrating matter. Instead,
moderation is due to atomic excitation and ionization processes
at moderate energies and electron-positron pair production at
high energies, with transition 3 to 4 orders of magnitude above
the projectile rest energy.

While not contributing in any significant way to the energy
loss of relativistic bare heavy ions, the emitted bremsstrahlung
reveals unique features related to the composite nature of
the projectiles such as a resonance structure succeeded by an
effective cutoff with increasing photon energy. This emerges
in the main bremsstrahlung component corresponding to scat-
tering of the virtual photons of target atoms on the projectile
investigated in Ref. [1]. Additional components appear, the
strongest being due to scattering of virtual photons of the
projectile on target electrons. This “Compton component” has
support essentially only at energies below the resonance in the
main component. However, the intensity at low energies is so
high that the Compton component contributes substantially
more to the energy loss than the main component—albeit
not changing the overall conclusion that bremsstrahlung never
dominates the energy loss.

By selecting a single crystal as target and aiming the heavy
ions near a low-index crystallographic direction the different
components may be depleted or enhanced relative to each

other by slightly tilting the crystal. That is, the shape of the
bremsstrahlung spectrum may be controlled by the choice of
angle of incidence. This unique option appears as a result
of the governing of the projectile motion by many correlated
small-angle scattering events with target atoms for sufficiently
close alignment. The resulting channeling motion prevents
projectiles from coming close to target nuclei, depleting
the main bremsstrahlung component, but still leaves a fair
chance for interaction with target electrons, which are more
widely distributed in the crystal channels. The chance for
creation of electron-positron pairs is also depleted. Hence
the bremsstrahlung emitted by the secondaries which falls
in the same energy range as the Compton component of the
heavy-ion bremsstrahlung is reduced relative to the latter. The
nonuniform projectile flux in the nearly aligned crystal further
causes a substantial depletion of the energy loss of heavy ions
at such high energies that loss to pair production dominates.
We note that heavy ions from CERN’s Large Hadron Collider
(LHC) may be aimed at a bent crystal in the future in order
to extract beams for fixed-target experiments [2]. If realized,
this opens the possibility of channeling experiments with
ultrarelativistic heavy ions.

In this paper we present a detailed investigation of the vari-
ous contributions to bremsstrahlung emission by relativistic
bare heavy ions penetrating matter. Interaction with target
atoms and individual target electrons is considered separately,
and depletion of the projectile intensity due to electromagnetic
dissociation is included. In the first part of the paper the target
is assumed to be amorphous. In the second part the heavy
ions are aimed at a single crystal with a major crystallographic
axis nearly aligned with the projectile beam. The variation
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with the angle of incidence of the individual bremsstrahlung
components, as well as their sum, is determined. We conclude
with comments on electron-positron pair creation.

As in Ref. [1] we require the projectile to survive a
given interaction as an entity in order to count the emitted
electromagnetic radiation as bremsstrahlung. Throughout, we
use Ze, M , and E for projectile charge, mass, and energy,
while Zt denotes the atomic number of the target and m is the
electron mass. The Lorentz factor of the projectile γ ≡ E/Mc2

is assumed to be about 100 or larger. A previous publication [3]
gives a brief account of some of the results derived below.

II. BREMSSTRAHLUNG BY THE
WEIZSÄCKER-WILLIAMS METHOD

Bremsstrahlung emitted by a bare heavy ion penetrating
matter is conveniently calculated by means of the Weizsäcker-
Williams (WW) method of virtual quanta. For a particle of
charge q moving at constant velocity v, close to the speed of
light c, the energy transmitted per unit area and frequency ω

by virtual photons at a point fixed at transverse distance b from
the particle path amounts to

d3I

dωd2b
= q2

π2cb2
[xK1(x)]2, (1)

where K1 is a modified Bessel function [4]. The Lorentz factor
is assumed to be sufficiently high throughout that terms of
relative order 1/γ 2 may be neglected. For a bare charged
particle the parameter x is given as

x = ωb/γ c. (2)

Expression (1) holds also for a dressed particle of central
charge q producing an exponentially screened Coulomb
potential (Yukawa potential) in its rest frame; in this case x

reads

x =
√

(ωb/γ c)2 + (b/a)2, (3)

where a is the screening length [1]. Since the modified Bessel
function K1 falls off exponentially for arguments larger than 1,
the effective range in frequency for a given impact parameter,
or in impact parameter at a given frequency, is determined by
the condition x = 1.

The number NWW of virtual photons traversing a unit area
per photon-energy bin is obtained by dividing the energy
spectrum, (1), by the energy of the individual photons,
and the average number Np of events of a given process,
also differential in virtual photon energy, results by subse-
quently multiplying by the corresponding cross section. In
bremsstrahlung a photon scattering cross section is applied.
Depending on the contributing scattering process, this may
be either a total cross section at the given photon energy,
σγ (ω), or a cross section differential in photon scattering angle,
dσγ (ω)/d�. For the former case, for instance,

dNp(b)

dh̄ω
= d3NWW

dh̄ωd2b
σγ (ω) = 1

h̄ω

d3I

dh̄ωd2b
σγ (ω). (4)

Also depending on the process, the energy of the scattered
photon may or may not be equal to the incoming virtual
photon energy. In the former case an expression like (4)
directly gives the observable bremsstrahlung contribution; in

the latter case an integration over those virtual photon energies
which may result in a given scattered photon energy is to be
added. In some cases the projectile has a significant chance of
disintegrating or being removed due to other processes. One
such process is electromagnetic dissociation, which causes
breakup of the projectile with a high probability in very close
encounters when both collision partners are heavy nuclei [5,6].
To account for this, dNp(b)/dh̄ω may be multiplied by a
depletion factor F (b) � 1. For electromagnetic dissociation F

is equal to the probability of no virtual photons participating
in the photodissociation process, that is,

F (b) = P 0(b) = exp

(
−

∫
dh̄ω σdiss(h̄ω)

1

h̄ω

d3It

dh̄ωd2b

)
, (5)

where σdiss is the cross section for dissociation of the projectile
upon photon impact and the virtual photon intensity is that due
to the target atom and encountered by the projectile in its rest
frame.

When much smaller than unity, the average number of
events of a process in a given range of photon energies provides
the probability of the process occurring in this range. For an
even distribution of the relative position of projectile and target
objects, we introduce the cross section pertaining to the process
as this probability integrated over all impact parameters. Below
we operate with the so-called radiation cross section dχ/dh̄ω

obtained by including an extra factor of h̄ω. Hence

dχ

dh̄ω
= h̄ω

∫
d2b

dNp(b)

dh̄ω
F (b) =

∫
d2b

d3I

dh̄ωd2b
σγ (ω) F (b).

(6)

The radiation cross section carries the dimension of an area
and is sometimes alternatively termed the power spectrum.
In cases where F (b) = 1 at all b the impact parameter
dependence derives solely from the virtual photon intensity,
(1). Computation of the cross section rather than the average
number of events at a given b then simply implies substitution
of Eq. (1) by the total intensity obtained by integration of
Eq. (1) over all impact parameters beyond a certain minimum
bmin to be decided on. This total intensity reads [4]

dI

dh̄ω
= 2

π
α(q/e)2

{
ξK0(ξ )K1(ξ ) + 1

2
ξ 2

[
K2

0 (ξ ) −K2
1 (ξ )

]}
,

(7)

where ξ is given as x, Eq. (2) or (3), with b replaced by its
minimum bmin, and α = e2/h̄c is the fine-structure constant.
In many applications we have ξ � 1, whereby the intensity,
(7), reduces to

dI

dh̄ω
= 2

π
α(q/e)2

{
ln

1.123

ξ
− 1

2

}
≡ 2

π
α(q/e)2 ln

C

ξ
. (8)

The last transcription is introduced for later convenience,
C ≡ 2/ exp(γE + 1

2 ) = 0.681 . . . , where γE = 0.5772 . . . is
Euler’s constant. With F ≡ 1 the radiation cross section is
simply the product of the total virtual intensity, Eq. (7) or (8),
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and the photo cross section,

dχ

dh̄ω
= dI

dh̄ω
σγ (ω), F ≡ 1. (9)

There are four contributions to the bremsstrahlung emitted
when a bare heavy ion penetrates matter. The main contribution
for γ � 1 is due to scattering of the virtual photons of screened
target nuclei on the projectile in the rest frame of the latter.
The other three are (i) scattering of the virtual photons of
the projectile on target nuclei, (ii) scattering of the virtual
photons of the projectile on individual target electrons, and
(iii) scattering of the virtual photons of individual target
electrons on the projectile in its rest frame. We examine each
of these contributions below.

A. Interaction with target nuclei

1. Main component

Bremsstrahlung due to scattering of the virtual photons
of a screened target nucleus on the penetrating projectile
is discussed in detail in Ref. [1]. The main points are
as follows: The requirement for coherent action of the
constituents of the projectile nucleus in order to prevent
breakup translates into application of the cross section
for elastic photon scattering. Since the photon energy in
the laboratory depends on the scattering angle in the rest
frame R of the projectile, a cross section differential in
scattering angle is needed. For a 208Pb projectile it may be
approximated as

dσγ

d�′ = Z2r2
p

1

2
(1 + cos2 ψ ′) ×

⎧⎪⎪⎨
⎪⎪⎩

(ZMp

M

)2
, h̄ω′ < h̄ω1

0.793 (h̄ω′)4

((h̄ω′)2−(Em)2)2+(�h̄ω′)2 , h̄ω1 < h̄ω′ < h̄ω̃2

1.93 exp
(−ε(h̄ω′ − h̄ω̃2) sin2 ψ ′

2

)
, h̄ω̃2 < h̄ω′

⎫⎪⎪⎬
⎪⎪⎭ . (10)

Here rp ≡ e2/Mpc2 is the classical radius of the proton of
mass Mp; for lead Z2r2

p = 0.1584 mb. The parameters for
the central region, which mirrors the giant dipole resonance,
are Em = 13.7 MeV and � = 4.15 MeV, and the value of the
high-energy depletion factor is ε = 0.11 MeV−1. The dividing
energies are h̄ω1 = 7.69 MeV and h̄ω̃2 = 22.0 MeV. Primes
denote quantities given in R. In particular, ψ ′ is the photon
scattering angle measured relative to −v, whereby the photon
emission angle relative to v is θ ′ = π − ψ ′. The product of the
virtual photon intensity of the screened target nucleus inR and
the scattering cross section produces the differential radiation
cross section in the projectile rest frame,

d4χ ′

dh̄ω′d�′d2b
= dσγ

d�′
d3I ′

dh̄ω′d2b
. (11)

Transformation from R to the laboratory may be performed
by the use of invariance of the quantity on the left-hand side of
Eq. (11) divided by the square of the photon frequency. Emis-
sion angles are generally small in the latter, γ θ ∼ 1, which
allows for a small-angle approximation. Combined, we get

d4χ

dh̄ωd�d2b
= 16

3
αZ2

t Z
2r2

p

3γ 2(1 + γ 4θ4)

4π2(1 + γ 2θ2)4

1

b2

× [x ′K1(x ′)]2 � F (b), (12)

where the quantity � is the factor in curly brackets in the
scattering cross section, Eq. (10), with the frequency and
emission angle expressed by their laboratory values:

ω′ � 1 + γ 2θ2

2γ
ω, sin2 ψ ′

2
� 1

1 + γ 2θ2
. (13)

In the argument x ′ = [(ω′b/γ c)2 + (b/a)2]1/2, Eq. (3), the first
relation in Eq. (13) is similarly applied for ω′. The minimum
value of the impact parameter is the sum of the projectile and
target nuclear radii, bmin = R� ≡ R + Rt , in order to keep the

projectile intact (no breakup). For the screening length we sub-
stitute the Thomas-Fermi distance, a = aTF = 0.885a0Z

−1/3
t ,

where a0 is the Bohr radius of hydrogen. As an extension of
Ref. [1], the factor F (b) is included in Eq. (12) to allow for
depletion due to electromagnetic dissociation or similar pro-
cesses. In the applications below we are not interested in details
of the angular distribution. Accordingly, an integration over
emission angles is performed. The structure of approximation
(10) to the scattering cross section implies up to three con-
tributing ranges of photon emission angles for any fixed photon
energy in the laboratory. Due to the transformation from the
projectile rest frame to the laboratory, the radiation cross
section peaks near 2γ times the energy of the giant dipole reso-
nance, that is, approximately at 25γ MeV for a lead projectile.
For lighter projectiles the peak will be positioned at a higher en-
ergy, and for heavier projectiles at a slightly lower energy, since
the giant dipole resonance moves from roughly 19 MeV for
nuclei with about 50 nucleons to approximately 13 MeV for the
heaviest nuclei; data and useful fits may be found in Ref. [7].

We do not need the radiation cross section differential in
impact parameter for incidence in an amorphous medium (or
“random” incidence in a crystal). In cases with depletion,
F (b) < 1, the integration of the cross section, (12), over
the impact parameter is performed numerically. Otherwise,
provided the depletion factor F (b) is close to unity and the
average number of events Np(b) is small at all impacts, we
may apply the integrated spectrum of virtual photons, (7),
rather than Eq. (1). Since this spectrum extends far beyond
frequencies where the scattering cross section has support, the
asymptotic form, (8), is a fine approximation. Accordingly, the
radiation cross section assumes the form

d2χ

dh̄ωd�
= 16

3
αZ2

t Z
2r2

p

3γ 2(1 + γ 4θ4)

2π (1 + γ 2θ2)4
ln

(
C

ξ ′

)
�, F ≡ 1,

(14)
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where ξ ′ = [(ω′R�/γ c)2 + (R�/aTF)2]1/2 when the minimum
impact parameter and screening length are chosen as above.
Again, the first relation in Eq. (13) has to be applied for ω′. An
integration over emission angles produces the radiation cross
section dχ/dh̄ω.

2. Low-energy component

Scattering of virtual photons of the projectile on target
nuclei brings a relatively small amount of radiation at most
energies. Due to the lack of a Lorentz boost, bremsstrahlung
contributions of this type are only substantial for photon
energies near the giant dipole resonance, which is a factor
of 2γ below the peak in the spectrum of the main compo-
nent described above. The differential radiation spectrum is
obtained by multiplying Eq. (4) by the photon energy; that is,

d3χ

dh̄ωd2b
= Z2α

π2b2

[
ωb

γ c
K1

(
ωb

γ c

)]2

σγ (ω) F (b). (15)

We have applied Eqs. (1) and (2) for the bare projectile, and
a depletion factor is again included. For a lead target we may
determine σγ (ω) from the approximation to the differential
scattering cross section, Eq. (10), without primes and with Z

and M substituted by Zt and the mass of the target nucleus,
Mt , respectively. Integration over all scattering angles yields

σγ = 8π

3
Z2

t r
2
p

×

⎧⎪⎨
⎪⎩

(ZtMp

Mt

)2
, h̄ω < h̄ω1

0.793 (h̄ω)4

((h̄ω)2−(Em)2)2+(�h̄ω)2 , h̄ω1 < h̄ω < h̄ω̃2

1.93 f (ε(h̄ω − h̄ω̃2)), h̄ω̃2 < h̄ω

⎫⎪⎬
⎪⎭ ,

(16)

where

f (x) = 3

2x3
[x2 − 2x + 4 − e−x(x2 + 2x + 4)]. (17)

Note that f (0) = 1, f (x) approaches 3/2x at high x values
and that the cross section, (16), varies continuously with the
photon energy.

Strictly speaking, since we consider scattering on the target
nucleus there is no reason to require no breakup and restrict
to coherent action of the nuclear constituents. However, since
the incoherent component scales linearly with Zt , whereas
the coherent component scales as Z2

t and generally includes
a resonance, it brings only a small correction, in particular,
for heavy target elements. Hence the incoherent contribution
is ignored. See also comments in Sec. II C.

In cases where we may neglect depletion, F (b) ≡ 1, we
may immediately write down the integral of Eq. (15) over all
impact parameters larger than the sum of the nuclear radii:

dχ

dh̄ω
= 2

π
αZ2 ln

(
Cγ c

ωR�

)
σγ (ω). (18)

As before we have applied the asymptotic form of the virtual
photon spectrum since the argument ξ appearing in Eqs. (7)
and (8) is much smaller than 1 for frequencies where the cross
section, (16), is appreciable when γ � 100: for lead ions on
a lead target the cutoff implied when the argument in the
logarithm of Eq. (18) reaches the value 1 is γ × 9.6 MeV,

which, for our standard case of γ = 170, amounts to 1.6 GeV,
at which value the cross section, (16), is reduced to 0.002 times
its maximum value.

Note that the exponential extinction of the virtual-photon
intensity appears before the peak of the main contribution,
near 25γ MeV for a lead ion, is reached. Hence no processes
involving scattering of the virtual photons of the projectile
contribute around or beyond the peak.

B. Interaction with target electrons

1. Scattering of virtual photons of the projectile on electrons

Bremsstrahlung is also emitted as virtual photons corre-
sponding to the projectile field scatter off individual target
electrons. The process is Compton scattering (except perhaps
for sufficiently low frequencies at which atomic binding plays
a role). If we aim for the energy-loss spectrum, that is, the
energy lost to both photon emission and electron recoil, we
may simply substitute the total cross section for σγ (ω) in
Eq. (4); that is,

σγ (ω) = 2πr2
e Zt

(
1 + η

η3

[
2η(1 + η)

1 + 2η
− ln(1 + 2η)

]

+ 1

2η
ln(1 + 2η) − 1 + 3η

(1 + 2η)2

)
, η ≡ h̄ω/mc2,

(19)

where re ≡ e2/mc2 is the classical electron radius [8]. A factor
of Zt is included since we operate with cross sections per atom
(rather than per electron).

In the Compton process the energy of the scattered photon
is generally less than that of the incoming photon due to
electron recoil. Hence when we aim for the spectrum of
radiated photons the cross section in Eq. (4) should be that
of a photon of higher energy h̄ω0 to scatter into a photon of
the requested energy h̄ω, and an integration over all energies
h̄ω0 > h̄ω should be included. In place of Eq. (4) we then have

dNp(b)

dh̄ω
=

∫ h̄ωmax

h̄ω

dh̄ω0
1

h̄ω0

d3I

dh̄ω0d2b

dσγ

dh̄ω0
(ω0 → ω),

(20)

where the maximum h̄ωmax, determined by kinematics, is
infinite unless very low energies are considered [h̄ω < mc2/2,
in which case h̄ωmax = h̄ω/(1 − 2h̄ω/mc2)]. Heitler gives the
Compton cross section differential in final photon energy [8];
transcription to a cross section differential in initial energy
involves an extra factor of (h̄ω/h̄ω0)2, hence

dσγ

dh̄ω0
= Ztπr2

e mc2 (h̄ω)2

(h̄ω0)4

[
h̄ω0

h̄ω
+ h̄ω

h̄ω0
+

(
mc2

h̄ω
− mc2

h̄ω0

)2

− 2mc2

(
1

h̄ω
− 1

h̄ω0

)]
. (21)

The differential radiation cross section d3χ/dh̄ωd2b is ob-
tained by multiplying Eq. (20) through by h̄ω.

Except for the reference frame, the process considered
is nothing but bremsstrahlung for an electron penetrating
the field of an atomic nucleus at rest: Application of the
virtual photon method to the computation of electronic
bremsstrahlung involves the exact same components as above
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but is supplemented by a final transformation from (the
original) rest frame of the electron to the laboratory frame
(which, in ordinary electronic bremsstrahlung, is the rest frame
of the nucleus) [4]. Hence the effective minimum impact
parameter is the same. In the relativistic case the effective
minimum impact parameter for virtual photons of the projectile
scattering off target electrons is half the Compton wavelength
of the electron, bmin = λC/2 ≡ h̄/2mc. This implies that the
virtual photon spectrum extends effectively up to a maximum
of approximately h̄ω0 = 2γmc2 reached at the minimum
impact parameter and corresponding to x = 1 in Eqs. (1) and
(2). The characteristic photon-emission angle is inferable from
the expression for the cross section differential in scattering
angle given by Heitler [8]. For photon energies well above
mc2 it amounts to

√
2mc2/h̄ω0, which reduces to 1/

√
γ at the

effective maximum of the virtual photon spectrum.

2. Scattering of virtual photons of electrons on the projectile

The calculation of bremsstrahlung due to scattering of
virtual photons of target electrons on the projectile is similar
to that of the main component. For the individual electron
the virtual photon intensity is reduced by 1/Z2

t relative to
that appearing in the determination of the main component.
The minimum impact parameter bmin is determined by the
wave nature of the source of the virtual photons viz the
electron and the size of the struck system, that is, bmin is
the larger of the de Broglie wavelength of the electron in the
rest frame of the projectile and the nuclear radius of the latter,
bmin = max{R,h̄/γmv} = max{R,λC/γ } (with c substituted
for v). For a lead projectile bmin = R for γ � 55. Since the
minimum impact parameter is of the same order of magnitude
as that for the main component and only enters into the
argument of a fairly large logarithm, bremsstrahlung due to
scattering of the virtual photons of the target electrons amounts
to essentially Z−1

t times the main contribution.

3. Jankus’ radiative corrections

Many years back, Jankus published an account on radiative
corrections to the Bethe-Bloch formula for the stopping
power of heavy particles penetrating matter [9]. The Bethe-
Bloch formula concerns the energy loss due to collisional
excitation and ionization of target atoms (see Sec. II C). Jankus
includes (a) the emission of real photons of any energy in
interactions with target electrons as well as (b) Schwinger’s
correction [10] to the elastic electron-scattering cross section
due to emission and reabsorption of virtual photons and the
emission of real soft photons. For the former part, Jankus
considers collisions in the rest frame of the heavy particle
and the energy loss in the laboratory frame is obtained by
subsequent Lorentz transformation of the rest-frame values
of energy and momentum transfers. Calculated in this way,
the energy loss of the heavy particle is the sum of the energy
transferred to both photons and electrons. Hence, it is not
clear that Jankus’ result simply adds to the Bethe-Bloch
formula. For low- and moderate-momentum transfers q the
calculation of contribution (a) is based on the standard Bethe-
Heitler bremsstrahlung cross section [8]; for high-momentum
transfers Schiff’s result [11] is applied. However, Jankus does
not follow Schiff’s suggestion to include a form factor to

account for finite nuclear size. This is a serious limitation
for the collision energies of interest here. Finite nuclear size
is also not included in the Schwinger correction. This renders
the result inappropriate for our collision systems where the
(positive) high-q and the (negative) Schwinger corrections in
Jankus’ calculation both are much larger numerically than
the low-q correction. Hence we do not engage in a detailed
comparison below of Jankus’ results (neither the total nor the
low-q result) with our result for the energy loss due to the
Compton process.

We may add that for bare lead ions penetrating matter at
γ = 170, Jankus’ result corresponds to a correction to the
stopping number L, introduced below, of �L � 0.25. The
experiment in Ref. [12] reported deviations from collision
theory increasing from �L = 0.30 to �L = 0.73 for targets
of atomic numbers Zt increasing from 6 to 82, with errors in
the range 0.5%–1.0% corresponding to �L = 0.07–0.14. For
Zt � 50, the recorded deviations fit almost perfectly with the
contribution from electron-positron pair creation [13,14], with
essentially no room left for Jankus’ correction. For Zt � 29,
pair production does not fully account for the observed
deviation and the experiment may seem not to rule out Jankus’
correction in these cases. However, since Jankus’ result is
independent of the target when expressed in terms of �L, the
experimental findings for the heavy targets basically rule out
his result for all materials.

C. Results

Figure 1 shows the main bremsstrahlung component cal-
culated as described in Sec. II A1 for what is our standard
case in the following: bare lead ions penetrating a lead target
at γ = 170. The curve reaching the highest is produced by
application of the photon intensities, (7) and (8), which obtain
when no depletion of the primary intensity is included, F ≡ 1.
The solid curve results when we require the projectile not to

FIG. 1. Main component of the bremsstrahlung spectrum for bare
208Pb ions penetrating a lead target at γ = 170. The dashed curve
resulted from neglect of depletion due to electromagnetic dissociation
of the projectile. Inclusion of such depletion produces the solid curve.
The dot-dashed curve displays the radiation cross section for the
hypothetical situation where both nuclei involved in a collision are
pointlike and structureless.
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dissociate in the collision with the target nucleus, that is, the
depletion factor, (5), is included. The reduction in the main
bremsstrahlung component is at the level of 8%, in agreement
with the claim in Ref. [1]. For comparison Fig. 1 also displays
the bremsstrahlung intensity which would result had the pro-
jectile been pointlike and structureless. While this is rather flat
and extends to the primary kinetic energy, the actual spectrum
shows a resonance structure which peaks at about 25γ MeV
and is followed by a rather rapid falloff on the high-energy
side. As demonstrated in Ref. [1] the main bremsstrahlung
component maintains its position on the energy axis, and
essentially also its shape, when plotted as a function of h̄ω/γ ,
whereas the intensity level increases with increasing value of
γ until it saturates due to screening at a level about 40% above
that shown in Fig. 1. When saturation over the entire spectrum
is reached, screening is said to be complete. In general,
screening is decisive at virtual photon frequencies such that
the second term dominates the square root in Eq. (3), which,
with the Thomas-Fermi length selected for a, corresponds
to frequencies below γZ

1/3
t × 4.2 keV. For our standard

case this is 3.1 MeV, which is well below the giant dipole
resonance, implying that screening is of no importance. On
the other hand, if γ is increased to 3000, the estimate reaches
55 MeV, which is about 4 times the giant dipole resonance
peak whereby screening is essentially complete.

The probability of surviving a noncontact collision without
dissociation, applied as the depletion factor F above, is
calculated as described in Ref. [5]. Figure 2 displays the
variation of this probability with the impact parameter for lead
ions in lead and silicon targets. For lead targets the dissociation
probability is high when the colliding nuclei are just about to
touch. However, it falls to near 0 when the impact parameter is
just 10 times larger. This is the reason for the modest reduction
displayed in Fig. 1. For silicon the probability of dissociation

FIG. 2. Depletion factor F (b) for a lead projectile due to
electromagnetic dissociation. The two lower curves apply to a lead
target (neutral atoms), with the solid curve corresponding to γ = 170
and the dashed curve to γ = 3000. The two upper curves apply to a
silicon target (neutral atoms) at the same values of γ as for lead and
with the same ordering. The impact parameter is shown in units of
its minimum without nuclear contact viz the sum of the nuclear radii
R� .

FIG. 3. Bremsstrahlung for bare 208Pb ions penetrating a lead
target at γ = 170. Bremsstrahlung due to scattering of the virtual
photons of the projectile on target nuclei is shown by the dotted
curve. The component corresponding to scattering on target electrons
is shown by the triple-dot–dashed curve. The remaining curves are
repeated from Fig. 1.

remains below 5%–6% at all impact parameters and hence
has essentially no influence on the bremsstrahlung spectra
resulting upon integration over impact parameters.

Above, the screening function of target atoms was ap-
proximated by a simple exponential with a screening length
equal to the Thomas-Fermi length. This is obviously a rather
rough approximation. A considerable improvement is obtained
by applying the so-called Molière approximation, where the
screening function appears as a sum of three exponentials [15].
However, the impact on the bremsstrahlung spectra is modest,
typically not beyond 2%–3% for heavy targets.

Figure 3 shows the various bremsstrahlung components for
our standard case on a logarithmic scale. The main component
is repeated from Fig. 1 along with the reference curve for
pointlike and structureless objects. The Compton-scattering
component appears at low energies, way below the peak in
the main bremsstrahlung component. It increases beyond both
the reference curve and the main component with decreasing
photon energy, starting at about 200 MeV. The Compton
component further dominates the component due to scattering
of virtual photons of the projectile on the target nucleus,
implying that this component, which appears around the giant
dipole resonance of the target nucleus, is of no practical
importance. Bremsstrahlung due to scattering of the virtual
photons of target electrons on the projectile adds about 1%
(1/Zt ) to the main component and is not shown in Fig. 3.

A depletion factor due to electromagnetic dissociation of
the projectile is included in Fig. 3 for the main bremsstrahlung
component. In principle, a depletion factor should be included
in the Compton component as well. However, since depletion
is confined to quite close encounters between the two nuclei,
Fig. 2, while the virtual photon intensity peaks near the struck
object, Eq. (1), which in the case of electrons is distributed
over much larger distances to the target nucleus, depletion is
neglected for the Compton component.

As mentioned in Sec. II A2, emission of radiation also
results from incoherent scattering of virtual photons of the
projectile on individual constituents of target nuclei. As a
rough approximation we may compute this as Thomson
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scattering on independent protons, Zt for each target nucleus,
for virtual photons with a wavelength shorter than the nuclear
radius. The resulting intensity spectrum is rather flat, extending
from a lower limit of 25–30 MeV for the heaviest nuclei up
to the effective cut in the virtual photon intensity somewhat
below the peak in the main bremsstrahlung component (cf.
Sec. II A2). For our standard case the incoherent component
basically vanishes beyond 1.6 GeV and has a level of 1 mb
at 200 MeV, which is 2 orders of magnitude below the main
as well as the Compton component. Hence the incoherent
component may safely be ignored.

Copious electron-positron pairs are generally produced
in heavy-ion collisions. In Ref. [1] we discussed the sig-
nificance, relative to the main component of the heavy-ion
bremsstrahlung, of the bremsstrahlung emitted when the
electron and the positron travel through the remaining part of
the target following a pair-creation event. The pair-production
cross section falls off beyond γmc2 roughly as the inverse
cube of the total energy of the pair and peaks well below
this value [16,17], and the emitted bremsstrahlung extends to
the kinetic energy of the emitting particle. In consequence,
the radiation falls in the same energy range as the Compton
component for the heavy particle. But since emission following
pair production is a secondary process the dependence on the
target thickness will be different and extraction is possible
experimentally by varying the target thickness. For lead ions
incident on a lead target the energy loss to electron-positron
pairs is larger than that to the Compton component of
bremsstrahlung for γ values beyond 102 (see Fig. 5). Hence
elimination of bremsstrahlung from pairs requires targets that
are thin compared to the radiation length. In crystals additional
opportunities for elimination exist (see Sec. III D). For targets
of lower atomic numbers the Compton component is relatively
more important, due to slower scaling with Zt , than the
pair-creation component and the radiation length is longer.

Radiation is also emitted internally in the pair-creation
process. This radiation is confined to low energies [18] and
hence of no concern near the peak of the main bremsstrahlung
component [19]. It is also small compared to the Comp-
ton component: with two photon-electron vertices and one
electron-nucleus scattering vertex the cross section for a virtual
photon to convert to an electron-positron pair plus an outgoing
photon is, in order of magnitude, Z2

t α
4 (in units of the square

of the Compton wavelength of the electron), whereas the
cross section for Compton scattering, in order of magnitude,
amounts to Ztα

2 (per target atom and in the same units).
The ratio of the two is hence estimated as Ztα

2, which is
lower than α, and in consequence, radiation emitted during
electron-positron pair creation may be neglected.

It is important to note that the positions of the different
contributions to the bremsstrahlung spectrum scale differently
with γ . The position of the main contribution as well as that
of the contribution due to scattering of the virtual photons
of target electrons on the projectile shifts essentially in
proportion to γ . The Compton contribution moves around
at a slower pace. The contribution due to scattering of the
virtual photons of the projectile on the target nucleus remains
stationary around the giant dipole resonance of the latter.
A simple formula for the γ dependence of the Compton
component has not been found. Figure 4 shows how the

FIG. 4. Variation of the Compton component of heavy-ion
bremsstrahlung with the Lorentz factor for bare lead ions penetrating
a lead target. The solid curve shows the photon energy at which the
cross section assumes the value 0.1 b. The dashed and dotted curves
similarly correspond to fixed cross sections of 1 and 10 b.

photon energy at which the cross section for this component
assumes a fixed preset value varies with γ for bare lead nuclei
penetrating a lead target. The lowest cross section selected
corresponds closely to the reference value in Figs. 1 and
3; that is, the solid curve in Fig. 4 essentially shows the
variation with γ of the photon energy at which the Compton
component (triple-dot-dashed curve in Fig. 3) and the reference
curve (dot-dashed curve in Fig. 3) cross. This photon energy
increases by about 2 orders of magnitude over the displayed
4-order-of-magnitude change in γ . For higher cross sections
the photon energy varies less.

Figure 5 shows the energy loss per unit path length, divided
by the primary energy E and the atomic density N of the target,
for bare lead ions penetrating a lead target. The radiative energy
loss is generally given as

−dE

dx
= N

∫
dh̄ω

dχ

dh̄ω
. (22)

Depletion of the main bremsstrahlung component due to
electromagnetic dissociation of the projectile is at the level
of 7%–9% at all energies displayed. Despite the decrease in
the depletion factor F (b) at a given impact parameter b (cf.
Fig. 2), the reduction in the energy loss decreases slightly when
γ is raised from 100 towards the LHC value of 3000. This is
due to the increase in the impact-parameter range contributing
to the main bremsstrahlung component. On the other hand,
beyond the LHC energy where screening causes saturation
in range, the reduction increases, albeit only slightly. For the
energy loss due to the Compton component of the heavy-ion
bremsstrahlung we apply the total cross section, (19), which
includes the energy lost to both the emitted quantum and the
electron recoiling as a result of the scattering of the virtual
photon. At energies not much below the LHC energy, this
component dominates the radiative energy loss (Fig. 5).

For heavy targets the energy loss per unit path length due
to creation of electron-positron pairs is [13,20](

−dE

dx

)
PP

= πZ2Z2
t α

2r2
e Nγmc2�, (23)
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FIG. 5. Relative energy loss of a bare lead ion penetrating a lead
target. The radiative loss due to the main bremsstrahlung component is
shown, accounting for (solid curve) as well as ignoring (dashed curve)
depletion due to electromagnetic dissociation. The triple-dot-dashed
curve displays the Compton component of the radiative energy loss.
The dotted curve shows the electronic energy loss, and the dot-dashed
curve the energy loss due to electron-positron pair creation. To get
the fractional energy loss −E−1dE/dx per centimeter, the ordinate
should be multiplied by 3.30 × 10−2.

where the logarithmic factor � is approximately given as

� = 19

9
ln

183Z
−1/3
t

1 + 4e11/6183Z
−1/3
t /γ

. (24)

The stopping power of the target due to atomic excitation and
ionization, the “electronic energy loss,” reads(

−dE

dx

)
electr

= 4πZ2e4

mv2
NZtL, (25)

where NZt = n is the average density of target electrons. In the
quantum mechanical perturbation limit the “stopping number”
L is given by Bethe’s result including Fermi’s density effect
correction (see [21] or [22] for the explicit expression). For
highly charged projectiles nonperturbative effects generally
have to be included. At nonrelativistic energies they result in
Bloch’s correction, which bridges the gap from Bethe’s result
to Bohr’s classical stopping formula. Reference [21] presents
a treatment which includes all nonperturbative corrections as
well as the effect of the finite size of the projectile nucleus at
any energy in one single calculation. For energies sufficiently
high that the density effect is in full action and close collisions
are limited by the finite size of the projectile nucleus, the
logarithmic factor L takes the remarkably simple form

L → ln(1.62c/Rωpl), (26)

where ωpl =
√

4πne2/m is the plasma frequency of the target.
For heavy projectiles in condensed matter Eq. (26) applies
quite accurately for γ values beyond 100.

As is clear from Fig. 5 the energy loss of a heavy bare ion
is dominated by electronic excitation and ionization of target
atoms at low and moderate values of γ and by pair production
at high γ . The sum of these two components will provide
the energy loss to about 1% at all energies, bremsstrahlung
processes contribute insignificantly. With all components

scaling approximately with Z2, that is, in approximately the
same manner, this conclusion is independent of the projectile
charge. Note that the reading for the Compton contribution
for our standard case is 5.45 × 10−4 b, which translates to a
correction to the stopping number of �L = 0.064, which is
within the error bars of the experiment discussed at the end of
Sec. II B3.

III. HEAVY-ION BREMSSTRAHLUNG IN AXIALLY
ALIGNED CRYSTALS

When a relativistic heavy ion moves through a single crystal
near a low-index axial direction and passes relatively close
to a row of atoms, deflecting slightly in each encounter,
correlation between successive scattering events implies that
the ion’s trajectory effectively is the same as that resulting
from interaction with a continuum row obtained by smearing
the target charges along the direction of the axis [23–25]. With
V denoting the ion-atom interaction potential energy and z the
coordinate along the atomic row, the corresponding continuum
potential reads

U (r) = 1

d

∫ ∞

−∞
dzV (r,z), (27)

where r is the transverse distance to the center of the string
and d the average spacing between atoms along it. For a single
isolated row of atoms U has rotational symmetry, Eq. (27). For
a true crystal there will be a periodicity in transverse space,
U = U (r). For motion close to a low-index planar direction a
similar continuum approximation applies.

For a particle governed by the continuum potential, the z

component of the force exerted by the crystal vanishes. Hence
the longitudinal momentum pz will be a constant of motion.
In consequence, also the “longitudinal energy” Ez ≡ (p2

z c
2 +

M2c4)1/2 as well as its “transverse” counterpart E⊥ ≡ E − Ez

will be conserved. For motion at a small angle ψ to the atomic
row, the transverse energy takes the form

E⊥ = p2
⊥

2γM
+ U (r) = 1

2
pvψ2 + U (r), (28)

where p⊥ is the component of the projectile momentum p
transverse to the string. While moving through the crystal
the transverse position and momentum, r and p⊥, change as
transverse kinetic energy [first quantity on the right-hand side
of Eq. (28)] is traded for potential energy, and vice versa. Also
the angle changes. Typical values for ψ for motion governed by
the continuum potential may be estimated by equating 1

2pvψ2

to the height of the potential, U (0). For any reasonable choice
of potential the result approximates Lindhard’s critical angle
ψ1, defined as

ψ1 =
(

4ZZte
2

pvd

)1/2

. (29)

Motion at transverse energies up to, roughly, the height of
the continuum potential is also known as channeling. See
Refs. [23–25] for further details.

Governing of the projectile motion by highly corre-
lated deflections in a single crystal influences the emission
of bremsstrahlung in two ways. The gradually bending
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trajectories, whose projections in transverse space generally
are far from straight lines and determined by conservation of
transverse energy, and approximate conservation of angular
momentum in the interaction with each string (if projectiles
come sufficiently close), give rise to the emission of so-called
channeling radiation. The focusing of the positively charged
projectiles in parts of transverse space far from strings, on
the other hand, gives rise to a weakening of the emitted
bremsstrahlung compared to that due to interactions with
individual atoms in a similar but amorphous target. For
heavy projectiles channeling radiation, where the coherence
in scattering on target atoms is carried on to the radiation, is
generally confined to energies much lower than those discussed
in the previous section (cf. [3]). It is therefore not considered
further. By far, the main effect of the coherence in scattering on
heavy-particle bremsstrahlung is the creation of a nonuniform
particle flux which leads to depletion of the bremsstrahlung,
including a nearly complete extinction of the main component,
for perfect alignment between the direction of incidence and
the crystal axis.

In this paper we consider solely axial alignment and
generally focus on interaction with just a single isolated string
of atoms at any given time. For applications we need an
explicit expression for the continuum potential. A convenient
candidate is the so-called Doyle-Turner potential, which is
based on an analytical approximation to relativistic Hartree-
Fock atomic potentials,

U (r) = Ze2

a0

2a2
0

d

4∑
i=1

ai

Ci

e−r2/Ci , (30)

where

Ci = Ci(ρ) ≡ bi/4π2 + ρ2 (31)

and ρ denotes the two-dimensional root-mean-square thermal
displacement of the atom from the equilibrium position [cf.
Eq. (39)]. For details and explicit values of the coefficients ai

(Å) and bi (Å2), see Ref. [26] or Refs. [24,27]; for values of
the thermal vibration amplitude, see [28]. The Doyle-Turner
potential is quite accurate when thermally averaged as in
Eqs. (30) and (31) [27].

A. Reaction yields for channeled particles

In order to determine the variation of the bremsstrahlung
yield with the degree of alignment we proceed as described
in, for instance, Ref. [24]. A key point is a rapid trend
towards statistical equilibrium, which implies that calculation
of individual projectile trajectories and subsequent averaging
may be avoided [23].

A projectile incident at the crystal at an angle ψin to the
considered axial direction enters the crystal with a transverse
kinetic energy of 1

2pvψ2
in. Entrance at transverse position rin

further gives it a potential energy U (rin) whereby its transverse
energy (just inside the crystal surface) assumes the value

E⊥ = 1
2 pvψ2

in + U (rin) = 2ZZte
2d−1 (ψin/ψ1)2 + U (rin),

(32)

where Lindhard’s critical angle ψ1 is defined by Eq. (29). The
distribution of the incident beam over (rin,ψin) determines

the E⊥ distribution. The distribution over rin is obviously
uniform on the atomic scale upon entrance. For a given ψin the
distribution in transverse energy right inside the crystal surface
hence is

g(E⊥,ψin) = 1

A0

∫
A0

d2rin δ

(
E⊥ − 1

2
pvψ2

in − U (rin)

)
, (33)

where the transverse area per string is related to the atomic
density of the target N and the longitudinal atomic spacing d

as A0 ≡ πr2
0 = (Nd)−1. Since the continuum potential is flat

over large regions between strings, the E⊥ distribution peaks
around 1

2pvψ2
in for positively charged projectiles.

Let �in denote the probability that a projectile with
transverse energy E⊥ takes part in the process of interest.
The reaction yield is then determined by integration of
the product g�in over transverse energy. Below we ne-
glect “dechanneling,” that is, we ignore the possibility that
the distribution g may change with penetrated depth. With g

determined by surface transmission, Eq. (33), the directional
dependence of the reaction yield of the process reads

X(ψin) = 2

r2
0

∫ r0

0
dr r �in

(
1

2
pvψ2

in + U (r)

)
. (34)

Note that in accord with Eq. (32), X actually depends only
on the ratio ψin/ψ1. If the reaction process is characterized by
an impact-parameter-dependent probability PX, the collision
partners may be treated as moving on well-localized paths
according to classical mechanics, and interaction between
collision partners located in different channels is rare, we may
express the function �in as

�in(E⊥) = A0

∫
d2r ′

∫
d2r Pt (r′)P (E⊥; r)PX(r − r′),

(35)

where both integrals extend over the single-string area A0.
The probability distributions P and Pt for the projectile and
target object in transverse space are normalized inside this
area. Provided that also the reaction probability is normalized
and that, to good approximation,

∫
d2r PX(r − r′) = 1 for all

r′, where Pt (r′) is appreciable, �in = 1 and hence X = 1 for
ψin well beyond ψ1 (“random” incidence), which produces
a uniform probability, P = 1/A0. For a completely localized
interaction, PX(r − r′) = δ(r − r′), Eq. (35) reduces to

�in(E⊥) = A0

∫
d2rPt (r)P (E⊥; r). (36)

For an axially channeled beam of particles initially centered
around a given transverse momentum, there will be a trend
towards statistical equilibrium in transverse phase space [23].
Equal probability in the allowed region of transverse phase
space in turn leads to equal probability P (E⊥; r) of finding a
particle of given E⊥ anywhere inside the accessible area in
direct space. Hence

P (E⊥; r) = 1

A(E⊥)
�(E⊥ − U (r)), (37)

where �(x) is the Heaviside function. The accessible area
is given as A(E⊥) = A0 − πr2

↓, where r↓ is the minimum
distance of approach to the string classically, that is, E⊥ =
U (r↓) for E⊥ < U (0). With distribution (37) the probability
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�in of a completely localized interaction, Eq. (36), reduces
further to

�in(E⊥) = A0

A(E⊥)

∫ r0

r↓(E⊥)
dr2πrPt (r) (38)

in the single-string approximation.

B. Interaction with target nuclei

If the target object is a nucleus at a lattice site, its distribution
function Pt assumes the form

Pt (r′) = (πρ2)−1 exp(−r ′2/ρ2) (39)

within the harmonic approximation for interatomic forces with
the equilibrium position at the center of the channel. Insertion
of this result along with Eq. (37), corresponding to statistical
equilibrium, simplifies (35) to

�in(E⊥) = A0

A(E⊥)

1

πρ2

∫
d2r ′

∫
A(E⊥)

d2r e−r ′2/ρ2
PX(r − r′).

(40)

For processes of a very short range, that is, shorter than
all other characteristic lengths in the problem, the reaction
probability may be approximated by a δ function. With ρ � r0

the corresponding expression, (38), reduces to

�in(E⊥) = A0

A(E⊥)
e−(r↓(E⊥)/ρ)2

. (41)

For random incidence this reduces to 1 since in this case
A(E⊥) = A0 and r↓(E⊥) = 0. If we insert expression (41)
in Eq. (34) for ψin = 0, we obtain a minimum yield of

Xmin = X(0) = ρ2

r2
0

= πNdρ2, (42)

still observing ρ � r0.
Since PX in expression (40) for �in is a function of the

relative coordinate r′′ ≡ r′ − r, it is convenient to change
the outer integration variable from the target coordinate r′
to r′′. We confine our attention to cases where PX depends
solely on the magnitude of r′′ and not the direction whereby
one angular integration is trivial. With φ′′ denoting the
angle between the relative and the projectile coordinate, we
have r ′2 = r2 + r ′′2 + 2rr ′′ cos φ′′. Interchanging the order of
integration, we may then rewrite Eq. (40) as

�in(E⊥) = A0

A(E⊥)

2

ρ2

∫ r0

r↓(E⊥)
dr r e−r2/ρ2

∫ ∞

0
dr ′′r ′′e−r ′′2/ρ2

×PX(r ′′)
∫ 2π

0
dφ′′e−2rr ′′ cos φ′′/ρ2

. (43)

Extension of the integration over the relative coordinate to all
of transverse space is obviously an approximation since both
r and r′ are confined to the single-string area. However, for
processes with effective ranges much less than r0 and a target
density highly concentrated near the string, the approximation
is quite accurate (cf. the discussion above). The change of coor-
dinates formally leads to an upper limit for r ′′ of r0 + r and, for
r ′′ > r0 − r , to exclusion of angles with cos φ′′ > (r2

0 − (r2 +
r ′′2))/2rr ′′. Including the full range of angles, the integral over

φ′′ may be performed analytically. The result is expressed in
terms of the modified Bessel function I0 [29] such that

�in(E⊥) = 4πA0

A(E⊥)
ρ2

∫ r0/ρ

r↓(E⊥)/ρ
dy y e−y2

×
∫ ∞

0
dx x e−x2

I0(2xy)PX(xρ), (44)

where we have introduced the variables x = r ′′/ρ and
y = r/ρ.

C. Interaction with target electrons

To obtain �in for a process involving target electrons the
probability Pt (r′) appearing in Eq. (35) has to reflect their den-
sity in transverse space n(2D)

e . Generally, the charge density in
the continuum model may be obtained by applying the Poisson
equation to the thermally averaged continuum potential, the
corresponding charge density in two-dimensional transverse
space results upon further multiplication by d. Subtraction
of the nuclear charge density Zte(πρ2)−1 exp(−r ′2/ρ2) and
division of the result by the electron charge −e produces
the requested two-dimensional electron number density. The
normalized probability Pt is obtained by finally dividing by
the total number of electrons per atom. For the thermally
averaged Doyle-Turner potential, (30), this procedure results
in a slight unphysical modulation. Instead, the probability may
be obtained from Doyle and Turner’s fit to the x-ray scattering
factor [26], which directly reflects the electron density. In the
continuum approximation and including the smearing due to
thermal vibrations, the result is

Pt (r
′) = 1

Zt

n(2D)
e (r ′)

= 1

Zt

[
c(X)

πρ2
e−r ′2/ρ2 + 1

π

4∑
i=1

a
(X)
i

C
(X)
i

e−r ′2/C
(X)
i

]
, (45)

where

C
(X)
i = C

(X)
i (ρ) ≡ b

(X)
i

/
4π2 + ρ2 ≡ ρ2D

(X)
i (ρ). (46)

For details and explicit values of the coefficients c(X), a(X)
i , and

b
(X)
i see [26]; D

(X)
i is introduced for later convenience. Note

that c(X) + ∑4
i=1 a

(X)
i = Zt . Figure 6 displays the probability,

(45), of a silicon crystal aligned along the strongest axis
together with the corresponding probability obtained from the
potential, (30), and the more localized nuclear density, (39).
The probabilities are plotted out to the single-string radius r0.
The nuclear probability effectively vanishes long before this
limit. The electronic probability, on the other hand, is much
broader and is not completely diluted at r0.

The probability, (45), is normalized in the entire transverse
space. For use in expression (35) for �in a probability normal-
ized to the single-string area (r < r0) is needed. We acquire this
simply by multiplying expression (45) by a proper constant,

CN = 1/

∫
A0

d2r ′ Pt (r
′) = 1/

[
1 − 1

Zt

4∑
i=1

a
(X)
i e−r2

0 /C
(X)
i

]
,

(47)
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FIG. 6. Target object probability 2πrPt as a function of transverse
distance r for a silicon single crystal aligned along the 〈110〉
direction. The solid curve corresponds to the electron probability,
(45); the dotted curve, to the electron probability obtained from the
thermally averaged Doyle-Turner potential, (30); and the dashed
curve, to the probability distribution, (39), for target nuclei. The
crystal temperature is 300 K.

where we have assumed ρ � r0 in the last step. Since not all of
the quantities C

(X)
i are small compared to r2

0 the denominator
is less than 1, whereby the normalization factor ends up being
somewhat larger than 1. For the example shown in Fig. 6,
the density reconstructed from the fit by Doyle and Turner
produces a total of 12.89 electrons inside the single-string
radius r0. Accordingly, in this case we multiply the
probability, (45), by the constant CN = 14/12.89. Obviously,
more sophisticated choices could be made, for instance,
choices which reflect that the missing density primarily
pertains to larger distances. However, if we were to account
for this, the lack of axial symmetry should also be accounted
for. Since the correction is moderate we have decided on the
simple renormalization with a constant factor, CN of Eq. (47).

In statistical equilibrium, Eq. (37), �in is given by Eq. (40)
with replacement of (πρ2)−1 exp(−r ′2/ρ2) by expression
(45) for processes involving target electrons. For processes
of range shorter than all other characteristic lengths in the
problem, the reaction probability may be approximated by a δ

function. Again, with ρ � r0 the yield of such close-encounter
processes involving electrons reduces, by inclusion of the
normalization factor CN , to

�in(E⊥) = A0

A(E⊥)

CN

Zt

[
c(X)e−(r↓(E⊥)/ρ)2

+
4∑

i=1

a
(X)
i

{
e−(r↓(E⊥))2/C

(X)
i − e−r2

0 /C
(X)
i

}]
. (48)

For E⊥ = U (0), corresponding to r↓ = 0, the right-hand side
of Eq. (48) reduces further, by application of Eq. (47), to 1 as
required.

In the general case we may proceed as described in
the previous subsection for interactions with target nuclei.
Including the normalization factor CN and performing the

angular integrations as for interactions with nuclei, �in is
obtained from Eq. (44) by the following substitution:

I0(2xy)e−x2−y2 →
[
c(X)I0(2xy)e−x2−y2 +

4∑
i=1

a
(X)
i

D
(X)
i

×I0
(
2xy/D

(X)
i

)
e−(x2+y2)/D(X)

i

]
CN

Zt

. (49)

To obtain Eq. (49) we have again extended the integration
over the relative coordinate over all of transverse space. This
approximation is less accurate for processes involving target
electrons than target nuclei since the electron density is not
completely diluted near the edge of the single-string area.
However, this is of little concern here since (a) the electron
component due to scattering of virtual photons of target
particles on the projectile is a small correction to the main
contribution and (b) the upper end of the Compton component
is essentially due to completely localized encounters. Even for
the lower part of the latter component the error committed will
be moderate since the fraction of the electrons placed near the
edge is quite small.

D. Results

The variation in the spectrum of the main bremsstrahlung
component with the angle of incidence to a major crystallo-
graphic direction is particularly simple in the limit of complete
screening: In this limit, by definition, the second term in the
square root in Eq. (3) dominates at all frequencies where
the cross section multiplying the virtual photon intensity has
support, whereby the dependence of the radiation cross section
on energy and impact parameter separates; that is,

d3χ

dh̄ωd2b
= dχ

dh̄ω
S(b). (50)

Here dχ/dh̄ω is the usual radiation spectrum obtained after
integration over b for the case with no depletion (due to
electromagnetic dissociation or something similar), and the
impact-parameter dependence is given as

S(b) = 1

2π ln(CaTF/R�)

1

b2

[
b

aTF
K1

(
b

aTF

)]2

. (51)

A depletion factor F (b) may be included on the right-hand
side of Eq. (50) if need be. The separation, (50), implies that,
in the limit of complete screening, the variation in the main
bremsstrahlung component with the degree of alignment (that
is, angle) is the same throughout the spectrum, at any frequency
determined by the factor S(b), Eq. (51). The same conclusion
holds for the bremsstrahlung component due to scattering of
virtual photons of target electrons on the projectile—albeit
with R� in Eq. (51) replaced by the radius R of the projectile
(cf. Sec. II B2).

Our standard case in the examples in this section is bare
lead ions incident on a silicon single crystal near the strongest
axis, that is, the 〈110〉 axis. The crystal is cooled to 100 K and
we assume the primary energy sufficiently high that screening
is complete; in praxis this requires LHC energies (γ = 3000)
and beyond (see discussion in Sec. II C). Comments on lower
energies are included.
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FIG. 7. Probability �in for bremsstrahlung emission for a bare
lead ion penetrating a silicon crystal near the 〈110〉 axis as a function
of transverse energy in the limit of complete screening. The crystal
is cooled to 100 K, and only a single string is considered. Dotted
curves show the variation of the main bremsstrahlung component
(lower curve) and the component due to scattering of virtual photons
of target electrons on the projectile (upper). The solid curve is the sum
of the dotted curves weighted according to the total cross sections.
Dashed curves pertain to truly close encounters between target object
and projectile nucleus, that is, a δ-function interaction; the lower curve
is for interaction with target nuclei, and the upper for interaction with
target electrons. For reference, the figure also displays the variation of
the minimum distance of approach relative to the single-string radius
(curve decreasing with increasing transverse energy).

Figure 7 displays the probability �in for our standard case
calculated in the single-string approximation as described in
previous subsections. The transverse energy varies from a
minimum of 0.19 keV, the potential energy at the single-string
radius r0, to a maximum of 12.53 keV, the potential energy
at the position of the atomic string (r = 0). The two lowest
curves correspond to the main bremsstrahlung component
(dotted curve) and contact collisions between projectile and
target nuclei (dashed curve). Obviously the former is not much
different from the latter, revealing that, on the channeling scale,
bremsstrahlung is essentially a close-encounter process. Com-
plete screening represents the ultimate and longest effective
range of the process. At lower energies, where screening is
not complete, the probability �in for the main bremsstrahlung
component will fall between the two curves, that is, it will
be even closer to the yield of a truly close-encounter process
than the dotted curve in Fig. 7. Furthermore, the position will
depend on the photon energy; at lower photon energies it will
be closer to the upper curve, and at higher photon energies
it will be closer to the lower curve. The uppermost curve in
Fig. 7 displays the variation with transverse energy of the
probability �in for the bremsstrahlung component which is
due to scattering of the virtual photons of target electrons on
the projectile. It is very close to the curve that results for a
δ-function interaction between target electrons and projectile
nucleus. The structures in the electron curves reflect the
changes in falloff of the electron probability with increasing
distance visible in Fig. 6. Since electrons are distributed much
more widely than target nuclei in the channel, damping at

FIG. 8. Channeling yields corresponding to Fig. 7. Inset: The
variation near the minimum. The electron contribution is not shown
separately; otherwise, the curves are as in Fig. 7.

low transverse energies, where the projectile is restricted to
move at relatively large distances from (the center of) the
atomic row, is not nearly as dramatic for the electron as for
the main component. However, since the total cross section for
the electron component (at random incidence) is only about
1/Zt that of the main component, the weighted sum of the
two �in functions is dominated by the main bremsstrahlung
component except for a lift from essentially 0 at the lowest
transverse energies.

Figure 8 shows the variation with angle of incidence to the
〈110〉 axis of the main bremsstrahlung component as well as
the weighted sum of this and the electron component for our
standard case. The probabilities in Fig. 7 were used as input.
Since screening is assumed to be complete, the variation is
the same at all photon frequencies. The yield of the main
bremsstrahlung component is not much different from that of
a true close-encounter process. However, the electron contri-
bution adds to the difference, in particular, to the minimum
yield obtained at parallel incidence: Including the electron
contribution, the minimum yield is about 5 times higher than
that pertaining to contact collisions with target nuclei.

Variation in the target temperature leads to change in the
distribution of target atoms. Since vibration amplitudes are
short compared to the atomic radius, such variation primarily
influences the main bremsstrahlung component. Figure 9
shows how the weighted sum of the yield of the main and the
electron contribution changes for our standard case when the
crystal temperature is raised from 100 to 300 K. The increase in
the minimum yield as well as the narrowing of the dip closely
reflects the change that would appear for contact collisions.

Figure 10 shows the variation with angle of incidence of the
upper end of the Compton component of the bremsstrahlung
spectrum for the same collision system as in Figs. 7 and 8.
The high-energy end pertains to very close collisions, and
hence the variation reflects a probability �in essentially
identical to the upper dashed curve in Fig. 7. Since the
Compton component stands out clearly at low photon energies,
so will its variation with angle of incidence, which obviously
is less dramatic than that of the sum of the components due
to scattering of virtual photons of target constituents off the
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FIG. 9. As Fig. 8, but including results for T = 300 K (upper
curves).

projectile. Note that the variation of the Compton component
displayed in Fig. 4 in Ref. [3] was based on a considerably
rougher calculation than presented here.

As commented in Sec. II C, radiation emitted by electrons
and positrons resulting from pair-production events falls in
the same energy range as the Compton component of the
heavy-ion bremsstrahlung. Besides the different dependence
on target thickness, the variation with angle of incidence is
also different: even at LHC energies pair creation is reduced
by a factor of as much as 40 for lead ions incident on a cooled
silicon crystal parallel to the 〈110〉 axis (see also Sec. IV).

In our last example we lower the energy of the 208Pb
projectile to the value corresponding to γ = 170 which was
used as the standard in Sec. II C. In that case screening
is of little importance: according to Eq. (3) the effective
range of the interaction is determined by the screening length
for ω′/γ c < 1/a, which, with the Thomas-Fermi length for
silicon used for a, implies photon energies below 1.7 MeV, that
is, photon energies way below the position of the GDR peak
of 208Pb. Furthermore, the effective range of the interaction
is short: since the modified Bessel functions Kn(x) fall off

FIG. 10. As Fig. 8, but including the Compton component (dot-
dashed curve).

FIG. 11. Total bremsstrahlung spectrum for bare lead ions pene-
trating a silicon single crystal near the 〈110〉 axis at γ = 170. Spectral
values increase with angle of incidence; plots are shown for ψ/ψ1 = 0
(parallel incidence; lower solid curve), 0.5 (dotted curve), 0.8 (dashed
curve), 1.0 (dot-dashed curve), 2.0 (upper solid curve; spectrum as
for random placement of crystal atoms). The crystal is cooled to
100 K.

exponentially for x > 1, the range may be estimated as
γ c/ω′ according to Eq. (2), which, upon substitution of the
GDR-peak energy for h̄ω′, amounts to 0.025 Å. Since this is
just about one-third of the two-dimensional thermal vibration
amplitude ρ for silicon at 100 K, the bremsstrahlung processes
corresponding to scattering of virtual photons of target objects
on the projectile may be considered of zero range in channeling
contexts. We may argue along the same lines for the Compton
component: for photon energies above 4.4 MeV, the effective
range of the interaction is less than ρ at 100 K; that is, for such
energies this interaction also may be considered of zero range
in channeling contexts.

Figure 11 shows the variation with angle of incidence of
the bremsstrahlung spectrum for 208Pb projectiles penetrating
a silicon single crystal at γ = 170. The spectrum includes the
main component, the Compton component, and the component
due to scattering of virtual photons of target electrons on the
projectile. For the latter we have set the value at large angles,
corresponding to the incidence on a random arrangement of
silicon atoms, to 1/12.94 times the main component under
the same conditions; the deviation from 1/Zt accounts for
the difference in logarithm (8) for the two processes, due
to different minimum impact parameters, at the GDR-peak
energy. To obtain the spectral variation with angle we apply
the variations for δ-function interaction; this corresponds
to multiplying the main component (for random target)
by the values represented by the dashed curve in Fig. 10
and the electron components (for random target) by the
values represented by the dot-dashed curve in the same figure.
Figure 11 displays the total bremsstrahlung spectrum for five
angles of incidence to the 〈110〉 axis, ranging from parallel
incidence to incidence at an angle sufficiently large that the
spectrum for a random target obtains. The variation is dramatic.

The logarithmic plot in Fig. 12, which repeats the data in
Fig. 11, clearly shows the variation of the Compton component
along with that of the other two components. As revealed
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FIG. 12. A log-log plot of the spectra in Fig. 11.

in the figure, the variation below, roughly, γ MeV, where
bremsstrahlung mainly is due to the Compton process, is much
less dramatic than the variation of the spectrum around the peak
at, roughly, 25γ MeV. The difference is particularly clear for
the upper three curves. Note, also, that due to the different scal-
ing of the various components with Zt , the Compton compo-
nent is relatively larger for a silicon than a lead target (Fig. 3).

IV. CONCLUDING REMARKS: PAIR PRODUCTION

Let us conclude with some remarks on electron-positron
pair creation, which determines the energy loss for bare
heavy ions penetrating matter at sufficiently high energies
as discussed above. There are two major components which
contribute about equally to the energy loss: (a) one is due to
conversion of virtual photons of the projectile in the field of
target atoms; (b) the other, to conversion of virtual photons of
target atoms in the field of the projectile. The latter component
(b) contains a limitation in range since the source of the virtual
photons is a neutral atom; that is, the virtual photon spectrum
is depleted rapidly for impact parameters larger than the
screening radius of the target atom. The former component (a)
involves the standard Bethe-Heitler cross section, whose range
also is limited by atomic screening deriving from electron
scattering in the perturbing field viz the field of the target atom.
Hence the screening radius appears in the yield of this compo-
nent as well, but the source of virtual photons is unscreened;
that is, the impact parameter between projectile and target atom
is not limited by screening. This implies that only component
(b) is guaranteed to display a close-encounter behavior similar
to that shown in Figs. 8 and 9 for bremsstrahlung.

While the above observation is generally true, the effective
range of component (a) does not exceed the screening radius
at moderate γ as that in our standard case in Sec. II C since
the minimum requirement on the photon energy is high on
the atomic scale (2mc2). Hence at γ = 170 very pronounced
channeling dips appear in the energy loss of a heavy ion
to electron-positron pairs. The same still holds true at LHC
energies. For a lead ion with γ = 3000 penetrating a silicon
crystal cooled to 100 K the minimum yield of the total number
of pairs produced by process (a) upon alignment with the
〈110〉 axis is as low as 0.014, that is, 1.4% of the value for
random impact (0.025 if interaction with individual electrons
is included). This implies that the effective maximum impact
parameter is of the order of the screening radius. In turn,
this means that the effective minimum virtual photon energy
is considerably above the threshold, which reflects the slow
rise from 0 of the cross section for photon conversion to
electron-positron pairs (cf. Ref. [8]).

The energy loss to atomic excitation and ionization shows
only limited variation with angle of incidence to a major
crystallographic axis, in particular, at high energies. Since it
derives from interaction with target electrons, dips in yield
cannot be more pronounced than that for the high-energy end
of the Compton component of bremsstrahlung (cf. Fig. 10).
Furthermore, at high energies the effective range of the
interaction is much wider than the crystal channel as revealed
by the logarithm, (26), whose argument is the ratio of the
maximum to the minimum lengths effective in the interaction.
Only about half of the logarithm pertains to collisions
with impact parameters smaller than the screening radius.
Altogether we may expect the electronic energy loss to vary
by not more than roughly a factor of 2 when tilting the crystal.
For lead ions incident at large angles to major crystallographic
directions of a silicon single crystal, which corresponds to
the incidence on an amorphous silicon target, energy loss to
electron-positron pairs is larger than that to atomic excitation
and ionization for γ values beyond 9 × 103 [13,20]. For such
high γ values we may expect pronounced dips in energy loss
upon alignment with a crystal axis. The depletion deepens
with increasing energy at first as the electronic energy loss
gradually becomes insignificant but is expected to weaken
again later as the effective range of pair-creation component
(a) grows well beyond the screening length.

ACKNOWLEDGMENTS

We thank Ulrik Uggerhøj for his interest in the project and
for critical reading of the manuscript. This work was supported
by the Danish Natural Science Research Council.

[1] A. H. Sørensen, Phys. Rev. A 81, 022901 (2010).
[2] S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg,

arXiv:1202.6585 [hep-ph] (2012).
[3] A. H. Sørensen and T. V. Jensen, Nuovo Cimento C 34(4), 19

(2011).
[4] J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1975).
[5] J. C. Baggesen and A. H. Sørensen, Nucl. Instr. Meth. B 267,

2662 (2009).

[6] A. J. Baltz, G. Baur, D. d’Enterria, L. Frankfurt, F. Gelis, V.
Guzey, K. Hencken, Yu. Kharlov, M. Klasen, S. R. Klein,
V. Nikulin, J. Nystrand, I. A. Pshenichnov, S. Sadovsky, E.
Scapparone, J. Seger, M. Strikman, M. Tverskoy, R. Vogt, S. N.
White, U. A. Wiedemann, P. Yepes, and M. Zhalov, Phys. Rep.
458, 1 (2008); see Chap. 7.

[7] J. J. Gaardhøje, Annu. Rev. Nucl. Part. Sci. 42, 483 (1992).
[8] W. Heitler, The Quantum Theory of Radiation (Oxford Univer-

sity Press, London, 1954) (reprinted by Dover, New York, 1984).

022902-14

http://dx.doi.org/10.1103/PhysRevA.81.022901
http://arXiv.org/abs/1202.6585
http://dx.doi.org/10.1016/j.nimb.2009.05.056
http://dx.doi.org/10.1016/j.nimb.2009.05.056
http://dx.doi.org/10.1016/j.physrep.2007.12.001
http://dx.doi.org/10.1016/j.physrep.2007.12.001
http://dx.doi.org/10.1146/annurev.ns.42.120192.002411


BREMSSTRAHLUNG FROM RELATIVISTIC BARE HEAVY . . . PHYSICAL REVIEW A 87, 022902 (2013)

[9] V. Z. Jankus, Phys. Rev. 90, 4 (1953).
[10] J. Schwinger, Phys. Rev. 75, 898 (1949).
[11] L. I. Schiff, Phys. Rev. 87, 750 (1952).
[12] S. Datz, H. F. Krause, C. R. Vane, H. Knudsen, P. Grafström,

and R. H. Schuch, Phys. Rev. Lett. 77, 2925 (1996).
[13] A. H. Sørensen, AIP Conf. Proc. 680, 102 (2003).
[14] A. Belkacem and A. H. Sørensen, Rad. Phys. Chem. 75, 656

(2006).
[15] G. Molière, Z. Naturforsch. 2a, 133 (1947) (in German).
[16] P. B. Eby, Phys. Rev. A 43, 2258 (1991).
[17] C. R. Vane, S. Datz, E. F. Deveney, P. F. Dittner, H. F. Krause,

R. Schuch, H. Gao, and R. Hutton, Phys. Rev. A 56, 3682 (1997).
[18] K. Hencken, D. Trautmann, and G. Baur, Phys. Rev. C 60,

034901 (1999).
[19] An estimate of the ratio of the two contributions is given in

Ref. [1]. Since the results in Ref. [18] pertain to the center-of-
mass system of the colliding ions rather than the fixed target
scenario in Ref. [1], the estimate should be changed from the
published 0.5/γ 2 to 1/γ , which, however, is still a very small
number.

[20] A. H. Sørensen, Nucl. Instr. Meth. B 230, 12 (2005). The full
citation for Ref. [2] in this paper is the review above [14].

[21] J. Lindhard and A. H. Sørensen, Phys. Rev. A 53, 2443 (1996).
[22] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001

(2012).
[23] J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.

34(14), 1 (1965).
[24] A. H. Sørensen and E. Uggerhøj, Nucl. Sci. Appl. 3, 147 (1989).
[25] A. H. Sørensen, in Vacuum Structure in Intense Fields, NATO

ASI Series B, edited by H. M. Fried and B. Müller, Vol. 255
(Plenum, New York, 1991), p. 91; Nucl. Instr. Meth. B 119, 1
(1996); 119, 2 (1996). In the last article, page 19 should be read
before page 17.

[26] P. A. Doyle and P. S. Turner, Acta Crystallogr. A 24, 390 (1968).
[27] J. U. Andersen, E. Bonderup, E. Lægsgaard, B. B. March, and

A. H. Sørensen, Nucl. Instr. Meth. 194, 209 (1982).
[28] O. H. Nielsen and W. Weber, J. Phys. C: Solid State Phys. 13,

2449 (1980).
[29] M. Abramowitz and I. A. Stegun (eds.), Handbook of

Mathematical Functions (Dover, New York, 1972).

022902-15

http://dx.doi.org/10.1103/PhysRev.90.4
http://dx.doi.org/10.1103/PhysRev.75.898
http://dx.doi.org/10.1103/PhysRev.87.750
http://dx.doi.org/10.1103/PhysRevLett.77.2925
http://dx.doi.org/10.1063/1.1619675
http://dx.doi.org/10.1016/j.radphyschem.2005.03.003
http://dx.doi.org/10.1016/j.radphyschem.2005.03.003
http://dx.doi.org/10.1103/PhysRevA.43.2258
http://dx.doi.org/10.1103/PhysRevA.56.3682
http://dx.doi.org/10.1103/PhysRevC.60.034901
http://dx.doi.org/10.1103/PhysRevC.60.034901
http://dx.doi.org/10.1016/j.nimb.2004.12.009
http://dx.doi.org/10.1103/PhysRevA.53.2443
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1016/S0168-583X(96)90267-0
http://dx.doi.org/10.1016/S0168-583X(96)90267-0
http://dx.doi.org/10.1016/0168-583X(96)00349-7
http://dx.doi.org/10.1107/S0567739468000756
http://dx.doi.org/10.1016/0029-554X(82)90517-1
http://dx.doi.org/10.1088/0022-3719/13/13/005
http://dx.doi.org/10.1088/0022-3719/13/13/005



