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Low-energy electron collisions with O2: Test of the molecular
R-matrix method without diagonalization
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Electron collisions with O2 at scattering energies below 1 eV are studied in the fixed-nuclei approximation for a
range of internuclear separations using the ab initio molecular R-matrix method. The 2�g scattering eigenphases
and quantum defects are calculated. The parameters of the resonance and the energy of the bound negative
ion are then extracted. Different models of the target that employ molecular orbitals calculated for the neutral
target are compared with models based on anionic orbitals. A model using a basis of anionic molecular orbitals
yields physically correct results in good agreement with experiment. An alternative method of calculation of the
R matrix is tested, where instead of performing a single complete diagonalization of the Hamiltonian matrix in
the inner region, the system of linear equations is solved individually for every scattering energy. This approach
is designed to handle problems where diagonalization of an extremely large Hamiltonian is numerically too
demanding.
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I. INTRODUCTION

After nitrogen, molecular oxygen is the most abundant
molecule in the Earth’s atmosphere. Therefore, its study is
crucial to our understanding of planetary atmospheres, while
also providing useful insight into the physics of gaseous dis-
charges and laboratory and astrophysical plasmas. Theoretical
and experimental research into electron interactions with O2

has attracted significant scientific attention. Since a complete
summary of the relevant references on this topic exceeds the
scope of the present study (see the recent review by Itikawa [1]
and references therein), we mention only those directly related
to the problem addressed here. An experimental study of
the resonant vibrational excitation of O2 by the low-energy
electron impact by Linder and Schmidt [2] shows oscillatory
structures in the cross sections due to the 2�g resonance.
Celotta et al. [3] later measured the electron affinity of O2

using molecular photodetachment spectroscopy. Those two
complementary studies [2,3] provide a deeper understanding
of the structure and dynamics of the 2�g state of O−

2 [4].
Several previously published theoretical treatments based

on the R-matrix method deal with the 2�g resonance in the
fixed-nuclei approximation [5–8]. All those calculations yield
the energy of the 2�g resonance at the equilibrium geometry
of O2 more than 0.6 eV above the value obtained from
the experimental spectra [2,3,9]. These studies are unable
to reproduce the bound state of O−

2 at larger internuclear
separations without further adjustments of the R-matrix poles
[8,10]. Higgins et al. [8] used the adjusted results of the ab
initio calculations to study resonant vibrational excitation by
electron impact and compared the computed cross sections
with the experimental work of Field et al. [11]. The resonant
vibrational excitation of O2 at low energies has been revisited
by Laporta et al. [12]. Their theoretical treatment of the nuclear
motion is based on the “boomerang model” and it utilizes the
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same adjusted positions and widths of the resonances in the
fixed-nuclei approximation calculated by Noble et al. [10].

The energies of the 2�g resonance and the bound state of
O−

2 were later calculated more accurately by Ervin et al. [13]
using the methods of quantum chemistry designed originally
for bound states. However, to our knowledge, no reliable ab
initio calculation exists that provides reliable scattering phase
shifts at low energies (<2 eV) for different symmetries.

Significant scientific attention has been paid to electron
collisions with O2 at energies above 2 eV as well. Teillet-Billy
et al. [9] found in their study based on an extended version
of multichannel effective range theory that the 2�g resonance
dominates the electronic excitation of the 1�g and 1�+

g states.
This process was later studied experimentally [14–16] and the
results confirmed the existence of the resonances predicted by
the previous calculations [6,7,9,10].

Good correspondence between theoretical and experimen-
tal results for the excitation of the 1�g and 1�+

g electronic
states by electron impact has been achieved (see paper [17] and
references therein). However, the remaining discrepancies be-
tween the theoretical [6,7,18] and experimental cross sections
[14,17,18] for excitation of the Herzberg pseudocontinuum
(1�−

u , 3�u, 3�+
u ) still constitute a challenge [17].

More recently, Tashiro et al. [19] presented another R-
matrix calculation of the elastic and electronically inelastic
electron collisions with O2 at energies above 5 eV that shows
better agreement with the experimental results than previous
ab initio studies.

The main goal of the research presented here is to develop an
advanced R-matrix calculation of electron collisions with O2

in the fixed-nuclei approximation at scattering energies below
1 eV. In particular, improvements over previous calculations
are sought to provide a more physical energy and width of the
2�g resonance and energy of the anionic bound state than
was obtained in previous R-matrix studies. The scattering
eigenphases and the quantum defects discussed here can
be employed in the investigation of the resonant vibrational
excitation of O2 based on the nonlocal resonance model [20] or
energy-dependent vibrational frame transformation [21]. The
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treatment of bound and continuum states of O−
2 introduced

here will be later adapted to study other symmetries of the
anionic complex that are relevant to O−

2 photodetachment and
to the vibrational dynamics of that process.

In comparison with previously published ab initio studies, a
more physical representation of the anionic complex electronic
structure studies is achieved through the use of a more
advanced treatment of electron correlation and polarization
in the inner region and by employing a basis set of molecular
orbitals optimized for the negative ion instead of the neutral
target. Note that in other contexts, this idea has also proven
to be beneficial [22]. Current implementations of ab initio
electron-molecule scattering theory rely on expansions of the
wave functions associated with both the neutral N -electron
target and the (N + 1)-electron system which use the same
truncated basis of molecular orbitals. Although orbitals opti-
mized for the neutral target are traditionally used in molecular
R-matrix calculations, it is far from obvious whether that is
universally the most appropriate choice. The present study
compares R-matrix calculations performed using optimized
neutral target molecular orbitals with those performed using
optimized anionic orbitals, in order to ascertain which set is
more appropriate.

Another goal of this study is to test the feasibility of an
alternative method of calculation of the R matrix that has the
potential to treat larger basis sets and more extensive configu-
ration interaction. The well-established approach preferred in
the UK R-matrix codes requires a single full diagonalization
of the Hamiltonian matrix in the inner region [23,24]. The
R matrix is then easily calculated for any scattering energy,
since its dependence on the energy is extremely simple in the
eigenrepresentation of the Hamiltonian. The development of
more efficient R-matrix methods capable of treating molecules
having a larger number of active electrons is one of the goals
driving this research direction. The requirement of a full
Hamiltonian diagonalization in the present implementation has
made it quite challenging for the R-matrix method to handle
more complex polyatomic molecules and molecules for which
electron correlation plays a key role. Evaluation of all the
Hamiltonian matrix elements prior to the full diagonalization
is necessary in the present implementation. That approach
is computationally much more demanding than the more
economical methods of the quantum chemistry of the bound
states, where only a small fraction of the spectrum is calculated
and the iterative methods of the diagonalization are routinely
utilized. Those require only evaluation of the matrix elements
that are used in the actual iteration. In addition, the complete
set of the eigenvectors that have a dense structure is necessary
in the present implementation of the ab initio molecular
R-matrix method. That further raises issues with the memory
limitations.

The method presented in this study employs the solution
of a system of linear equations having the same dimension
as the Hamiltonian matrix, individually for every scattering
energy. A number of other methods have previously been
introduced to overcome this difficulty in solving problems
requiring very large basis sets. The most promising among
them is the partitioned R matrix [24,25]. It consists of a single
calculation of a few lowest eigenvalues and eigenvectors of
the Hamiltonian matrix and of a model-like approximation

of the rest of the spectrum. While the partitioned R-matrix
method retains the advantage of a single diagonalization of a
(reduced-dimensionality) Hamiltonian matrix, the alternative
method presented here requires solution of the linear system of
equations for every scattering energy. However, it is free of any
model-like assumptions, and therefore, is a complementary
approach to the partitioned R-matrix method. It is hoped,
however, that in combination with generalized quantum defect
methods or multichannel effective range theory, the quantities
to be calculated will be comparatively smooth functions
of energy and can accordingly be calculated on a coarse
energy mesh. Note that the method of calculation of the
R matrix by solving the system of linear equations has
been formulated previously by Collins and Schneider [26].
Their linear-algebraic approach utilizes the static exchange
approximation of the electron interactions in the inner region.

The ab initio theoretical description of electron collisions
with O2 at low scattering energies is challenging. Any
successful treatment of the complicated polarization effects
[27,28] and electron correlation in the inner region requires a
large basis set of configurations. Depending on the details of
the model, the usual approach based on the full diagonalization
of the inner-region Hamiltonian matrix [23,24] can become
intractable. That makes this system a suitable candidate to
test the performance and limitations of the alternative method
investigated here. As is discussed below, the linear solution
method proves to be feasible and advantageous for calculations
where the dimension of the Hamiltonian matrix in the inner
region exceeds 40 000. Several different models of the target
are introduced below and, where possible, the performance of
the traditional full diagonalization method is compared with
that of the direct linear solution method.

The rest of this paper is organized as follows: Sec. II
describes the method adopted to calculate the R matrix
without any diagonalization, by direct solution of a linear
inhomogeneous system of equations. Different models of the
neutral target are discussed in Sec. III and the construction
of the (N + 1)-electron Hamiltonian matrix is described in
Sec. IV. The results are presented in Sec. V and the conclusions
are summarized in Sec. VI.

Atomic units are used throughout, unless stated otherwise.

II. R MATRIX BY LINEAR EQUATION SOLUTION (LES)

The idea of the R-matrix method is the solution of the
Schrödinger equation within a finite reaction volume �

of the configuration space. The scattering properties of a
many-particle system are known once the normal logarithmic
derivative of the wave function and relevant surface amplitudes
are specified on the surface � enclosing the reaction volume.
The goal of the theory is to determine this information in the
form of an R matrix. The reaction volume in the molecular
ab initio R-matrix method is specified by a sphere of radius
r0 chosen such that ri � r0, ri being the distance between
the ith electron and the center of mass of the molecule. r0

is large enough to contain all the complicated interactions of
the electrons within the inner region, and sufficiently large
that the target wave functions in the open and weakly closed
channels are negligible in the outer region. Interaction of
the scattering electron with the target in the outer region is

022710-2



LOW-ENERGY ELECTRON COLLISIONS WITH O2: . . . PHYSICAL REVIEW A 87, 022710 (2013)

well approximated by the long-range multipole and dispersion
potentials that couple different scattering channels [23]. The
total, fixed-nuclei, outer-region wave function can be written
as [29]

�β(r,ω) =
Nch∑
i=1

1

r
	i(ω)Fiβ(r), (1)

where r is the radial coordinate of the scattering electron and
ω denotes all other spin-space coordinates of all the electrons
(including the spin and angular coordinates of the scattering
one). 	i(ω) includes the electronic state of the target as well
as the spherical harmonic of the scattering electron, Fiβ(r)
is the scaled radial wave function of the scattering electron
in the outer region (r � r0) in the channel i. Nch denotes
the total number of scattering channels retained (both open
and closed), index β = 1, . . . ,Nch denotes different linearly
independent solutions for the total energy ε of interest. If
the radial derivative of Fiβ(r) is denoted as F ′

iβ(r), then the
R matrix on the surface � is defined [29] as

R = (FF ′−1)r0 , (2)

and is calculated by solving the Schrödinger equation in the
inner region. Then it is used to match the solutions in the outer
region and to calculate the K matrix or other quantities that
characterize the scattering process [23,29].

The approach to calculation of the R matrix tested in this
work is based on the noniterative variational formulation of
the R-matrix method introduced by Ref. [30] that has been
used extensively in a number of problems (see Ref. [29]
and references therein). Solutions of the time-independent
Schrödinger equation at energy ε in the inner region obey

Ĥ�β = ε�β, (3)

where Ĥ is the electronic Hamiltonian of the (N + 1)-electron
system and ε is the total energy. �β(r,ω) can be expressed
using a set of real basis functions yk(r,ω) as �β(r,ω) =∑

k yk(r,ω)Ckβ . Each of the basis functions yk can be expanded
on � as

yk(r0,ω) =
Nch∑
i=1

1

r0
	i(ω)uik(r0). (4)

As is well known from Robicheaux [31] and Greene and Kim
[32], the R matrix can be expressed as

Rij =
∑
kk′

uik(�−1)kk′ujk′ , (5)

where
�kk′ = 2

∫
�

yk(ε − Ĥ − L̂)yk′dV. (6)

The integration is performed over the reaction volume �.
Notice that the matrix � is symmetric due to the presence of
the Bloch operator L̂ [23,29,33]. The basis set used in the UK
R-matrix program suite allows for a close-coupling expansion
of the total (N + 1)-electron wave function in the inner region,

�β(r,ω) = Â
∑
i,k

Cikβ

1

r
	i(ω)uik(r) +

∑
p

DpβχN+1
p (r,ω),

(7)

where uik(r) are the radial parts of the continuum orbital
introduced to represent the scattering electron in the inner
region and their values at r0 are in general nonzero. The angular
parts are included in 	i(ω). The choice of the continuum
orbitals depends on the symmetry of the target electronic
states. These two are coupled to give the correct overall
spin and spatial symmetry of �β(r,ω). Index i denotes the
scattering channel in the outer region and characterizes the
electronic state of the target as well as the partial wave of
the scattering electron. Therefore, each basis function that
appears in the first sum in Eq. (7) has nonzero amplitude on
the boundary � and is associated with one scattering channel.
Furthermore, the electrons must obey the Pauli principle
and they are antisymmetrized by operator Â. The second
summation in Eq. (7) involves antisymmetric (N + 1)-electron
configurations χN+1

p that have zero amplitude on the boundary
� and where all the electrons occupy the orbitals associated
with the target (L2 configurations [23]). Notice that in the
terminology of the variational R-matrix method [29–31] the
basis functions in the first sum in Eq. (7) correspond to the open
part of the basis, while the second summation corresponds to
the closed part.

The eigenstates of the target and the (N + 1)-electron basis
functions are both expressed in terms of the complete active
space configuration interaction (CAS CI) [34]. It is worth
mentioning at this point that the dimension of the closed part
of the basis [second summation in Eq. (7)] is typically much
larger than the dimension of the open part that has nonzero
amplitudes on the boundary �.

The modified Hamiltonian matrix for the inner region
H� = H + L calculated using the basis expansion (7) is
evaluated in the UK R-matrix codes as well as the surface
amplitudes uik(r0). The matrix � defined by Eq. (6) can be
easily calculated for each scattering energy ε of the interest
and Eq. (5) can be used to calculate the R matrix.

The product
∑

k′ {�−1}kk′ujk′(r0) is implemented as a
solution of the linear system of equations, which is the most
computationally demanding step of the calculation.

A celebrated aspect of the approach to the calculation of the
R matrix available in the UK R-matrix suite nowadays is that
the matrix H� is diagonalized only once and the energy de-
pendence of the R matrix is calculated analytically [23,24,31].
However, the complete set of eigenvalues and eigenvectors
in the given basis set is necessary for accurate evaluation of
the R-matrix using the expansion in the eigenstates. Beyond
a certain size of the basis set the matrix storage hits the
memory limit or the time necessary to diagonalize the modified
Hamiltonian becomes too long for practical calculations.

The approach based on solution of the linear system for
each individual energy of the interest becomes favorable in
those cases, since both the time and memory required to
solve one system of linear equations is significantly smaller
than the time required to completely diagonalize a matrix of
the same size. Furthermore, while existing computer routines
for complete diagonalization are usually based on the full
matrix storage, several modern computer implementations of
state of the art linear solvers are based on more economical
sparse storage schemes. Since H� is often a sparse matrix,
the approach introduced above enables calculations that use
larger CI models than the diagonalization-based method. A

022710-3



MICHAL TARANA AND CHRIS H. GREENE PHYSICAL REVIEW A 87, 022710 (2013)

more efficient parallel implementation of the linear solvers
than of the algorithms for the complete diagonalization makes
the method presented above even more favorable for large-
scale calculations performed on high-performance computer
clusters. A calculation of the R matrix for a single value of the
energy using Eq. (5) can be executed in the parallel mode in
those environments and calculations for multiple energies can
be trivially parallelized.

Several other alternatives to the complete diagonalization
of H� have been proposed and used [23–25,35,36]. They
are based on the accurate calculation of a modest number
of the lowest eigenvalues and eigenvectors, while the rest of
the spectrum is approximated using various models. These
approximate approaches preserve the advantage of the single
diagonalization and of the analytical energy dependence of
the R matrix. The most promising method among those is the
partitioned R matrix [24,25]. The method described above is
not based on the diagonalization of H� and is free of any
model-like assumptions.

III. MODELS OF THE NEUTRAL TARGET

All the R-matrix calculations presented here were per-
formed using the polyatomic UKRMOL program suite [23,24],
which uses a basis set of Gaussian-type orbitals (GTOs) in
the inner region. The irreducible representations of the D2h

point group are used, as this is the largest Abelian subgroup
of the true D∞h symmetry point group of O2. The notation of
the D∞h point group is used throughout the rest of this paper,
unless otherwise stated.

The results are presented for a range of internuclear
separations from Rn = 1.9 a.u. to Rn = 3.5 a.u., inside of
which the potential energy curves for the ground electronic
states of both O2 (3�−

g ) and O−
2 (2�g) reach their minima.

The fixed-nuclei scattering phase shifts and smooth quan-
tum defects obtained for that range are essential for future
theoretical studies of resonant vibrational excitation by low-
energy electrons and these entities also arise in the theoretical
description of vibronic coupling in O−

2 photodetachment.
The molecular orbitals optimized using the state-averaged
complete active space self-consistent field (SA-CASSCF)
method implemented in the program package MOLPRO [37,38]
are employed in all the R-matrix calculations presented here.

The neutral target is represented by one of two different
sets of the molecular orbitals. The first is calculated using
an extensive GTO basis set of atomic natural orbitals (ANO)
[39] and the SA-CASSCF molecular orbitals are optimized
for the neutral molecule (three lowest electronic states are
averaged with equal weights). This selection of the primary
GTO basis set is motivated by Ref. [28], where it was
successfully used to calculate the electron affinity of O2.
Furthermore, Jones and Tennyson [40] found that this GTO
basis is necessary to reproduce within CAS CI models the
static dipole polarizabilities of various diatomic molecules
containing oxygen, although the case of O2 is not discussed
in that study. Previously published R-matrix studies [7,19]
suggest that polarization effects play an important role in the
electron collisions with O2. The ANO basis set is expected to
represent these effects more accurately than the more compact
Gaussian basis sets employed by the previously published

R-matrix calculations. Two different models of neutral O2

based on the ANO GTO basis and on the neutral molecular
orbitals were tested. Two additional models of the target
are introduced below, where Dunning’s cc-pVTZ [41] GTO
basis set is employed. The convergence of the scattering
calculations with respect to the size of the CAS and the quality
of representation of the correlation and polarization effects can
be estimated from comparison of the scattering eigenphases
and the energies of the stable negative ion calculated using
these different models.

The dominant valence electronic configuration of the
ground state of O2 is

(2σg)2(2σu)2(3σg)2(1πu)4(1πg)2.

It is natural to include the orbitals 3σu, 2πg , and 2πu in all the
CAS models, since their occupation numbers in the ground
state are larger than 0.01. All of the models presented here
consist of eight active valence electrons. The CAS models
considered in the previously published R-matrix studies
[6,7,42] include all 12 valence electrons and a smaller set
of the active orbitals than the CAS models introduced here.
However, our preliminary tests suggest that the correlation
effects due to the electrons 2σg and 2σu can be neglected for
the range of the collision energies considered here.

The first CAS model can be expressed as

(1σg2σg1σu2σu)8(3σg3σu1πu2πu3πu1πg2πg)8. (8)

The R-matrix calculations based on this CAS include the
two energetically lowest target states from each irreducible
representation that does not contribute to the static dipole
polarizability of the ground state. Tashiro et al. [42] suggested
that the polarization effects were not sufficiently represented
in previously published R-matrix studies [6,7]. As a first step
towards the improvement of this deficiency, the 30 lowest states
from the irreducible representation 3�u and the 42 lowest
states from the irreducible representation 3�−

u (both have a
nonzero dipole coupling with the ground state) are included in
the expansion of the total wave function in the inner region.
This set of target states and the CAS expressed by Eq. (8) is
denoted as Model 1 in the text below.

In order to evaluate the convergence of the scattering
calculations with respect to the number of the active molecular
orbitals, another model of the target is introduced. The orbital
3πu included in Model 1 is replaced by the orbital 4σg . This
CAS can be expressed as

(1σg2σg1σu2σu)8(3σg4σg3σu1πu2πu1πg2πg)8. (9)

The R-matrix calculations based on this model include the
40 energetically lowest target states in every symmetry (both
singlet and triplet spin states). This model is denoted as
Model 2 in the text below.

The number of molecular orbitals from every irreducible
representation included in the treatment of the inner region for
every CAS model introduced here is summarized in Table I.

The scattering eigenphases calculated using the target
models introduced above provide insight into the role of
the excited electronic states and higher molecular orbitals
in electron collisions with O2. However, they do not yield
physically correct energy of the 2�g resonance and fail
to describe the bound state of O−

2 . In order to solve this
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TABLE I. The number of molecular orbitals in every irreducible
representation included in different CAS models of the target. The last
line shows the number of continuum orbitals (COs) that is the same
for all the R-matrix calculations discussed here. The correspondence
between the irreducible representations of the point groups D2h and
D∞h is shown as well.

Symmetry (D2h) ag b2u, b3u b1g b1u b3g , b2g au

Symmetry (D∞h) σg , δg πu δg σu, δu πg δu

Model 1 3 3 0 3 2 0
Models 2,3 4 2 0 3 2 0
Model 4 4 3 0 3 2 0
COs 37 21 18 21 18 7

deficiency two additional target models (Models 3 and 4)
based on different MOs are introduced. They employ the
Dunning cc-pVTZ GTO basis [41] and the CASSCF molecular
orbitals that are optimized for the 2�g ground electronic
state of O−

2 . The choice of the cc-pVTZ basis is motivated
by the experience with the R-matrix calculations based on
Models 1 and 2 discussed below and by the intention to use the
obtained results in the prospective calculations of the nuclear
dynamics using the vibrational frame transformation method
[21,43]. The R-matrix calculations based on the ANO GTO
basis require a rather large R-matrix sphere (r0 = 16 a.u.),
which causes numerical difficulties with the vibrational frame
transformation method. Models 3 and 4 yield spatially more
compact molecular orbitals that can be confined inside the
sphere with the radius r0 = 10 a.u. As is discussed below,
the R-matrix calculations based on Models 3 and 4 yield
at the scattering energies below 1 eV more physical results
than the calculations utilizing Models 1 and 2. It should be
kept in mind that the molecular orbitals calculated for O−

2 do
not have any straightforward physical interpretation for the
internuclear distances, where the anion is not bound. They
are used as the basis functions in the CI expansion of the
bound target states and in the expansion of the (N + 1)-
electron scattering wave function, where the correct boundary
condition is guaranteed by the continuum orbitals and by
the Bloch operator defined on the boundary of the reaction
volume.

Model 3 consists of the same configurations as Model 2
[see Eq. (9)] and 33 target states from every irreducible
representation are used in the expansion of the wave function
in the inner region. The most complex CAS model constructed
in the present study (Model 4) allows the active electrons to
occupy both orbitals 4σg and 3πu along with 4σu. It can be
expressed as

(1σg2σg1σu2σu)8(3σg4σg3σu4σu1πu2πu3πu1πg2πg)8, (10)

and it is introduced to study the stability of the R-matrix
calculations based on the anionic molecular orbitals with
respect to the extension of the CAS. The expansion of the
wave function in the inner region includes the 33 lowest
target states from every irreducible representation (singlet
and triplet spin states) in the R-matrix calculation using this
model. The dimension of H� for this model is large and its
full diagonalization, implemented as a standard method of
calculation of the R matrix in the UK codes [23,24] would be

TABLE II. Energy of the 3�−
g ground electronic state of O2 (a.u.)

and vertical excitation energies (eV) for the lowest few excited states.
The excitation energies calculated using Models 1–4 are compared
with the experimental values quoted in the reference [9]. All the
values are for the internuclear separation Re(O2) = 2.3 a.u.

ANO cc-pVTZ

State Model 1 Model 2 Model 3 Model 4 Ref. [9]

3�−
g −149.8557 −149.8516 −149.8186 −149.8430

1�g 1.014 1.008 1.005 1.012 0.98
1�+

g 1.871 1.828 1.815 1.822 1.65
1�−

u 5.875 5.834 5.844 5.851 6.12
3�u 6.141 6.094 6.099 6.124 6.27
3�+

u 6.303 6.254 6.252 6.282 6.47
3�−

u 9.458 9.503 9.477 9.322 9.25
1�u 11.869 11.926 11.920 11.755 11.8

numerically very demanding. This suggests that Model 4 is a
suitable candidate for demonstrating the alternative approach
discussed in Sec. II which employs no diagonalization.

The energy of the 3�−
g ground state of O2 calculated for

the equilibrium internuclear separation Re(O2) = 2.3 a.u. is
for Models 1–4 compared in Table II. Since in Models 1 and
2 the neutral target is represented using a larger ANO GTO
basis and the molecular orbitals are optimized for the ground
electronic state of the neutral molecule, it is not surprising
that these models yield lower energy of the ground state than
Models 3 and 4. On the other hand, the highest energy of the
O2 ground state obtained from Model 3 is a consequence of the
smaller GTO basis set and of the fact that the wave function
of the neutral target is expanded in the truncated basis set of
the orbitals optimized for O−

2 .
The vertical excitation energies for the lowest eight elec-

tronic states calculated for Models 1–4 are also compared in
Table II. In general, they are in good agreement with each
other. Note that the excitation energy of the lowest excited
state 1�g is for all the Models 1–4 close to the experimental
value quoted in Ref. [9]. The agreement with the experiment
is less convincing for the higher excited states, although the
correspondence between Models 1–4 is obvious. Table II as
well as Table II in Ref. [42] suggests that the change of the
primary GTO basis as well as the presence or absence of
the orbitals 4σg and 3πu in the CAS do not dramatically affect
the vertical excitation energies.

Since one of the goals of the present study is to provide
the fixed-nuclei scattering eigenphases and energies of the
anionic bound states for a future study of the vibrational
dynamics, it is important to represent the target correctly
also for different geometries than the equilibrium one. The
vibrational energy ωe(O2) is a suitable quantity that suggests
how well the different models introduced above represent the
potential energy curve of the ground state near the equilibrium.
In fact all the Models 1–4 yield values similar to each other
and to the previously published experimental results [13].
Comparison of Models 1 and 3 with the experimental value is
shown in Table III.

As is discussed below, the polarization effects play an
important role in the scattering at low impact energies. It is
their representation that requires a rather large number of the
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TABLE III. The equilibrium internuclear distance Re, and vibrational frequency ωe of the neutral target and of the 2�g anion and the
electron affinity EA. Calculations based on Models 1 and 3 are compared with the experimental results. The nonzero components of the tensor
of the static dipole polarizability of the neutral target (αxx,αzz) at the equilibrium geometry calculated using the same models are compared
with previously published theoretical values.

O2 (X3�−
g ) O−

2 (X2�g)

Model 1 Model 3 Previously published Model 1 Model 3 Experimental
values [Ref.] values [Ref.]

Re (a.u.) 2.30 2.32 2.28 [13] 2.55 2.58 2.55 [3]
ωe (eV) 0.192 0.185 0.196 [13] 0.135 0.133 0.137 [3]
αxx (a.u.) 0.08 0.22 7.12 [27]
αzz (a.u.) 9.31 9.2 13.51 [27]
EA (eV) −0.408 0.375 0.448 [13]

target states included in the expansion of the scattering wave
function in the inner region. Thus, it is interesting to calculate
the static dipole polarizability of the ground state of the neutral
molecule to estimate how well different models introduced
above represent these effects. The components of the tensor of
the static dipole polarizability α of the ground state ϕ0 can be
calculated using the sum-over-states formula,

αrs = 1

2

∑
k>0

〈ϕ0|d̂r |ϕk〉〈ϕk|d̂s |ϕ0〉
�Ek

r,s ∈ {x,y,z}, (11)

where ϕk are the excited states, d̂r,s are the Cartesian com-
ponents of the operators of the transition dipole moments,
and �Ek is the excitation energy from ϕ0 to ϕk . The
summation should be performed over the complete set of the
eigenstates (only the states of the symmetry 3�u or 3�−

u have
a nonzero contribution) including the continuum states. Here it
is performed over all the target states included in the expansion
of the scattering wave function in the inner region. The only
nonvanishing components of α for the homonuclear diatomic
molecule are the diagonal ones αzz and αxx = αyy . One can
see in Table III that Models 1 and 3 yield a similar value of
αzz and it is more than 68% of the value that was previously
accurately calculated by Hettema et al. [27]. On the other
hand, both models yield a significantly underestimated value
of αxx that is more than one order of magnitude lower than
the accurate calculations of Hettema et al. [27]. In fact, all the
Models 1–4 introduced above yield very similar values of α

and they show rather poor representation of the component
that is perpendicular to the internuclear axis. It is worth
mentioning that our test calculations (not published here) that
utilize the pseudocontinuum orbitals in the CAS in addition
to the molecular orbitals [23,40,44,45] yield a higher value
of αxx . However, the R-matrix calculations with those huge
basis sets are computationally too demanding to be practically
performed (see also Appendix B).

IV. SCATTERING CALCULATIONS

The continuum basis for the inner region is constructed
in the polyatomic UKRMOL program using additional GTOs
with the centers that coincide with the center of the R-matrix
sphere. A sufficient number of these GTOs is diffuse enough
to have nonzero values on the boundary of the inner region.
The exponents are optimized using the program GTOBAS [46]

and the resulting functions are orthogonalized on the set
of the molecular orbitals. This procedure yields a set of
continuum-type orbitals in the inner region. All the R-matrix
calculations presented here include the continuum orbitals
with orbital angular momenta l = 0,1,2,3,4,5. Their number
in every irreducible representation is identical for all the
Models 1–4 and is listed in Table I.

Models 1 and 2 are based on the ANO GTO basis that
yields quite diffuse molecular orbitals. The corresponding
R-matrix calculations require quite a large sphere with radius
r0 = 16 a.u. A similarly large R-matrix sphere was also
necessary in the R-matrix studies [45,47] of electron collisions
with other molecules having a sizable polarizability. The GTO
basis set cc-pVTZ used in Models 3 and 4 yields target orbitals
that are more compact and can be confined within the sphere
of the radius r0 = 10 a.u.

The total number of target states (summed over all the
irreducible representations and spin states) included in the
expansion of the scattering wave function is listed in Table IV
for Models 1–4 along with the dimensions of the corresponding
Hamiltonian matrices H�. Quite a large number of target
states are needed to achieve convergence of the scattering
K matrix and its eigenphases for all the models discussed
here. That, in combination with the large number of the active
electrons and orbitals, is the reason for the substantial amount
of CPU time required for the evaluation of all the elements
of H� (see the column tC in Table IV). Note that the CPU
time required for the complete diagonalization of H� (tD in

TABLE IV. The number of the target states Nt included in the
close-coupling expansion of the total wave function in the inner region
and the dimension of H� is compared for Models 1–4. tC is the CPU
time in hours required for the calculation of all the matrix elements,
tD is the CPU time in hours necessary to diagonalize H� using the
LAPACK subroutine DSYEVD, and tL is the CPU time in hours
necessary to calculate the R matrix for a single energy using the
linear solver PARDISO.

Model Nt Dimension of H� tC (h) tD (h) tL (h)

1 128 26 168 17.7 6.4 0.6
2 640 22 456 3.25 3.9 0.92
3 528 22 512 4.5 4.17 1.2
4 528 127 012 97.7 62.2
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Table IV) is for Models 2 and 3 comparable with the CPU
time necessary for the construction of H�. The large size
of the Hamiltonian matrix for Model 4 dramatically compli-
cates the complete diagonalization of the Hamiltonian matrix
and for this case only the method based on solving the linear
system of equations was applied. The CPU time required for
the solution of the linear system of equations is smaller than
the time necessary for the complete diagonalization (see the
column tL in Table IV) for all models where both methods can
be compared. However, it must be kept in mind that the linear
system has to be solved for every scattering energy of interest.
This makes the formulation of the outer-region problem in
terms of the analytical quantum defects more favorable, since
a smooth dependence on the energy permits the R-matrix
calculations to be performed for a smaller number of energy
grid points followed by interpolation when possible. Also,
it should be kept in mind that the repetitive linear equation
solution required at different energies is trivially parallelizable.
Although the CPU time necessary to calculate the R matrix for
Model 4 using the linear solver is rather high, the efficient
parallelization allows for calculating the R matrix for a single
value of the scattering energy on a computer with eight CPUs in
less than 12 h. The large CPU time required for the construction
of H� in Model 4 suggests that this is the most time-consuming
step of the R-matrix calculation independently of the complete
diagonalization. Note that the molecular R-matrix calculation
involving the largest Hamiltonian matrix H� so far has been
performed to treat the positron collisions with acetyline [48].
The dimension of H� exceeded 500 000 in that study. Since
the partitioned R-matrix method was utilized there, only lowest
3000 eigenvectors and eigenvalues were used to evaluate the
R matrix.

The large number of N -electron wave functions needed to
achieve convergence for all of the Models 1–4 considered here
is in fact the usual complication of the ab initio calculations of
the electron collisions with molecules with large polarizability
[49]. A useful computational method developed to treat this
situation efficiently is the R matrix with pseudostates (RMPS)
[23,44], where the large number of true electronic states of
the target is replaced by a smaller set of pseudostates [45].
We comment, however, that the straightforward application
of this approach to the present problem has not simplified the
calculations and it does not improve the results. Further details
are discussed in Appendix B.

The extensive number of the target states considered in
the inner region problem can lead to very time-consuming
R-matrix propagation in the outer region, if all the scattering
channels are included in the outer-region problem [Eq. (1)] as
well. This situation is similar to the RMPS calculations, where
the R-matrix propagation in the outer region usually requires
more CPU time than the complete diagonalization of H�

[44,45]. Fortunately, the treatment of the wave function in the
outer region can be simplified. As one can see in Table II, the
threshold energy of the lowest electronically excited channel
(1�g) is at 1 eV above the ground state of O2. That is the
upper limit of the energy range considered in this study. All
the scattering channels associated with the excited target states
are strongly closed and although they play an important role
in the inner region, they can be safely neglected in the outer
region.

Since previous R-matrix studies [45,47] of the polarization
effects suggest that their representation in the inner region
plays a more important role than the polarization potential in
the outer region, the R-matrix propagation in the outer region
is skipped in all the calculations presented here and the R
matrix calculated at r0 is used to match directly to the regular
and irregular radial wave functions of the free particle in the
outer region. Their linear combination determines the K matrix
and the scattering eigenphases. The calculations including
different numbers of partial waves show that the 2�g electronic
state of O−

2 for the incident electron energies below 1 eV can be
sufficiently well represented in the outer region by the single
partial wave d, i.e., l = 2. Therefore, the problem in the outer
region problem can be reduced to a single scattering channel. It
is worth mentioning at this point that neglecting the long-range
interaction of the target with the incident electron in the outer
region that is predominated by the polarization potential, leads
to a modification of the threshold behavior of the phase shift.
While the dependence of the phase shift on the momentum of
the incident electron k is in the present results η(k) ∝ k5 for
k → 0, if the potential ∝r−4 was taken into account in the outer
region, this would not be the leading term in the effective range
expansion [50].

The corresponding phase shift η(E) for the internuclear
separations Rn, where the electronic state O−

2 (2�g) is not
bound, can be parametrized by the Breit-Wigner formula,

η(E) = tan−1

(
�/2

Er − E

)
+ η0(E), (12)

where � and Er are the width and position of the resonance,
respectively, and E = k2/2 is the kinetic energy of the incident
electron. The background phase shift η0(E) is a smooth
function of the energy and it can be parametrized by a low-
order polynomial. This Breit-Wigner fitting formula is only
valid for resonance energies well separated from threshold,
i.e., by many widths �.

One of the goals of the present study is to provide the
fixed-nuclei data required for the future calculations of the
resonant vibrational excitation of O2 and photodetachment of
O−

2 . To this end the analytical quantum defects μ0(E) are
calculated as a function of the scattering energy for a set of the
internuclear separations. The analytical quantum defect μ0(E)
is a scattering quantity similar to the scattering eigenphase
η(E) in the sense that it specifies the linear combination of
the general solutions of the Schrödinger equation in the outer
region matching the boundary condition (2). These solutions
are rescaled to remove the Wigner threshold factors and the
analytical quantum defect is a function of the scattering energy
that is smooth across the thresholds and it is well defined for
both open and closed channels [51,52]. The smooth character
of the analytical quantum defects even in the vicinity of the
resonance makes this parametrization of the scattering wave
functions particularly favorable in the context of the energy-
dependent vibrational frame transformation [21,43].

The reduction of the problem in the outer region to a
single scattering channel and to a single partial wave l = 2
(for incident electron energies below 1 eV) implies that the
expansion (1) reduces to a single term. The scaled radial
wave function of the scattering electron can be for r � r0
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parametrized as

F11(r) = N
[
f 0

l (k,r) cos(πμ0) − g0
l (k,r) sin(πμ0)

]
r�r0

. (13)

f 0
l (k,r) = √

2/πk−lrjl(kr) is the regular scaled radial wave
function of the free particle, g0

l (r) = √
2/πkl+1rnl(kr) is the

irregular scaled radial wave function, k is the momentum
of the incident electron, jl and nl are the regular and
irregular spherical Bessel functions, respectively, and N is
the normalization factor.

Formulation of the problem in the outer region in terms
of the smooth quantum defects μ0 is also favorable for the
calculations of the anionic bound states in the fixed-nuclei
approximation. For the range of nuclear geometries, where
the anionic state is bound, its energy Eb can be calculated by
solving the equation [51],

πμ0(Eb) = π − arctan
[
(−2Eb)l+

1
2
]

Eb < 0, (14)

where the single partial wave and single target electronic state
is assumed. The advantage of this method compared to the
widely used matching of the R matrix to the spherical Hankel
functions (see the review [23] and references therein) is that
both sides of Eq. (14) are usually smooth functions of energy
and the complications due to the poles of the R matrix can be
avoided.

V. RESULTS

A. The 2�g resonance at equilibrium geometry
of the neutral target

Figure 1 shows the 2�g phase shift for the equilibrium
internuclear distance of the neutral target Re(O2) = 2.3 a.u.
calculated using the models introduced in Sec. III. All the
curves clearly show a narrow resonance with relatively small
background. Model 1 yields the highest resonance position
among all (Er = 0.838 eV). The expansion of the wave
function in the inner region includes the 30 lowest target states
from the irreducible representation 3�u and the 42 lowest
target state from the irreducible representation 3�−

u , since
those contribute to the polarizability of the ground state of
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FIG. 1. (Color online) The 2�g phase shift as a function of the
incident electron energy calculated for the internuclear separation
Re(O2) = 2.3 a.u. Results for Models 1–4 are compared.

the target. Only the two lowest target states are included from
each of the other irreducible representations that have zero
dipole coupling with the ground state of the target.

Further tests showed that the higher target states from these
irreducible representations are also important for achieving
convergence of the phase shift within the space of config-
urations (8). The phase shift calculated including the 33
energetically lowest target states from every symmetry in the
inner region is plotted in Fig. 1 and denoted as Model 1b.
Inclusion of these additional states decreases the resonance
position by 0.081 eV to Er = 0.757 eV and adding even more
excited states does not significantly change this value.

The representation of the polarization effects by the CAS CI
model, and the question of how well it is characterized by the
static dipole polarizability of the target, has been the subject of
several studies [23,44,45]. The difference between the phase
shifts denoted as Model 1 and Model 1b in Fig. 1 demonstrates
that the static dipole polarizability is not a sufficient measure
of the polarization effects in the electron collisions with O2 at
low energies. The decrease of Er with an increasing number
of excited target states was also reported by Tashiro et al. [42],
although that model takes into account only a significantly
smaller set of target states; achieving convergence at low
energies was not the goal of that study, in any case.

In Model 2, the electrons can occupy the orbital 4σg instead
of the orbital 3πu included in Model 1. Although the expansion
of the wave function in the inner region includes 40 excited
states from every irreducible representation, the phase shift
shows the resonance at slightly higher collision energy (Er =
0.797 eV) than Model 1b, as one can see in Fig. 1.

In general, the comparison of the phase shifts calculated
using Models 1 and 2 suggests that presence or absence
of the molecular orbitals 4σg and 3πu in the CAS does
not dramatically affect the parameters of the resonance. The
energy of the 2�g resonance calculated for Re(O2) using
Models 1 and 2 agrees well with the previously published
R-matrix calculations by Higgins et al. [7] (Er = 0.754 eV).
The CAS used in that study is smaller than in Models 1 and
3 and only the eight energetically lowest target states are
included in the expansion of the wave function in the inner
region. Therefore, none of the target states with �g or �u

symmetry are included in that study (see Table II), although
these states have significant contribution to the polarization
effects. The absence of the higher molecular orbitals and
excited target states is compensated by the virtual orbital
that can be singly occupied only in the (N + 1)-electron
wave function [7] [the L2 configurations in the close-coupling
expansion [23] or in Eq. (7)]. The use of virtual orbitals raises
the issues with the unbalanced treatment of the correlation
in the target and in the scattering complex. That can lead
to an ambiguity in the energy of the resonance. The models
introduced in Sec. III are free of this complication.

The resonance energy Er and width � calculated for the
internuclear separation Re(O2) are summarized in Table V. It
shows that Models 1 and 2 yield a resonance width � having
the same order of magnitude. These values agree well with the
results previously published by Higgins et al. [7] and by Noble
and Burke [6]. Our test R-matrix calculations performed with
even larger CAS than those of Models 1 and 2 (not published
here) show that the position and width of the 2�g resonance
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TABLE V. Energy Er and width � of the 2�g resonance in O−
2

at the equilibrium internuclear distance of the neutral target Re(O2).
Results of the molecular R-matrix calculations using Models 1–4 are
compared with the results in the previously published references.

Er (eV) � (eV)

Model 1 0.838 0.043
Model 1b 0.757 0.034
Model 2 0.797 0.038
Model 3 0.154 3.6×10−5

Model 4 0.169 1.1×10−3

Higgins et al. [7] 0.754 0.031
Noble and Burke [6] 0.700 0.026
Derived from experiment [9] 0.090 8.5 × 10−5

does not considerably change, when both orbitals 3πu and 4σg

are included in the CAS.
Although the results obtained using Models 1 and 2

presented in Fig. 1 and Table V exhibit encouraging agreement
with the previously published R-matrix calculations [6,7], they
do not agree well with the experimental study by Linder and
Schmidt [2] that found the energy of the 2�g resonance to
be Er ≈ 0.1 eV. A similar value was calculated by Ervin
et al. [13] using the stabilization method. This suggests that the
relatively good agreement of the phase shifts calculated using
Models 1 and 2 points towards the very slow convergence with
respect to the number of the molecular orbitals included in the
CAS. The authors of the previously published ab initio studies
[6,7,42] attribute the discrepancy between the theoretical and
experimental results at energies below 1 eV to the insufficient
treatment of the polarization effects, particularly in the outer
region. Models 1 and 2 discussed above employ a quite
extensive GTO basis set (ANO) that includes a subset of diffuse
functions designed to represent the polarization effects. It is
reasonable to expect that Models 1 and 2 account for these
effects more than in any previously published R-matrix study
and the rather large R-matrix sphere (r0 = 16 a.u.) should hold
most of these effects in the inner region. However, even this
improved treatment is not sufficient to provide more physical
parameters of the 2�g resonance.

The results suggest that the CAS CI representation em-
ploying the SA-CASSCF orbitals optimized for the neutral
O2 is not sufficient for the reliable scattering calculations
in the energy range considered here. This conclusion is
understandable in view of the previously published ab initio
studies of the adiabatic electron affinity EA of O2. It is
another essential quantity that characterizes the 2�g state
of O−

2 at the equilibrium internuclear distance of bound
O−

2 (Re(O−
2 ) ≈ 2.6 a.u. [13]). González-Luque et al. [28]

compared the value of EA calculated using different CI
models with the experimental value and found that the
methods based on the CAS approach do not yield even a
correct sign of EA. According to that study, really extensive
multireference configuration interaction (MRCI) calculations
are required to obtain a value of EA comparable with the
experimental results. Furthermore, Stampfuß and Wenzel [53]
studied the contributions of the single and double excitations
of the reference Hartree-Fock determinants to the binding
energy of O−

2 (2�g) and compared it with the contribution

of the triple and quadruple excitations. Their results show
that both contributions are comparable. Therefore, the set of
configurations, where several electrons are excited into the
lowest few molecular orbitals (included in the CAS models
introduced here), is not sufficient to yield the correct value
of EA. That requires inclusion of configurations where at
least one electron occupies one of the higher molecular
orbitals with an orbital number up to 12 in every irreducible
representation. These orbitals are not included in the CAS
models employed in this study and their further extension
would lead to an extremely demanding construction of the
Hamiltonian matrix H�.

Since the equilibrium internuclear separation of O2 is only
0.3 a.u. smaller than the equilibrium geometry of O−

2 , the same
mechanisms are responsible for the slow convergence of the
resonance energy Er at the equilibrium geometry of O2.

In order to improve the results provided by Models 1 and 2,
the CAS Model 3 has been introduced. It employs the SA-CAS
MCSCF molecular orbitals of O−

2 (2�g), as is described above.
The corresponding phase shift calculated for the internuclear
separation Re(O2) = 2.3 a.u. is also plotted in Fig. 1. It clearly
shows a sharp resonance with a relatively smooth background.
Fitting to the Breit-Wigner formula (12) yields Er = 0.154 eV.
This value agrees with the experimental results [2] much
better than Models 1 and 2 (see Table V). The calculation
in the inner region includes 33 lowest target states from every
irreducible representation and further increase of that number
does not significantly change the phase shift. Interpretation of
the improvement due to replacement of the orbitals optimized
for the neutral target by the anionic molecular orbitals is
not straightforward. In general, the orbitals optimized for the
anion have more diffuse character than those calculated for
the neutral target. Therefore, it is reasonable to expect that
they are more suitable to represent the polarization effects
than the molecular orbitals of the neutral target. This can
partially compensate the absence of the higher orbitals in
the CAS models mentioned above. On the other hand, the
orbitals calculated for the neutral target are more suitable
to represent the ground and excited states of the target than
the anionic orbitals used in Model 3. It is possible that the
lower energy of the resonance calculated using Model 3 is
not only a consequence of the improved treatment of the
interaction between the target and the scattering electron, but
to some extent also an artifact of a less accurate model of
the target. In other words, part of the reason of the lower
resonance energy in Model 3 is the increase of the target
ground-state energy with respect to Models 1 and 2 (see
Table II). The CAS CI expansions of the target states and
of the (N + 1)-electron wave function in the same truncated
set of the molecular orbitals show different convergence with
respect to the number of orbitals and this convergence depends
on their character. This general complication of the ab initio
R-matrix calculations does not have a universal solution and
the particular choice of the molecular orbitals apparently
cannot yet be automated, but rather needs to be physically
motivated.

The CAS Model 3 yields the vertical excitation energies of
the target and the energy of the resonance that are in reasonable
agreement with the experimental values (see Tables II and V).
It should be emphasized that these results are not adjusted by
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an artificial overcorrelation of the (N + 1)-electron system by
introducing virtual orbitals [6,7,23,42].

The CAS Model 4 allows the electrons to occupy both
4σg and 3πu molecular orbitals that are included separately
in different CAS models introduced previously. In addition,
it includes the 4σu molecular orbital. This model yields the
largest Hamiltonian matrix H� among all the Models 1–4 (see
Table IV). It is introduced to study the stability of the R-matrix
calculations with respect to extending the CAS. The scattering
phase shift (plotted in Fig. 1) shows encouraging agreement
of the resonance position and width with Model 3, although
the energy of the resonance Er = 0.169 eV is 15 meV higher
than the value obtained from Model 3. This slight shift towards
higher energies suggests that the molecular orbitals 3πu and
4σu contribute more to the correlation of the target ground
state than to the correlation of the (N + 1)-electron system.
The energy of the ground state of the target calculated using
Model 4 is 0.66 eV lower than the energy calculated using
Model 3 (see Table II). The good agreement between the Er

calculated using Models 3 and 4 suggests that the improvement
of the scattering results by employing the anionic molecular
orbitals instead of those optimized for the neutral is not purely
an artifact due to making the representation of the target worse.
The phase shift is rather stable with respect to changes of the
CAS that yields different energies of the target states.

Since the construction of the Hamiltonian matrix H� in the
R-matrix calculations based on the most complex CAS Model
4 is computationally quite demanding (see Table IV), this was
performed only for the equilibrium internuclear distance of the
neutral target. Since those results show good agreement with
the smaller Model 3, that more economical model was used to
study the dependence of the 2�g bound and continuum states
of O−

2 on the internuclear distance discussed below.
The effects of the vibrational nuclear dynamics prevent

us from directly comparing the cross sections calculated in
the fixed-nuclei approximation with experimental results for
the energies of the scattering electron below 1 eV. Existence
of the bound anionic state (discussed below) leads to well-
pronounced boomerang oscillations in the elastic scattering
cross sections [2,8,12] that do not appear in the fixed-nuclei
calculations. Further theoretical study of these effects using
the energy-dependent vibrational frame transformation [21,43]
based on the results presented here will be a subject of the
forthcoming research.

B. The bound and continuum state of O−
2 (2�g)

Results of the R-matrix calculations discussed here can be
used to study effects of the vibronic coupling in the electron
collisions with O2 or in the photodetachment of O−

2 . That re-
search requires correct characterization of the bound electronic
state of O−

2 for a range of the relevant nuclear geometries in
addition to the scattering phase shifts or analytical quantum
defects. Figure 2 shows the analytical quantum defects for
several internuclear separations calculated using Model 3 that
provides the most physical results at Re(O2). These curves are
smooth functions of the incident electron energy, even in the
vicinity of the resonance. Relatively slow variation of μ0 with
the internuclear separation Rn makes this quantity suitable
for modeling the vibrational dynamics of the anionic complex
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FIG. 2. (Color online) Analytical quantum defects μ0 (solid lines)
calculated using Model 3 as a function of the incident electron energy
E plotted for several internuclear separations Rn (a.u.). The right-hand
side of Eq. (14) is plotted by the dashed line and the intersections
with solid lines determine energies of the O−

2 (2�g) electronic bound
state.

based on the energy-dependent vibrational frame transforma-
tion [21]. Figure 2 also shows the curve corresponding to the
right-hand side of Eq. (14). Its intersection with the smooth
quantum defect (if it exists) determines the bound-state energy
of O−

2 (2�g).
It is well known [3,13] that O−

2 posses one electronic bound
state (2�g) with the minimum of the potential energy curve
below the potential energy minimum of O2. The potential
energy curves of the ground state of neutral O2 and of the
anion calculated using Model 1 and Model 3 are plotted in
Fig. 3. The electronic eigenenergies of the anion are calculated
using Eq. (14) for the range of the internuclear separations,
where the anion is bound and the resonance energy is taken
for smaller internuclear distances, where the anionic state has
finite lifetime.
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FIG. 3. (Color online) Potential energy curves of the target O2

(3�−
g ) ground electronic state and O−

2 (2�g) state. In the region where
the anion is not stable against autodetachment, the anionic curve
displayed represents the real part of the corresponding resonance
energy. The calculations using Models 1 and 3 are compared. The
potential energy curves are plotted for each model with respect to
energy of the target ground state at its equilibrium nuclear geometry.
Model 3 yields a fixed-nucleus electron affinity EA = 0.375 eV.
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FIG. 4. (Color online) The position Er of the 2�g state of
O−

2 calculated as a function of the internuclear distance R plotted
with respect to the 3�−

g electronic threshold. The results obtained
using Models 1 and 3 are compared with the previously published
calculations by Higgins et al. [7]. The width of the resonance is
compared in the inset.

Figure 3 shows that Model 1 does not yield a bound state
of the negative ion. Although the anionic potential energy
curve crosses the one of the neutral target at R ≈ 2.51 a.u.,
its minimum lies above the minimum of the neutral potential
curve. This behavior is common for both Models 1 and 2 and
is explained above. The R-matrix study by Higgins et al. [7]
also fails to predict the bound state of O−

2 . The results from
Ref. [7] were later adjusted by shifting the R-matrix poles
to reproduce the experimental value of the electron affinity
and used to study the resonant vibrational excitation of O2

by the electron impact [8]. This sort of shift can lead to an
inconsistency between the R-matrix poles and amplitudes that
can nonphysically affect the width of the resonance, and has
accordingly not been pursued in the present study.

The R-matrix calculations based on Model 3 that employ the
molecular orbitals optimized for the negative ion clearly show
the bound state of O−

2 and yield the electron affinity EA =
0.375 eV. This is in good agreement with the experimental
value 0.448 eV [3] supported by later quantum chemical
calculation by Ervin et al. [13] (see also Table III). The crossing
point of the neutral and anionic potential curve obtained using
Model 3 is located at internuclear distance 2.34 a.u., very close
to the equilibrium geometry of the neutral target. This position
is close to that determined in Ref. [13]. Figure 4 shows the res-
onance and bound-state energy of O−

2 relatively to the energy
of the neutral target ground state. The resonance width as a
function of Rn is plotted in the inset. This visualization allows
for a direct comparison of Model 1 and Model 3 with Ref. [7]
for multiple nuclear geometries. It confirms that the good
agreement between Model 1 and Ref. [7] is preserved for other
nuclear geometries than the equilibrium of the neutral target,
while Model 3 yields lower values of the resonance position
and width as well as of the energy of the anionic bound state.

The potential energy curves plotted in Fig. 3 and the
analytical quantum defects plotted in Fig. 2 are the central
physical results of this study, as well as the basis set
configurations that seem to produce the best results. The
resonance and bound-state energies of O−

2 presented here show

that the ab initio R-matrix calculations using Model 3 provide
physically correct eigenphases and smooth quantum defects in
the range of the collision energies considered here, in spite of
the complicated electronic structure, whereas the previously
published ab initio studies provide only inaccurate results.

Other quantities essential in this context are the harmonic
vibrational frequencies of the neutral target and of the bound
negative ion. As one can see in Table III, the values obtained
using Models 1 and 3 are in good agreement with the
experimental value [13].

VI. CONCLUSION

The ab initio study of the electronic structure of the 2�g

bound and continuum state of O−
2 in the approximation of

the fixed nuclei is presented. The scattering eigenphases and
the analytical quantum defects are given as functions of the
scattering energy for the range of the internuclear separations
relevant in the resonant vibrational excitation of O2 and
photodetachment of O−

2 . The scattering energies below 1 eV,
where only one electronic channel is open, are considered.
For geometries, where the anionic state is not stable against
electron autodetachment, the eigenphases were fitted to the
Breit-Wigner formula (12) to determine the resonance position
and width. At larger internuclear distances, where the anion is
bound, its energy was determined from the smooth quantum
defects using Eq. (14). All the calculations were performed
using the UK molecular R-matrix program suite [23,24].

The results for several different CAS models show that
a large basis set of the CI configurations and neutral target
eigenstates is necessary in the inner region to achieve con-
verged eigenphases. It is found that if the molecular orbitals
of the neutral target are employed in the inner region, the
convergence of the CAS model with respect to the number
of included orbitals is too slow to provide physically correct
characterization of the bound and resonant 2�g state of O−

2 .
A different method of selection of the CI configurations
other than CAS should be used in that case. However, it
is not straightforward to find a more appropriate selection
scheme for the CI configurations that treats the target and
the (N + 1)-electron scattering complex in a balanced manner
[23,36]. In addition, any such alternative selection scheme
would require substantial changes in the existing UK R-matrix
codes. On the other hand, if the molecular orbitals optimized
for the negative ion are employed, the CAS approach in the
inner region yields the eigenphases and analytical quantum
defects that yield the parameters of the resonance and of the
bound state in good agreement with the experimental values.

The problem studied here is suitable for a test of the
alternative methods of calculation of the R matrix. The method
tested here is based on the solution of the linear system of
equations individually for every scattering energy. This method
proved more suitable than the single complete diagonalization,
when the dimensions of H� exceeds 40 000, at least for typical
computational hardware that is routinely available at present.
It represents a nonperturbative alternative to the partitioned
R-matrix method that requires a single partial diagonalization
of the Hamiltonian matrix H� after which the spectrum is
completed approximately.
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APPENDIX A: NOTES ON THE METHOD USED
TO SOLVE THE LINEAR SYSTEM

The method of calculation of the R matrix from the
Hamiltonian in the inner region H� introduced in Sec. II
was implemented using the linear solver PARDISO [54] that
is based on LU factorization. This solver employs a sparse
matrix storage scheme and it is designed to handle large
and sparse matrices that cannot fully fit into the memory
using the full storage. The UK R-matrix program employs
the DSYEVD subroutine from the LAPACK library for the
complete diagonalization. The DSYEVD subroutine requires
storage of the full matrix and does not benefit from the fact
that H� is usually sparse.

The sparse matrix storage is the main reason why the
method based on solving the system of linear equations is
more favorable for large CAS models than the complete
diagonalization. When the dimension of H� is smaller than
≈40 000 and when the memory is large enough to store it
using the full storage format, the complete diagonalization
requires less CPU time than the solution of multiple linear
systems for several different scattering energies (see Table IV).
Performance of both methods becomes comparable above this
dimension and the number of considered scattering energies
for which the R matrix needs to be calculated decides which
method requires less CPU time. This dimension is also close
to the memory limit of typical contemporary computers. Com-
parison of both methods beyond this size becomes complicated
and considerably larger CAS models can be handled only using
methods that do not require full matrix storage.

The CPU time required by PARDISO to solve a single
system of linear equations also depends on the density of H�.

In general, even a very large problem can be solved efficiently
using this subroutine, if it is sufficiently sparse.

APPENDIX B: COMMENT ON THE APPLICATION
OF THE RMPS METHOD

The high number of the target states required to achieve a
converged expansion of the total (N + 1)-electron wave func-
tion in the inner region naturally suggests that the approach
employing the R-matrix with pseudostates (RMPS) method
might be rather efficient. Previous studies [23,40,44,45] show
that an accurate treatment of the complicated polarization
effects in the inner region requires a smaller number of
the pseudostates than of the true eigenstates of the target.
The RMPS method was applied to the problem studied
here and following Gorfinkiel and Tennyson [44] the singly
excited configurations (1σg2σg3σg1σu2σu1πu)14(1πg)1(λi)1

were included in the CI expansion of the target states, where λi

is the pseudocontinuum orbital [44]. However, those additional
configurations do not have any considerable contribution to
the eigenstates of the neutral target in any of Models 1–3,
where the RMPS method was tested. As a consequence, the
higher pseudostates do not improve the representation of the
polarization effects in the scattering calculations.

As an attempt to improve the representation of the
pseudostates, the doubly excited configurations, where the
pseudocontinuum orbital is singly occupied, were added.
These configurations decreased the energies of the target
states. Corresponding (N + 1)-electron terms including the
pseudocontinuum orbitals were added to the CI expansion
of the (N + 1)-electron wave function as well. However,
this CI model yields an extremely large Hamiltonian H�

with the dimension exceeding 3 × 105. The evaluation of all
the matrix elements would require too much CPU time and
the R-matrix calculation becomes intractable. Therefore, the
RMPS treatment of the electron collisions with O2 at low
incident electron energies should be reconsidered and it will
be the subject of future research.
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