
PHYSICAL REVIEW A 87, 022707 (2013)

Bremsstrahlung polarization correlations and their application for polarimetry of electron beams
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Linear polarization of hard x rays emitted in the process of atomic-field electron bremsstrahlung has been
measured with a polarized electron beam. The correlation between the initial orientation of the electron spin and
the angle of photon polarization has been systematically studied by means of Compton and Rayleigh polarimetry
techniques applied to a segmented germanium detector. The results are in good agreement with those of fully
relativistic calculations. The observed correlations are also explained classically and in a unique way manifest
that due to the spin-orbit interaction the electron scattering trajectory is not confined to a single scattering plane.
The developed photon polarimetry technique with a passive scatterer is very efficient and accurate and thus allows
for additional applications. Bremsstrahlung polarization correlations lead to an alternative method of polarimetry
of electron beams. Such a method is sensitive to all three components of the electron spin. It can be applied in a
broad range of the electron beam energies from ≈100 keV up to a few tens of MeV. The results of a measurement
at 100 keV are shown. The optimum scheme for electron polarimetry is analyzed and the relevant theoretical
predictions are presented.
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I. INTRODUCTION

Radiation spectra in relativistic electron-atom collisions are
dominated by atomic-field bremsstrahlung. Bremsstrahlung is
one of the fundamental ways in which the electromagnetic
field interacts with matter. It occurs for every charged par-
ticle moving through matter, and most of its properties are
understood classically. For this reason it was used for many
decades to study dynamics of colliding particles. In the earlier
days research focused on the spectral shapes and the angular
distributions of the emitted photons [1–7]. They are now well
understood and the theoretical predictions are published in the
form of tables [8–10]. Accurate measurements of the cross
sections are still occasionally made [11–13].

Photon polarization was also closely examined both the-
oretically [14–17] and experimentally [18–21]. It reveals the
fine details of the scattered electron dynamics and in particular
the influence of its spin [22,23]. Here one takes a particular
interest in the dynamics because of the extremely strong fields
experienced by the electron. In these fields the relativistic
and the spin effects become pronounced. In particular the
magnetic field induced by the nucleus in the electron’s rest
frame is strong enough to cause a significant interaction with
the spin—the spin-orbit interaction. It is significant even for
a single-electron path near the nucleus. Therefore such a
free-free electron radiative transition can be used to study the
nature of the spin-orbit interaction.

The spin-orbit interaction in the relativistic regime con-
tributes significantly to the deflection of the scattered electron.
In the case when the spin is oriented perpendicular to the
scattering plane it causes Mott scattering asymmetry [24,25].
Similarly, due to forward character of the photon emission
at relativistic energies, it causes the spin asymmetry of

bremsstrahlung emission. This effect is now well understood
theoretically [26–30] as well as experimentally [31–35].
Furthermore, detailed experimental data were also obtained
for more differential studies in which the scattered electrons
were observed [36–38]. In some of these studies linear photon
polarization was observed too [39,40]. However, until recently
in no experiment were the polarizations of both the electron
and the photon controlled at the same time.

One such experiment was performed by our group [22].
We demonstrated that for longitudinally polarized electrons
the spin-orbit interaction rotates the plane of the electron
scattering. The rotation of the scattering plane can be unam-
biguously observed in the polarization of the emitted photons.
The angle of linear polarization is defined by the electron
acceleration direction. For a spinless electron it should point
towards the scattering center—the nucleus and thus it should
be confined to the scattering plane. We saw that the direction
of the acceleration is not confined to the reaction plane—the
plane defined by the incoming electron and the photon. This
uniquely identifies that the electron trajectory is not confined
to a single scattering plane.

Furthermore, since bremsstrahlung at the hard-photon end
of the spectrum can be considered as a time reversal of
photoionization [41–43], this effect corresponds to production
of longitudinally polarized electrons by photoionization of
unpolarized atoms with linearly polarized photons, i.e., by pho-
tons with no preferred spin orientation. It was already known
that photoionization may produce longitudinally polarized
electrons via the Fano effect [44]. However, it requires spin-
oriented photons, i.e., circularly polarized light. On the other
hand, the production of longitudinally polarized electrons
with linearly polarized light is a different phenomenon. Its
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underlying physics is significantly different from that of the
Fano effect. In contrast to the Fano effect it requires strong
fields and relativistic energies.

In this article we further describe these phenomena. We
provide a complete account of the experimental details omitted
in the Letter [22] and add the observation of the rotation of
bremsstrahlung polarization caused by transversely polarized
electrons. An experiment performed by another group also
focused on the influence of the transverse spin [23]. They
have identified that the angle of photon polarization does
not depend on its energy. In this article we will interpret
this phenomenon. These correlations were predicted long ago
[16,45–49], but only recently have the experimental techniques
became sensitive enough to observe them. We explain these
correlations classically. We show that a number of them are
parity forbidden. With a test measurement we demonstrate
that they can be applied for polarimetry of relativistic electron
beams.

II. DEFINITIONS OF POLARIZATION CORRELATIONS

The geometry of bremsstrahlung is shown in Fig. 1(a).
Each component of the electron spin may potentially influence
the intensity and polarization of the emitted photon. Two
equivalent notations are adopted to describe these correlations.
The first notation uses the correlation coefficients Ckl in the
terminology of Tseng and Pratt [46]; see Table I. The second

FIG. 1. (a) Bremsstrahlung geometry. The incoming electron
moves along the ẑ axis. The reaction plane, defined by the incoming
electron and the emitted photon directions, coincides with the (x,z)
plane. The photons are emitted at the angle θ with respect to ẑ. The
photon polarization plane is tilted by an angle χ with respect to the
reaction plane. (b) Intensities of light polarized within planes tilted
by 0◦, 45◦, 90◦, and 135◦. (c) Transformation of planes, vectors, and
axial vectors in mirror reflection.

TABLE I. Notation for electron and photon polarization for
correlation parameters Ckl in the terminology of Tseng and Pratt [46].

k Electron l Photon

0 Unpolarized 0 dσ , total
1 x̂, transverse within the reaction plane 1 P2, linear
2 ŷ, transverse perp. to the reaction plane 2 P3, circular
3 ẑ, longitudinal 3 P1, linear

notation uses the Stokes parameters Pn(x,y,z) as a function
of the electron spin orientation (x,y,z), in the terminology
of Yerokhin and Surzhykov [48]. Here the ẑ axis is along
the incoming electron beam direction, and (x,z) is the photon
emission plane. The Stokes parameters P1 and P2 are defined
in the following way:

P1 = I0◦ − I90◦

I0◦ + I90◦
, P2 = I45◦ − I135◦

I45◦ + I135◦
, (1)

where Iϕ is the number of photons polarized in the plane tilted
by the angle ϕ with respect to the reaction plane (x,z); see
Fig. 1(b). The degree P and the angle χ of photon linear
polarization are related to P1 and P2 as

P =
√

P 2
1 + P 2

2 , cos 2χ = P1

P
, sin 2χ = P2

P
. (2)

There are 12 possible correlations involving the orientation
of the electron spin and the direction and linear polarization
of the emitted photon. However some of them are parity
forbidden. To prove this we describe the parity transformation
as a mirror reflection and a rotation. The mirror reflection
does not affect the photons linearly polarized within the
reflection plane, in our case the reaction plane (x,z), i.e.,
P1 ⇒ P1; see Fig. 1(c). However, it changes the sign of photon
polarization within the plane turned by 45◦ with respect to
the reflection plane, i.e., P2 ⇒ −P2. The electron spin is an
axial vector. Therefore with respect to the mirror reflection it
transforms as a vector and in addition it changes sign, i.e., the
spin components are transformed as (x,y,z) ⇒ (−x,y,−z).
The mirror reflection symmetry thus leads to the following
rules:

P1(1,0,0) = P1(−1,0,0), P2(1,0,0) = −P2(−1,0,0),

dσ (1,0,0) = dσ (−1,0,0), P1(0,1,0) = P1(0,1,0),

P2(0,1,0) = −P2(0,1,0), dσ (0,1,0) = dσ (0,1,0),

P1(0,0,1) = P1(0,0,−1), P2(0,0,1) = −P2(0,0,−1),

dσ (0,0,1) = dσ (0,0,−1).

From these equations it follows that

dσ (0,0,0) = dσ (1,0,0) = dσ (0,0,1), (3)

P1(0,0,0) = P1(1,0,0) = P1(0,0,1), (4)

P2(0,0,0) = P2(0,1,0) = 0, (5)

or, with the definitions of [46], C10 = C30 = C01 = C21 =
C13 = C33 = 0. These equations are satisfied as long as parity
is conserved. It is conserved in electromagnetic interactions
which include bremsstrahlung. However, an admixture of the
parity-breaking weak interaction, i.e., a Z-boson exchange,
may break these equations. The mirror symmetry does not
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affect other polarization correlations which are in a general
case indeed not equal to zero [46–49]:

C00 = dσ (0,0,0), (6)

C03 = P1(0,0,0), (7)

C11 = −P2(1,0,0), (8)

C23 = P1(0,0,0) − P1(0,1,0), (9)

C31 = P2(0,0,1), (10)

C20 = 1 − dσ (0,1,0)

dσ (0,0,0)
. (11)

III. POLARIZATION CORRELATIONS FOR ARBITRARY
POLARIZED ELECTRONS

In order to derive the photon intensity and Stokes param-
eters for an arbitrary polarization of the electron beam, it is
natural to employ the density matrix approach. Within such
an approach, analysis of the bremsstrahlung process can be
traced back to the photon spin-density matrix [48]:

〈kλ|ρ̂γ |kλ′〉 =
∑

mim
′
imf

∫
d	f 〈 pimi |αuλeikr | pf mf 〉∗

× 〈 pim
′
i |αuλ′eikr | pf mf 〉〈 pimi |ρ̂e| pim

′
i〉,
(12)

which is directly related to the polarization parameters P1, P2,
and P3 as

〈kλ|ρ̂γ |k′λ〉 = 1

2
Tr(ρ̂f )

(
1 + P3 P1 − iP2

P1 + iP2 1 − P3

)
, (13)

and whose trace over the photon helicity λ = ±1 (i.e., over
the spin projection on the momentum k) is proportional to
the intensity of the emitted light. As seen from Eq. (12),
the density matrix depends not only on the amplitudes
〈 pimi |αuλe

ikr | pf mf 〉 that describe radiative transition be-
tween initial | pimi〉 and final | pf mf 〉 continuum-electron
states with asymptotic momenta pi,f and spin projections
mi,f = ±1/2, but also on the polarization of the incident
electron beam. Such a polarization is characterized by the
electron density matrix ρ̂e which, rather similarly to the photon
case (13), can be parametrized as [50]

ρ̂e = 1
2 (I + Sxσx + Syσy + Szσz), (14)

where σi , i = x,y,z, are the standard Pauli matrices, and Sx ,
Sy , and Sz are the components of the spin-polarization vector
S = (Sx,Sy,Sz). The absolute value of this vector may vary
from S =

√
S2

x + S2
y + S2

z = 0 for an unpolarized to S = 1
for a completely polarized electron beam.

By inserting expansion (14) into Eq. (12) we find that the
density matrix of the emitted photons can be written—in the
most general case—as

〈kλ|ρ̂γ |kλ′〉 = (1 − Sx − Sy − Sz)〈kλ|ρ̂γ (0,0,0)|kλ′〉
+ Sx〈kλ|ρ̂γ (1,0,0)|kλ′〉
+ Sy〈kλ|ρ̂γ (0,1,0)|kλ′〉
+ Sz〈kλ|ρ̂γ (0,0,1)|kλ′〉, (15)

where the matrix ρ̂γ (0,0,0) characterizes the bremsstrahlung
radiation for the case of an unpolarized incident beam, and
ρ̂γ (1,0,0), ρ̂γ (0,1,0), and ρ̂γ (0,0,1) correspond to complete
electron polarization in the x, y, and z directions, respectively.
Based on expression (15) one can easily calculate all the
properties of the bremsstrahlung radiation for an arbitrary
electron polarization. For example, the intensity of the emitted
photons, which is proportional to the differential (in the energy
E = h̄ck and the photon emission angle) cross section, can be
obtained as

I ∝ 1

64π2

kα

p2
i

∑
λ

〈kλ|ρ̂γ |kλ〉

= (1 − Sx − Sy − Sz) dσ (0,0,0) + Sx dσ (1,0,0)

+ Sydσ (0,1,0) + Szdσ (0,0,1) = dσ (0,0,0)(1 − Sy C20),

(16)

where, in order to derive the last line we have used the
symmetry relations (3) and the definition (11) of the correlation
coefficient C20.

In addition to the analysis of the differential cross section,
Eq. (15) may help us also to study how the polarization of
bremsstrahlung photons is affected if the incident electron
beam is (partially) polarized. Namely, as follows from Eq. (13),
the first Stokes parameter of the emitted radiation can be
written as

P1 = 〈k + 1|ρ̂γ |k − 1〉 + 〈k − 1|ρ̂γ |k + 1〉∑
λ=±1〈kλ|ρ̂γ |kλ〉 .

By inserting Eq. (15) into this expression we immediately find

P1 = 1

dσ (0,0,0)(1 − Sy C20)

× [(1 − Sx − Sy − Sz) dσ (0,0,0) P1(0,0,0)

+ Sx σ (1,0,0) P1(1,0,0) + Sy dσ (0,1,0) P1(0,1,0)

+ Sz dσ (0,0,1) P1(0,0,1)]

= P1(0,0,0)(1 − Sy) + SyP1(0,1,0)(1 − C20)

1 − Sy C20
, (17)

where again the symmetry arguments (3) and (4) were used.
In a similar way one derives the formula

P2 = SxP2(1,0,0) + SzP2(0,0,1)

1 − Sy C20
(18)

for the second Stokes parameter which, together, with P1

uniquely defines the linear polarization of the bremsstrahlung
radiation.

Equations (16)–(18) define the intensity and polarization
of the photons emitted by partially polarized electrons. In the
following we show that these equations can be understood
rather intuitively. Without loss of generality, we can assume
that the electron beam consists of electrons polarized along
or opposite to the axes x̂, ŷ, and ẑ. We also assume that the
numbers of these electrons, N↑x , N↓x , N↑y , N↓y , N↑z, and N↓z,
are such that N↑x > N↓x , N↑y > N↓y , and N↑z > N↓z. Such a
beam can be represented as three beams in pure polarized states
with numbers of electrons N↑x − N↓x , N↑y − N↓y , and N↑z −
N↓z and an additional beam of unpolarized electrons with the
number 2(N↓x + N↓y + N↓z). The proportions of the electrons
in these beams, Sx = (N↑x − N↓x)/N , Sy = (N↑y − N↓y)/N ,
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Sz = (N↑z − N↓z)/N , and S◦ = 2(N↓x + N↓y + N↓z)/N are
such that S◦ + Sx + Sy + Sz = 1. Here N is the total number
of the electrons.

The light intensity emitted by unpolarized electrons is I ◦
and the light intensities emitted by electrons polarized along
the x̂, ŷ, and ẑ axes are I x , I y , and I z, such that I ◦ + I x + I y +
I z = I . The total light intensity emitted in a given direction is
then

I ∝ dσ (0,0,0)S◦ + dσ (1,0,0)Sx

+ dσ (0,1,0)Sy + dσ (0,0,1)Sz

= dσ (0,0,0)(1 − Sy) + dσ (0,1,0)Sy

= dσ (0,0,0)(1 − SyC20).

This equation coincides with (16). The Stokes parameters P1

and P2 are by definition

P1,2 =
∑

i=◦,x,y,z

(
I i

0◦,45◦ − I i
90◦,135◦

)
I

=
∑

i=◦,x,y,z

P i
1,2

I i

I

= P1,2(0,0,0)
S◦

1 − SyC20
+ P1,2(1,0,0)

Sx

1 − SyC20

+P1,2(0,1,0)
1 − C20

1 − SyC20
Sy + P1,2(0,0,1)

Sz

1 − SyC20
.

It is easy to see that these equations are equivalent to (17)
and (18).

IV. EXPERIMENTAL TECHNIQUE

We did the measurement at a test stand of a 100 keV source
of polarized electrons at Technische Universität Darmstadt,
Germany [51]. A GaAsP superlattice strained-layer photo-
cathode produced longitudinally polarized electrons when it
was illuminated by circularly polarized laser light of 808 nm
wavelength. Circular light polarization was attained by a
combination of a linear polarizer and a Pockels cell. The
helicity of light was switched from positive to negative by
changing the bias polarity of the Pockels cell. This rotated the
electron spin by 180◦, while preserving all other experimental
conditions such as the beam trajectory, degree of polarization,
etc. The electrons were accelerated electrostatically to 100 keV
and the beam intensity was 0.1 μA up to 1 μA.

The degree of polarization of the electron beam was
obtained by the Mott scattering polarimetry technique [52,53].
Since Mott scattering is sensitive to transverse spin compo-
nents only, the electron spin was rotated from the longitudinal
to the transverse direction with the help of a Wien filter
[54]. The electrons, elastically scattered in a gold foil, were
detected at 120◦ relative to the beam direction by four silicon
surface-barrier detectors mounted at azimuthal angles such
that they formed a square with two sides parallel and the other
two sides perpendicular to the reaction plane. The electron
beam polarization was deduced from the measured left-right
asymmetry with respect to the plane defined by the electron
momentum and spin. Effects of multiple scatterings were con-
trolled by measurements with targets of different thicknesses
(40–500 nm) and an interpolation to zero thickness; see
Ref. [51]. The measured degree of electron polarization was
S = 0.75 ± 0.04. In order to obtain the maximum degree of

transversely polarized electron beam, we tuned the Wien filter
to produce the maximum left-right asymmetry of the electron
scattering intensities. The maximum asymmetry is obtained
in the case when the electron spin is oriented perpendicular
to the scattering plane in the electron rest frame. In contrast
to that, in the laboratory frame the transverse electron spin
polarization cannot be defined universally, because due to the
Lorentz transformations it depends on the observation angle.

Compton and Rayleigh scattering techniques were used to
measure the photon linear polarization. The photons scatter
predominantly perpendicular to the polarization plane. Their
angular distribution carries information on both the degree
and the angle of the incoming photon linear polarization. In
the case of Compton scattering it is described by the well
known Klein-Nishina Compton scattering differential cross
section [22],

dσ

d	
∝

(
h̄ω′

h̄ω

)2(
h̄ω′

h̄ω
+ h̄ω

h̄ω′ − 2 sin2 ξ cos2 ϕ

)
. (19)

Here h̄ω and h̄ω′ are the incoming and scattered photon
energies, and the angles are explained in Fig. 2. This
polarimetry principle has been used since 1950 [55]. However,
our realization of it allows for a simultaneous photon detection
at several scattering angles and thus has high efficiency and
resolution. In addition, the Rayleigh scattering technique [56]
was used.

A high-purity segmented planar germanium detector was
used to observe the scattered photons. Its active area of
5 × 5 cm2 is segmented into a 5 × 5 matrix of square pixels.
Each pixel is equipped with an individual charge-sensitive
preamplifier and a 100 MHz sampling analog-to-digital con-
verter. The sampled detector signals were analyzed using a
moving window deconvolution algorithm, yielding for the
experimental conditions an energy resolution of 2.7 keV at

FIG. 2. Scheme of the experimental setup (the shielding and the
scattering target are shown in section). The electron spin was oriented
within the (x,z) plane at an angle α with respect to ẑ. The photons
are scattered at the polar angle ξ with respect to their initial direction.
The azimuthal photon scattering angle with respect to the reaction
plane (x,z) is denoted by ϕ. Detector segments used in analysis are
indicated in gray. The photons emitted in the (y,z) at the angle θ2

were detected by two detectors denoted “up” and “down.”
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60 keV. The thickness of the detector is 2 cm. Its vacuum
window is a combination of 0.7 mm aluminum and 2 mm
epoxy. It resulted in the detector’s absolute efficiency of nearly
100% at 90–100 keV.

Electrons collided with a free-standing gold-foil target of
200 nm thickness (390 μg/cm2) and produced bremsstrahlung.
The detector was placed at a distance of 15 cm from the gold
target (see Fig. 2) behind a 3-mm-thick vacuum chamber
quartz window (not shown). The window transmission at
90–100 keV was greater than 86%. GEANT4 Monte Carlo
simulations [57,58] have shown that the influence of photon
scattering in the window on photon linear polarization was
negligible. Lead walls with a thickness of 1 cm shielded
the detector from unwanted x rays. The bremsstrahlung was
collimated by a 1 cm round opening in the shield, which
selected photons emitted at an angle of θ1 = 90◦ ± 3◦ with
respect to the initial electron beam direction. The detector
was placed perpendicular to the collimated photon beam
and its center was aligned with the photon beam axis. A
photon scattering target has been placed behind the collimator
at a distance of 2.7 cm in front of the detector’s crystal.
With this arrangement the outer segments, used in the data
analysis, could observe the scattered photons only. The photon
scattering angle was 20◦ < ξ < 48◦. The inner segments were
not read out because they were irradiated by unscattered x rays.

Two variations of the Compton polarimetry techniques
exist. Both of them measure the azimuthal distributions of
the Compton scattering events. In order to unambiguously
reconstruct these events, i.e., to separate them from the
background and to determine the scattering direction, one
technique uses a scatterer which is a detector itself—the
“active” scatterer. In this technique the scattered photons and
the recoiled electrons are detected in coincidence in different
segments of the segmented detector [59,60]. The energies of
the scattered photon and the recoiled electron help in filtering
the ambient background radiation. Therefore this technique
has excellent background filtering capabilities. However, at
x-ray energies below 100 keV most of the events are direct
photoelectric absorptions of the incoming photons or Compton
scatterings and photoabsorptions in the same pixel. This limits
the maximum allowed incoming photon flux, because these
events are not analyzed, but are still registered by the data
acquisition system. Due to these limitations we decided against
using this technique.

Instead we used the other variation of the Compton
technique. In this technique the scattering target is not a
detector; thus the recoiled electrons are not detected. However,
the geometry of the setup, i.e., the shielding, collimation, and
placement of the segmented detector, selects the scattered
events. We selected this approach for its ability to work
with high photon rates and its usefulness at an energy of
≈100 keV. We used the material and the thickness of the target
that are optimum for this energy region. An iron scatterer
of 5 mm thickness effectively photoabsorbed photons with
energies below ≈75 keV and scatter the others. In addition
it produced a significant proportion of Rayleigh-scattering
events. The outer segments detected the photons scattered at
different azimuthal angles, and we extracted the polarization
from the observed angular distribution. Since every registered
event was the scattering event, the data acquisition system

ϕ

(a) (b)

FIG. 3. (a) Measured and simulated spectra. Contributions of
Compton and Rayleigh scatterings as well as background are shown
separately. The spectral interval used in the analysis is indicated.
(b) Integrated number of scattering events in the indicated spectral
interval in each detector pixel as a function of the azimuthal scattering
angle ϕ.

was not loaded by the overwhelming majority of direct
photoabsorption events. Thus much higher photon flux could
be accepted and high-statistics data were collected for each
electron spin orientation in only a few hours of beam time.

Two more scintillator detectors were mounted at the setup in
order to observe bremsstrahlung photon emission asymmetry
by transversely polarized electrons. The details of this part of
the setup are discussed in Sec. V D.

V. DATA ANALYSIS

The high-energy part of the photon spectrum is shown in
Fig. 3(a). Due to Compton scattering in iron and the imperfect
energy resolution of the detector, the bremsstrahlung spectrum
has no sharp cutoff at the energy of 100 keV. However, note that
this is not an indication of “thick target” bremsstrahlung [61];
the cutoff was present in the spectrum of the inner segments
before the Compton scattering target was installed. With a total
event rate of ≈3000 counts per second, ambient background
events constituted less than 1% of the spectrum, and no
pileup was seen. The contributions of Compton and Rayleigh
scatterings have been determined via Monte Carlo simulations
using the GEANT4 toolkit. Compton scattering accounts for
78% of events in the indicated interval.

Note that due to the electron recoil in Compton scattering

h̄ω′ = h̄ω

1 + h̄ω
mc2 (1 − cos ξ )

, (20)

the Compton part of the measured spectrum is shifted to lower
energies. The elastic Rayleigh scattering is therefore dominant
at energies higher than 96 keV. The analysis of this part of the
spectrum also yields polarization information. The application
of the Rayleigh polarimetry technique for bremsstrahlung is
presented in [22] and will not be discussed further in this
article.

The radiation background originated from the
bremsstrahlung of the electrons which elastically scattered
in the gold target and hit the chamber quartz window.
Except for this window the chamber was covered by
lead. Monte Carlo simulations have shown that 3% of all
electrons hit the window. We adopted the following model
to calculate the emitted background radiation. Electrons
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lose energy as they penetrate through quartz. Their energy
was calculated as a function of the penetration depth using
the continuous-slowing-down approximation [62]. For each
electron energy the penetration depth provided an effective
thickness of the quartz layer as a bremsstrahlung target.
And for each such layer the bremsstrahlung spectrum was
calculated and summed up. The background spectrum is
shown in Fig. 3(a). Its contribution to the selected spectral
interval was 7%. At lower energies its contribution was larger.
Therefore we restricted our further analysis to photon energies
higher than 90 keV.

The total number of scattered photons I in the selected
interval was counted; see Fig. 3(b) for each segment of the
detector. In each segment the scattered photons were observed
at a different azimuthal angle ϕ. The photon polarization
was extracted from the scattered photon angular distributions
I (ϕ). The intensity distribution depends on polarization [see
Eq. (19)] as well as on the scattering geometry and the
solid angles of the individual segments. The latter two
effects can be canceled by an intensity normalization J (ϕ) =
I (ϕ+90◦)+I (ϕ+270◦)

I (ϕ)+I (ϕ+180◦) , which uses the detector’s fourfold rotational
symmetry; see Fig. 4(a). The same normalization minimizes
the the effects of a possible slight off-axis misalignment of the
collimator.

As a result of the Compton and Rayleigh scattering cross
sections the scattered photon azimuthal angular distribution
was F (ψ,M) = 1−M cos2(ψ+90◦)

1−M cos2(ψ) . Here ψ is the azimuthal angle
of photon scattering with respect to the photon polarization
plane, and M is a modulation amplitude. It depends on the
degree of polarization and the polar angle ξ between the initial
and scattered photon directions [56,59]: M = 2 sin2 ξ/( h̄ω′

h̄ω
+

h̄ω
h̄ω′ ); see Eq. (19). Here h̄ω′ depends also on ξ ; see Eq. (20).
The photon linear polarization was azimuthally tilted by an
angle χ with respect to the reaction plane. In addition the
detector was also tilted by an angle ϕ0 = −2.81◦ with respect
to the same plane. The azimuthal angular distribution of the
scattered photons is therefore F (ϕ + ϕ0 + χ,M). By fitting
this function to J (ϕ) the tilt angle χ can be extracted. However,
more accurate results are obtained by adopting a procedure
described in the next section.

ϕ (deg) ϕ (deg)

Jα=90º / Jα=270º

Jα=90º / Junpol

Jα=270º / Junpol

Jα=90º

Junpol

Jα=270º

(a) (b)

FIG. 4. (a) Angular distribution of the normalized scattering
intensity for scattering of bremsstrahlung from the spectral interval
a from the electrons spin polarized collinearly [Jα=90◦ (ϕ)] and
anticollinearly [Jα=270◦ (ϕ)] to the x axis and unpolarized. The errors
are statistical. (b) Intensity ratio Jα=90◦ (ϕ)/Jα=270◦ (ϕ).

A. Polarization correlation P2(1,0,0)

The polarization correlation P2(1,0,0) = −C11 describes
the change of the second Stokes photon polarization parameter
P2 as a function of the transverse electron spin component
within the reaction plane. Since P1(1,0,0) = P1(−1,0,0), the
total degree of photon linear polarization is the same for
oppositely oriented spins of the electron beam, i.e., for the spin
orientations collinear (α = 90◦) and anticollinear (α = 270◦)
to x̂. However, the angles of polarization are different by 2χ .

The angular shift 2χ between the measured normalized
distributions Jα=90◦ (ϕ) and Jα=270◦ (ϕ) is related to the Stokes
parameters by tan 2χ = P2/P1. These angular distributions are
shifted by the angle χ to the opposite sides of the reaction plane
and their modulations are the same. Therefore, the averaged
distribution [Jα=90◦ (ϕ) + Jα=270◦ (ϕ)]/2 must be centered with
respect to the reaction plane. The value of M = 25% was
obtained by fitting of F (ϕ + ϕ0,M) to this distribution.

To cancel the effects of geometric differences of individual
segments, the scattering angular distributions were normal-
ized, Jα=90◦ (ϕ)

Jα=270◦ (ϕ) ; see Fig. 4(b). The modulation of the normalized
distribution is a result of nonzero χ , i.e., it is zero for χ = 0.
To extract χ , the normalized distribution has been fitted with
a function F (ϕ+ϕ0+χ,M)

F (ϕ+ϕ0−χ,M) , treating χ as a single free parameter.

From this fit the value C11
C03

= −P2(1,0,0)
P1(0,0,0) = − P2(S,0,0)

SP1(0,0,0) = − tan 2χ

S

is obtained. The results are shown in Table II. Average initial
photon energies were obtained via Monte Carlo simulations.

B. Thick target effects

Multiple electron scattering in the gold target distributes
the individual electron directions. If one assumes a pure
Rutherford scattering, this distribution is axially symmetric
with respect to the initial electron momentum direction. The
individual bremsstrahlung reaction planes, defined by the
electron and the photon momenta, are also distributed. Since
the individual photons are linearly polarized relative to their
reaction planes, the average degree of photon polarization is
reduced. However, due to the axial symmetry of the multi-
ple scattering the average electron direction before photon
emission coincides with the direction of the electron before it
entered the target. Because of this the average reaction plane
is unaffected by the multiple scattering. Therefore the angle of
photon polarization is also unaffected.

In addition to that, Mott scattering causes a deflection of the
average electron beam direction perpendicular to the reaction
plane. This deflection depends on the sign and the degree of

TABLE II. Polarization correlations measured at the hard-end
interval 95.5 ± 2.4 keV of the photon spectrum observed at θ =
90◦ ± 3◦. The 100 keV electrons collided with a gold (Z = 79) target.
The theoretical predictions for the exact hard end of the spectrum are
shown for comparison. The error intervals ±σ correspond to two
standard deviations. The photon polarization tilt angle χ0 is given for
100% polarized electrons.

Polarization correlation Experiment Theory

C11
C03

= − P2(1,0,0)
P1(0,0,0) = − tan 2χ0 −0.23 ± 0.03 −0.229

C31
C03

= P2(0,0,1)
P1(0,0,0) = tan 2χ0 0.073 ± 0.014 0.069
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electron polarization. It also depends on the thickness of the
target and should vanish with infinitely thin targets. Due to
the net beam deflection the polarization plane is tilted with
respect to the reaction plane. This tilt, however, is not related
to the tilt caused by the bremsstrahlung polarization correlation
P2(1,0,0). These two distinct effects can be deconvoluted
in a series of measurements with gold targets of different
thicknesses. However, Monte Carlo simulations show that the
thickness of the target used in the present experiment leads
to a negligible Mott scattering effect [63]. Hence, only one
measurement was carried out.

C. Polarization correlation P2(0,0,1)

The polarization correlation P2(0,0,1) = C31 describes the
change of the second Stokes photon polarization parameter
P2 as a function of the longitudinal electron spin component.
Similarly to the previous case, P1(0,0,1) = P1(0,0,−1) holds,
and the total degree of photon linear polarization is the
same for oppositely oriented spins of the electron beam,
i.e., for electron beams polarized collinearly (α = 0◦) and
anticollinearly (α = 180◦) with respect to their momentum
direction. The angular shift 2χ between the measured dis-
tributions Jα=0◦ (ϕ) and Jα=180◦ (ϕ) is related to P2(0,0,1) by
tan 2χ = P2/P1. The details of the analysis are identical to
the case of the polarization correlation P2(1,0,0). They are
also described in [22]. From this measurement the value
C31
C03

= P2(0,0,1)
P1(0,0,0) = P2(0,0,S)

SP1(0,0,0) = tan 2χ

S
is obtained.

The tilt angle χ was measured with a precision of σ = 0.3◦.
This is a significant achievement of Compton polarimetry.
The uncertainty is dominated by statistics. Such precision is
achieved in only a few hours of beam time and holds the
promise of further improvements with longer measurements.

D. Photon emission asymmetry from transversely
polarized electrons

The asymmetry of bremsstrahlung photon emission with
respect to the plane defined by the electron momentum and
the electron spin, C20 = − dσ (0,1,0)−dσ (0,−1,0)

dσ (0,1,0)+dσ (0,−1,0) , is a well-known
phenomenon. Within this experiment it was observed and
applied for electron beam polarimetry. For reasons described
below, the results obtained—or the values deduced for the
correlation C20—are not competitive with those of earlier
published works [31–35].

Two scintillating photon detectors were used to measure the
bremsstrahlung spectra. They were placed in the (y,z) plane at
the angle θ2 ≈ 120◦. A LaCl3(Ce) scintillator was mounted
above the (x,z) plane (designated “up”) and a LaBr3(Ce)
scintillator was mounted below it (designated “down”). Copper
plates of 5 mm thickness were mounted in front of the
scintillators in order to reduce the count rate at low photon
energies. The scintillators were equipped with photomultiplier
tubes, preamplifiers, and 100 MHz sampling analog- to-digital
converters. The energy resolutions of both scintillators were
identical: 15 keV when measured at 60 keV. The spectra ob-
served with these detectors are shown in Fig. 5(a). The spectral
interval used for the intensity measurement is indicated.

The light output of the scintillators quickly drifted in
time due to temperature variations. The closed experimental

(a) (b)

(c)

FIG. 5. (a) Spectra observed by the LaCl3(Ce) (up) and the
LaBr3(Ce) (down) scintillators. The corresponding integrated inten-
sities in the marked energy interval are Iup and Idown. (b) The intensity
ratio J = Iup/Idown as a function of time. The electron beam polariza-
tion was changed every minute repeatedly as [(Sx,0,0) ⇒ (0,0,0) ⇒
(−Sx,0,0)]; an example cycle is marked. (c) The normalized intensity
ratio 1

2 (Jcoll − Janticoll)/(Jcoll + Janticoll) as a function of time.

room heated up by several degrees during measurements and
quickly cooled during frequent interruptions. This resulted
in drifts of the x-ray energies measured by the scintillators,
which induced a variation of the intensity in the selected
spectral interval. In order to minimize this effect, the following
measurement technique was adopted. Three measurements
of photon intensities Iup and Idown were performed with the
electron beam polarized as (Sx,0,0), (0,0,0), and (−Sx,0,0).
Each measurement took 1 min, and this cycle was repeated
several times. The ratio of the photon intensities in these cycles,
J = Iup/Idown, is shown in Fig. 5(b). The average ratio in
each of these cycles was used for normalization. The average
modulation is

1

2

〈
Jcoll − Janticoll

Jcoll + Janticoll

〉
≈ dσ (Sx,Sy,Sz) − dσ (−Sx,Sy,Sz)

dσ (Sx,Sy,Sz) + dσ (−Sx,Sy,Sz)

= −C20Sx ; (21)

see Fig. 5(c). This is an approximate expression for small C20.
The value obtained for C20 = 0.035 ± 0.010 is signifi-

cantly smaller than the predicted value C theor
20 ≈ 0.10. This

disagreement originates from the lack of shielding of the
scintillators against unwanted ambient x rays. Most of this
x-ray ambient background, scattered across the experimental
room, was produced in the electron beam dump located
50 cm downstream of the gold target. It contributed to
the scintillators’ spectra and thus reduced the electron-spin-
dependent intensity modulation. However, despite this, the
observed modulation is proportional to Sx and thus can be
used for electron beam polarimetry.

The germanium segmented detector response was free from
the temperature-dependent drifts and it was well shielded from
the unwanted ambient x rays. Thus accurate measurements of
C20 should in the future be done with shielded semiconductor
detectors or temperature-stabilized scintillating detectors.

VI. CLASSICAL INTERPRETATION

A. Polarization correlations P2(1,0,0) and P2(0,0,1)

The observed rotation of photon linear polarization can
be understood in terms of classical physics. It indicates a
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spin-induced dynamics of the relativistic electron in scattering
from a Coulomb potential [22]. The classical approximation
for Coulomb scattering is valid for energies T � 20Z2 eV
[64]. At higher energies quantum-mechanical effects become
important. This happens when the distance of the closest
approach is less than half the de Broglie wavelength λ =
2πh̄/p for electron scattering through an angle of 90◦. For
gold (Z = 79) this yields T � 125 keV. However, the classical
results may be qualitatively valid up to even higher energies
of MeV [65].

In the following we will present a classical explanation
for the electron spin effects on the emitted bremsstrahlung.
A spinless particle in a central Coulomb potential moves
on a trajectory contained within a single plane defined by
the particle’s conserved angular momentum L = r × β. At
low energies the spin-induced forces are small and they do
not deflect the trajectory out of this plane. At relativistic
energies, on the other hand, they contribute to the dynamics
considerably. In the electron rest frame the moving nucleus
induces a magnetic field H perpendicular to the scattering
plane. The electron spin precesses in this field [66]. This
precession is one of the aspects of the spin-orbit interaction.
By making the approximation of a uniform magnetic field,
we apply the Thomas–Bargmann-Michel-Telegdi equation
[66,67] for the torque on the spin:

Ṡ = S × [E × β]
e

mc

(
g − 2 + 1

γ + 1

)
. (22)

Here β is the electron velocity, g = 2.001 16 is the electron
gyromagnetic ratio, and E is the Coulomb field of the
nucleus; see Fig. 6. Since the total angular momentum must be
conserved, the orbital momentum also precesses: Ṡ = −L̇. As
a result the electron moves out of the initial scattering plane
and its trajectory from being two dimensional becomes three
dimensional.1

The spin precession is defined by the electric field of the
nucleus. The same field deflects the electron. The net spin
precession thus depends on the electron scattering angle. We
describe the electron scattering by the Lorentz force:

β̇ = β × [E × β]
e

mc

γ

γ 2 − 1
. (23)

Equations (22) and (23) can be rewritten as Ṡ = S × �S and
β̇ = β × �β , where �S and �β are the angular velocities of
the electron spin and the electron momentum vectors, which
are related to each other by

�S = [(g − 2)(γ + 1) + 1]

(
1 − 1

γ

)
�β . (24)

For the electron energy of 100 keV Eq. (24) yields �S =
0.16�β , and for an electron scattering angle of 90◦ the angle of
the spin rotation is 15◦. For our energy and geometry S ≈ L.
Therefore the orbital momentum L and the scattering plane
rotate also by 15◦.

1The exact analytical solution for the electron trajectory in the
nonrelativistic case is presented in [68]. The relativistic case is
described in [69].

Z
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FIG. 6. (a), (b) Classical description of radiation emitted in
Coulomb scattering. The direction of the emitted photon is given by
a unit vector n; the electron velocity is β · c; the spin of the electron
is denoted by S and the electron angular momentum by L. The spin
precesses in the magnetic field H motionally induced by the nucleus
in the electron rest frame. (b) It induces the precession of the angular
momentum L̇, which rotates the plane of the electron motion. The
dashed line indicates the initial scattering plane.

The direction of the electron acceleration β̇ lies within the
scattering plane and defines the polarization of the radiated
wave [70]:

E(r,t) = e

c

n × {(n − β) × β̇}
(1 − β · n)3r

∣∣∣∣
ret

, (25)

where n is a unit vector in the direction of the emitted photon.
Since the instantaneous scattering plane turns out of the initial
scattering plane the photon polarization turns together with it.

In this experiment we were interested in how the scattering
plane is oriented at the moment of photon emission. The
scattering plane is defined by two vectors—by the electron
direction at this moment and its acceleration direction. The
first vector coincides with the averaged photon emission
direction. The photons are peaked in the electron direction due
to the relativistic Lorentz angle transformation. This can be
seen in Eq. (25). The second vector, the electron acceleration,
coincides with the photon polarization vector, as also seen in
Eq. (25).

We observe that the scattering plane, defined in this way,
does not contain the initial electron direction. This is a direct
indication of the rotation of the scattering plane, or rotation of
the orbital momentum L. According to the above arguments,
the angle of rotation is fully determined by just the direction
of the emitted photon and the incoming electron energy; see
Eq. (24). It does not depend on the photon energy. One of the
recent measurements confirms this [23].

In our arguments we assumed peaking of the photon
emission along the electron direction just before the photon
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emission. The perfect alignment of these directions occurs
only in an ultrarelativistic situation. For the semirelativistic
regime of 100 keV we should consider the distribution of the
emitted photons with respect to the electron direction dP

d	
(θ,φ)

(the Poynting vector), where θ is the angle between β and
n [70] and φ is the azimuthal angle. The averaged projection
of the emitted photon direction on the electron direction before
the photon emission β · n/β describes how well the geometry
is defined for a given electron energy (here β/β is a unit vector
in the direction of the electron momentum):

β · n
β

=
∫

cos θ dP
d	

d	∫
dP
d	

d	
= β. (26)

Here we used an approximation of β ⊥ β̇ to simplify the
analytical expression for the Poynting vector [70]. The
geometry is perfectly defined in the relativistic case β → 1
and completely undefined in the nonrelativistic β → 0. In
particular it indicates that no rotation of linear polarization is
expected for nonrelativistic electrons. For 100 keV this yields
β · n/β = β = 0.55 and thus the net polarization rotation
angle is reduced to 8◦.

This simplified classical model thus predicts the order of
magnitude of the rotation angle of linear polarization. The
experimental angle for the fully transversely polarized electron
beam is 6.5◦. In this case, for the photon emission at 90◦,
L̇ is perpendicular to n (see Fig. 6), and the rotation of
the scattering plane directly corresponds to the rotation of
the photon polarization plane. For longitudinally polarized
electrons, on the other hand, L̇ is along n and thus the rotation
of the scattering plane has a much smaller effect on the rotation
of the photon polarization. This explains why we observed a
smaller angle of photon polarization of 2.1◦ in this case.

With the help of this model we conclude that in this experi-
ment we have observed that the electron scattering trajectory is
not confined to a single scattering plane. Such an observation
is not possible in a typical scattering experiment, since the
observable macroscopic electron directions before and after
the collision always lie in one plane. In contrast to those
experiments we probed the orientation of the scattering plane
during the collision by using the bremsstrahlung photons’
linear polarization. This model also explains why a nonzero
electron spin component perpendicular to the reaction plane
appears in the case of scattering (without photon emission) of
electrons initially polarized within the scattering plane, as was
observed in earlier experiments [71].

B. Polarization correlation dσ (0,1,0)

When the electron spin is oriented perpendicular to the
scattering plane the spin-induced force is different from the
one described in the previous sections. This force is confined
to the electron scattering plane. Therefore, this plane contains
the whole electron trajectory. No spin precession is involved.
On the other hand the nonuniformity of the Coulomb field
plays a major role.

The left-right asymmetry of Mott scattering with respect
to the plane defined by the electron spin and the momentum
directions is well understood [24,25]. The magnetic field H ,
induced by the nucleus moving in the rest frame of the electron,

produces an extra component to the scattering potential, −μH .
The sign of this component is different for the electrons
scattering to the left and to the right, thus producing the
scattering asymmetry.

The spin-induced force is the result of the nonuniformity
of this potential, −μ d H

dx . This force is the same as in the
Stern-Gerlach experiment with a nonuniform magnetic field.
It was known that it can separate neutral particles into two
beams by their spin orientation but cannot do so for charged
particles. In the latter case the spin-induced force is much
smaller than the Lorentz force. On the other hand, in the case
of scattering on the Coulomb potential, the nonuniformity of
the field is large, which produces a strong spin asymmetry in
Coulomb scattering. And due to the strong angular correlation
between the scattered electron and the emitted photon, the
latter is also asymmetric with respect to the spin plane.

VII. FULLY RELATIVISTIC CALCULATIONS

In addition to the experimental results, Table II also displays
the theoretical prediction for the tilt angle χ obtained for the
photon high-energy limit where the incident electron transfers
all its kinetic energy to the photon, i.e., where h̄ω = Tkin =
100 keV. To evaluate χ for this particular energy we have
extrapolated the results of the radiative recombination (RR)
polarization calculations towards the continuum threshold.
Such an approach for computing the polarization properties
of bremsstrahlung radiation from corresponding RR data has
been justified for the tip (threshold) region in a number of
works (see, for example, Ref. [43], and references therein).
In the present contribution, the polarization of the RR photons
emitted due to the capture of longitudinally polarized electrons
into bound (high-n) states has been calculated within the fully
relativistic theory. Since this theory has been applied very fre-
quently in studying various RR properties, we will not discuss
it here and instead refer the reader to Refs. [72–75]. As seen
from Table II, the theoretical value of the tilt angle χ , obtained
from the extrapolation of the rigorous RR calculations to the
tip region, is in good agreement with the experimental findings.

VIII. ELECTRON BEAM POLARIMETRY

We have shown that bremsstrahlung is sensitive to longitu-
dinal as well as transverse electron spin components. We now
apply it to electron beam polarimetry. The minimal detector
setup consists of a photon linear polarimeter mounted within
the (x,z) plane and two conventional photon detectors mounted
within the (y,z) plane (the axis ẑ is the beam direction), just
like the setup of our experiment (see Fig. 2). With this setup
all three components of the electron beam polarization can
be determined.2 The degree of photon linear polarization can
potentially give access to the ŷ component of the electron
beam polarization. This effect, however, up to now has not
been observed experimentally. On the other hand, the same ŷ

2We note that one can also measure longitudinal as well as transverse
electron spin polarizations by means of circular polarimetry of
bremsstrahlung [46,76,77]. This technique, however, is beyond the
scope of this paper.
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component can be measured by two additional conventional
photon detectors, mounted within the (x,z) plane, via the
left-right asymmetry of the photon emission.

This polarimetry method has the following properties. Elec-
tron polarization is completely determined by bremsstrahlung
radiation; thus it requires a minimum vacuum setup consisting
of only a foil target and a few x-ray windows. It works with
intense electron beams (μA), typically used at accelerators.
In contrast to that the Mott scattering technique works with
strongly reduced currents (nA). It should work efficiently in
the energy range of 100 keV up to a few 10 MeV.

A. Theoretical predictions

The optimum conditions for the measurement are realized
at the hard-photon end of the spectrum. There the polarization
correlations typically reach their maxima [47–49]. This region
makes the photon detection free from a Compton-induced
background. Compton scattering inside the detector produces
a low-energy tail in the measured spectrum. This tail is
indistinguishable from the true bremsstrahlung continuum. In
order to suppress it, an active anti-Compton shielding or γ -ray
tracking [78,79] can be employed. However these methods are
technically complicated. On the other hand the very end of the
spectrum is always free from this background.

Theoretical predictions for the double-differential cross
section (k/Z2)d2σ/(dkd	k) and the Stokes parameters P1

and P2 at the hard-photon limit for gold are shown in Fig. 7.
The differential cross sections favor observations at forward
angles. The maximum of the left-right asymmetry of photon
emission from transversely polarized electrons dσ (0,0,0) −
dσ (0,1,0) = dσ (0,0,0)C20 is also shifted to forward angles
θ2. This asymmetry is used to measure the Sx with a pair of
conventional detectors arranged in the (y,z) plane; see Eq. (16).
Similarly, with two additional detectors in the (x,z) plane one
can measure the Sy component.

The photon linear polarimeter determines the Stokes pa-
rameters P1 and P2. The Stokes parameter P1 is sensitive only
to Sy ; see Eq. (17). The Stokes parameter P2 is sensitive to
Sx , Sz, and Sy ; see Eq. (18). But since Sx and Sy are already
determined, Sz can be deconvoluted. Thus all three spin
components are measured independently.

The sensitivity to the electron spin is highest at one
particular photon emission angle θ0 (0◦ < θ0 < 180◦) where
P1(0,0,0)(θ0) = 0. For energies higher than a few hundred keV
such an angle always exists. At this angle unpolarized electrons
emit unpolarized photons. Polarized photons immediately
indicate polarized electrons. The electron polarization changes
the degree of photon linear polarization typically by several
percent up to several tens of percent; see Fig. 7. Such strong
correlations allow all three components of the electron spin to
be determined with a precision of a few percent within hours
of beam time.

B. Proof-of-principle measurement

For the measurement we used the same setup and the same
data analysis technique as described in the previous sections.
We limited ourselves to the situation when the electrons are
polarized within the reaction plane. The most general situation
of arbitrary polarization we leave for the future.

Figure 8 shows the measured photon polarization angle
χ as a function of the degree of electron beam polarization
for the cases of transverse and longitudinal orientations of
electron spin. The values for the solid circles are calculated
by comparing the scattering intensity distributions for the
photons produced by polarized and unpolarized electron
beams, Jα=90◦/Junpol and Jα=270◦/Junpol; compare Figs. 4(a)
and 4(b). They lie on a straight line which for mirror symmetry
reasons crosses the origin of the coordinates. However, the
slope of this line can be determined more accurately from the
ratio Jα=90◦/Jα=270◦ ; see the solid and the open squares in
Fig. 8.

With knowledge of the electron spin orientation (the two
angles of the electron spin in the polar coordinates), the degree
of electron beam polarization can be determined with the
help of theoretical values for C31 and C11. For longitudinally
polarized electrons the degree of beam polarization is extracted
as S = 0.72 ± 0.14 and for transversely polarized electrons
as S = 0.75 ± 0.09. The error intervals correspond to 2σ .
These values agree well with the value obtained with the Mott
technique, S = 0.75 ± 0.04.

The accuracy can be increased significantly with the same
level of statistics by measuring the photon polarization at
θ ≈ 140◦ where C11 is larger. Moreover, it will further increase
(together with the polarization correlations C11 and C31) at
higher electron energies. Nevertheless, in order to measure
the degree of electron beam polarization without knowledge
of the spin orientation, the technique should include a
simultaneous measurement of the photon emission asymmetry
C20.

In order to demonstrate these principles, the electron spins
were oriented within the (x,z) plane (Sy = 0) at an angle α

with respect to the electron beam direction. This angle was set
by a Wien filter. Figure 9(a) shows the experimental values for
the angle of photon linear polarization, χ (α). The solid curve
is a theoretical prediction for χ (α):

χ (α) = 1

2
arctan

[
S

(
P2(001)

P1(000)
cos α + P2(100)

P1(000)
sin α

)]
,

where S is the degree of electron beam polarization. Fig-
ure 9(b) shows the experimental values of the photon emission
asymmetry k(α) = (Jpol − Junpol)/(Jpol + Junpol), where J =
Iup/Idown. The solid curve is the function

K(α) = C∗
20S sin α,

where C∗
20 is the polarization correlation parameter measured

in this experiment; see Sec. V D. These two experimental plots
are combined in Fig. 10 as values of χ versus K . The ellipse
represents the theoretical function χ (α) plotted versus K(α).
It is formed when the total degree of electron polarization S is
preserved while the angle of electron polarization α is varied.
Each dot on this ellipse corresponds to a specific value of α.
For a single measurement of χ and k the values of Sx and Sz

can therefore be deconvoluted.
In a general case when the electron spin S is not confined

to the (x,z) plane the degree of the electron polarization will
change as a function of Sy due to the nonzero correlation
parameter C23 = P1(0,0,0) − P1(0,1,0). The measurement
of the degree of electron polarization should lead to the
determination of P1 and therefore to the determination of Sy .
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FIG. 7. Theoretical predictions for bremsstrahlung at the hard-photon end of the spectrum for the double-differential cross section
(k/Z2)d2σ/(dkd	k) and the Stokes parameters P1 and P2 and polarization correlation C20. The calculations for the electron beam energies
100 keV, 500 keV, and 2 MeV are performed fully relativistically [48], and the results for 5 and 15 MeV are obtained within the Sommerfeld-Maue
approximation [47,49].

All three components of the electron spin can therefore be
independently determined.

However, the polarization correlation C23 has not been mea-
sured so far. Alternatively, one can determine Sy by measuring
the photon emission asymmetry with two (nonsegmented)
detectors arranged within the (x,z) plane. The alternative setup
to determine all three electron spin components would consist
of four nonsegmented detectors arranged at the azimuthal
angles 0◦, 45◦, 90◦, and 135◦ and the polar angle θ such that

the product C20( dσ
dkd	k

)2 is maximized. These detectors would
measure Sx and Sy . Together with these detectors the photon
polarimeter would measure Sz.

The efficiency of this polarimetry technique is signif-
icantly lower than that of the Mott scattering technique.
Mott polarimeters operating with solid targets usually require
electron beam currents of the order of nA, whereas for the
bremsstrahlung polarimeter a current of at least 1 μA would
be needed. This will limit the possible applications.
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χ

FIG. 8. The photon polarization angle χ as a function of the
degree of transverse electron beam polarization (solid symbols,
solid line) and longitudinal electron beam polarization (open sym-
bols, dashed line). The error intervals correspond to two standard
deviations.

IX. CONSEQUENCES FOR OTHER PHYSICS AREAS

A. Photoelectric effect

Since the physics phenomena of radiative recombination,
the photoeffect, and bremsstrahlung at the hard-photon limit
are closely related to one another, the present measurement of
the bremsstrahlung polarization correlations contributes to the
studies of the photoelectric effect and radiative recombination.

Bremsstrahlung at the hard-photon limit is a time reversal of
the photoeffect [41–43]. Thus our results with longitudinally
polarized electrons can be considered as an observation of
a so far experimentally unknown phenomenon—production
of longitudinally polarized electrons by photoionization of
unpolarized atoms with linearly polarized photons. In the
terminology of Pratt et al. this is described by the correlation
parameter C23 [80].

Similarly, the results with transverse polarized electrons
indicate a previously experimentally unknown production of
transversely polarized electrons by linearly polarized photons.
However, this correlation is between the electrons polarized in
the reaction plane and photons polarized at 45◦ to the reaction
plane [80]. Pratt et al. described it by the correlation parameter
C21.

χ 

α α 

(a) (b)

FIG. 9. The photon polarization angle χ (a) and the photon
up-down emission asymmetry K (b) as functions of electron spin
orientation angle α for electrons polarized within the reaction plane
(Sy = 0). The solid curves are the predictions for 75% polarized elec-
trons. The dashed curves are the predictions for 100% polarized
electrons. The error intervals correspond to two standard deviations.

χ 

FIG. 10. The photon polarization angle χ as a function of the
photon emission asymmetry K for electrons polarized within the
reaction plane (Sy = 0). The solid curve is the prediction for 75%
polarized electrons. The dashed curve is the prediction for 100%
polarized electrons.

B. Polarimetry of heavy-ion beams

In a similar way the results of the experiment confirm the
polarization correlations predicted for radiative recombination
[74]. They lead to a unique method of heavy-ion beam
polarimetry. It should work in the specific case of polarized
hydrogenlike ions. Such a method is currently demanded for
near future experiments with stored beams. A measurement
of parity nonconservation and a test of the standard model
of elementary particles and interactions [81,82] is one of the
possible examples of such experiments.

C. Circular γ -ray polarimetry

Recently a method of imaging γ -ray polarimetry was
proposed which is sensitive to circular polarization of γ

quanta [83]. This method relies on production of polarized
Compton-recoiled electrons by circularly polarized photons
and production of bremsstrahlung by these electrons. The
angular distribution and linear polarization of bremsstrahlung
are directly related to circular polarization of the incoming
photons. Detailed understanding of bremsstrahlung
polarization correlations is mandatory for the realization of
this technique.

D. Measurement of g factors

Since the spin rotation is sensitive to the scattered particle
g factor [see Eq. (22)], the latter can be extracted from the
measurement. Our classical model is valid for every spinning
charged particle, for example for a nucleus. Both the spin
of the scattered nucleus and the orbital momentum of the
coupled system rotate during the scattering process. Therefore
nucleus-nucleus scattering or nucleus-nucleus bremsstrahlung
can be used to measure g factors. In both cases one needs
to use a bare ion beam polarized within the scattering plane.
Then in the first case the nuclear spin orientation after the
scattering should be identified. In the second case the linear
polarization of the nucleus-nucleus bremsstrahlung should be
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measured. From any of these measurements the spin rotation
can be determined, which is related to the g factor.

In particular this may be useful for radioactive ion
beams. Such beams are produced by fragmentation, fusion-
evaporation, or fission reactions with fast initially stable
beams. Such reactions produce transversely polarized exotic
nuclei, which are thus prepared for the measurement.

X. CONCLUSIONS

We have optimized the technique of hard x-ray Compton
polarimetry and significantly improved its efficiency and
angular resolution. The angular resolution of σ = 0.3◦ is a
significant achievement of Compton polarimetry. With this we
were sensitive to the bremsstrahlung polarization correlations
P2(1,0,0) and P2(0,0,1). In this experiment we measured
two correlation parameters C31

C03
= P2(0,0,1)

P1(0,0,0) and C11
C03

= −P2(1,0,0)
P1(0,0,0) .

The results are in excellent agreement with fully relativistic
calculations.

A simple classical model qualitatively explains the ob-
served phenomena. It indicates that the electron scattering
geometry is not confined to a single plane. Such an observation
is typically not possible in scattering experiments.

A setup of one photon linear polarimeter and four con-
ventional photon detectors allows determination of all three
components of the electron spin. This electron polarimetry
method can be applied in the energy range of 100 keV up to
several 10 MeV.

In a similar way the experiment confirms the theoretical
predictions for the polarization correlations in radiative re-
combination. They lead to the unique method of polarimetry
of heavy-ion beams.
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Lett. 69, 901 (1992).
[37] C. D. Shaffer, X.-M. Tong, and R. H. Pratt, Phys. Rev. A 53,

4158 (1996).
[38] M. Nofal et al., Phys. Rev. Lett. 99, 163201 (2007).
[39] H.-H. Behncke and W. Nakel, Phys. Rev. A 17, 1679

(1978).
[40] W. Bleier and W. Nakel, Phys. Rev. A 30, 607 (1984); 30, 661

(1984).
[41] K. W. McVoy and U. Fano, Phys. Rev. 116, 1168 (1959).
[42] R. H. Pratt, Phys. Rev. 120, 1717 (1960).
[43] I. J. Feng, I. B. Goldberg, Y. S. Kim, and R. H. Pratt, Phys. Rev.

A 28, 609 (1983).
[44] U. Fano, Phys. Rev. 178, 131 (1969).

022707-13

http://dx.doi.org/10.1103/PhysRev.109.235
http://dx.doi.org/10.1103/RevModPhys.31.920
http://dx.doi.org/10.1103/PhysRev.129.2207
http://dx.doi.org/10.1103/PhysRev.129.2207
http://dx.doi.org/10.1103/PhysRev.183.90
http://dx.doi.org/10.1016/0375-9601(72)91059-6
http://dx.doi.org/10.1016/0375-9601(72)91059-6
http://dx.doi.org/10.1103/PhysRevA.11.1797
http://dx.doi.org/10.1103/PhysRevA.19.187
http://dx.doi.org/10.1103/PhysRevA.19.187
http://dx.doi.org/10.1016/0092-640X(77)90045-6
http://dx.doi.org/10.1016/0092-640X(77)90045-6
http://dx.doi.org/10.1016/0092-640X(83)90001-3
http://dx.doi.org/10.1016/0092-640X(83)90001-3
http://dx.doi.org/10.1016/0092-640X(86)90014-8
http://dx.doi.org/10.1016/0092-640X(86)90014-8
http://dx.doi.org/10.1103/PhysRevLett.46.1622
http://dx.doi.org/10.1103/PhysRevLett.46.1622
http://dx.doi.org/10.1103/PhysRevA.26.3152
http://dx.doi.org/10.1103/PhysRevLett.91.173201
http://dx.doi.org/10.1103/PhysRevLett.91.173201
http://dx.doi.org/10.1103/PhysRev.90.1026
http://dx.doi.org/10.1103/PhysRev.90.1026
http://dx.doi.org/10.1103/PhysRev.110.589
http://dx.doi.org/10.1103/PhysRev.114.887
http://dx.doi.org/10.1103/PhysRev.114.887
http://dx.doi.org/10.1103/PhysRev.188.63
http://dx.doi.org/10.1103/PhysRevA.3.100
http://dx.doi.org/10.1103/PhysRev.104.557
http://dx.doi.org/10.1103/PhysRev.112.1039
http://dx.doi.org/10.1007/BF02724990
http://dx.doi.org/10.1103/PhysRevA.7.456
http://dx.doi.org/10.1103/PhysRevA.11.480
http://dx.doi.org/10.1103/PhysRevA.11.480
http://dx.doi.org/10.1103/PhysRevLett.107.173201
http://dx.doi.org/10.1103/PhysRevLett.108.264801
http://dx.doi.org/10.1103/PhysRev.103.1601
http://dx.doi.org/10.1103/RevModPhys.36.881
http://dx.doi.org/10.1103/RevModPhys.36.881
http://dx.doi.org/10.1103/PhysRev.124.637
http://dx.doi.org/10.1103/PhysRev.128.192
http://dx.doi.org/10.1103/PhysRev.135.B56
http://dx.doi.org/10.1103/PhysRev.129.403
http://dx.doi.org/10.1007/s004600050002
http://dx.doi.org/10.1140/epjc/s10052-010-1456-6
http://dx.doi.org/10.1007/BF01383865
http://dx.doi.org/10.1007/BF01434135
http://dx.doi.org/10.1007/BF01417436
http://dx.doi.org/10.1007/BF01417436
http://dx.doi.org/10.1007/BF01437366
http://dx.doi.org/10.1007/s004600050017
http://dx.doi.org/10.1103/PhysRevLett.69.901
http://dx.doi.org/10.1103/PhysRevLett.69.901
http://dx.doi.org/10.1103/PhysRevA.53.4158
http://dx.doi.org/10.1103/PhysRevA.53.4158
http://dx.doi.org/10.1103/PhysRevLett.99.163201
http://dx.doi.org/10.1103/PhysRevA.17.1679
http://dx.doi.org/10.1103/PhysRevA.17.1679
http://dx.doi.org/10.1103/PhysRevA.30.607
http://dx.doi.org/10.1103/PhysRevA.30.661
http://dx.doi.org/10.1103/PhysRevA.30.661
http://dx.doi.org/10.1103/PhysRev.116.1168
http://dx.doi.org/10.1103/PhysRev.120.1717
http://dx.doi.org/10.1103/PhysRevA.28.609
http://dx.doi.org/10.1103/PhysRevA.28.609
http://dx.doi.org/10.1103/PhysRev.178.131


S. TASHENOV et al. PHYSICAL REVIEW A 87, 022707 (2013)
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