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van der Waals coefficients for systems with ultracold polar alkali-metal molecules
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A systematic study of the leading isotropic van der Waals coefficients for the alkali-metal atom + molecule
and molecule + molecule systems is presented. Dipole moments and static and dynamic dipole polarizabilities
are calculated employing high-level quantum chemistry calculations. The dispersion, induction, and rotational
parts of the isotropic van der Waals coefficient are evaluated. The known van der Waals coefficients are then used
to derive characteristics essential for simple models of the collisions involving the corresponding ultracold polar
molecules.
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I. INTRODUCTION

Ultracold chemistry in submicrokelvin regime has emerged
as one of the most exciting fields in atomic and molecular
physics [1–3]. By tuning magnetic field across Feshbach
resonances one can combine two free atoms into a bound state,
with binding energy of order of MHz and then, with elaborated
laser techniques, coherently transfer them into the deeply
bound states—including the absolute rotational-vibrational-
electronic ground state. At present two alkali-metal dimers
have been produced in this manner KRb and Cs2 [4,5]. It
is also worth mentioning that LiCs molecules in the vibra-
tional ground state have been produced by photoassociation
followed by spontaneous emission [6]. At present, many
experimental groups have focused on production of other
heteronuclear alkali-metal dimers hoping to obtain ultracold
quantum gases of polar molecules, stable with respect to
the atom exchange and trimer formation [7]. Such quantum
gases of polar molecules will be used to explore new ideas
in quantum information theory [8,9], quantum simulations
of condensed-phase physics [10], or fundamental studies of
chemical reactions [11].

Description of chemical processes in the submicrokelvin
regime is extremely difficult, because the full quantum
calculation for such systems is nearly impossible. Thus only
few quantum dynamics studies of ultracold atom + diatom
collisions employing global potential energy surfaces have
been performed so far concentrating on the homonuclear
spin-polarized systems [12–18], where single-electronic-state
approach provides good approximation [19]. Even then, the
quantum dynamics calculations for heavier system are very
challenging and have not been yet performed despite the fact
that the corresponding quartet potential energy surfaces are
rather simple [20,21].

Theoretical treatment of non-spin-polarized systems would
be even more challenging. The calculations of triatomic and
tetraatomic interaction potentials in such a case would have to
include many active electrons and coupled potential energy

*pzuch@fizyka.umk.pl
†pavel.soldan@mff.cuni.cz

surfaces, which at present is very far from routine. The
following quantum dynamics calculations, especially in the
presence of external fields, would be extremely demanding.
The interaction potentials involving alkali-metal atoms and
dimers are likely to be strongly anisotropic, and therefore the
basis sets for such calculations would have to be very large.
On the other hand, there is a very small number of observables
as outcome of ultracold collisions. After all, in a laboratory
we do not record state-resolved cross sections but only loss
rates from the state prepared before the experiment. Thus,
the recent theories of ultracold collisions [22–25], formulated
to explain current experiments in this field, use only few
simple parameters that catch the essential physics. Importantly
enough, the feature of the intermolecular interaction that
matters the most is the long-range shape of the interaction
potential, usually represented analytically by the well-known
van der Waals expansion with the most important term
−C6R

−6 (R is the distance between the monomer centers of
mass).

Properties of the alkali-metal dimers have been intensively
studied using electronic structure methods. A systematic study
of the dipole moments of all possible alkali-metal dimers
was published by Aymar and Dulieu [26], and Deiglmeyr
et al. [27] reported a systematic study of the static dipole
polarizabilities for these systems. Their approach, based on
large effective core potentials combined with appropriately
set core-polarization potentials, was particularly successful in
predicting binding energies and spectroscopic properties of the
alkali-metal dimers in the ground and low-lying excited states.

In this paper we report a systematic ab initio study of
the isotropic van der Waals C6 coefficients for the alkali-
metal atom + molecule (A + AB) and molecule + molecule
(AB + AB) systems. We also derive characteristics essential
for simple models of the corresponding ultra-low-energy
collisions. In the following calculations masses of the bosonic
7Li, 23Na, 41K, 87Rb, and 133Cs isotopes were used.

II. METHODOLOGY

The purpose of this paper is to provide essential parameters
for modeling of collisions between the polar molecules in
their ground rovibrational state. If colliding molecules are in
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j = 0 states only the isotropic part of the interaction potential
governs its scattering properties at very long range—larger
than RvdW = (2mC6/h̄

2)
1
4 , where m is the reduced mass of

the colliding system. If the strength of the anisotropy of the
potential becomes comparable with spacing of the appropriate
rotational energy levels of the molecule, then the anisotropic
term becomes important: For example, in case of A + AB
collisions, the coupling driven by C62 between j = 0 and
j = 2 channels becomes important if the potential anisotropy
is comparable with 6B. The same argument holds also for the
AB + AB collisions.

It is well known [28,29] that within the Born-Oppenheimer
approximation the isotropic van der Waals C6 coefficient of
a two-monomer system (X + Y) can be decomposed into two
contributions each corresponding to a different effect. First,
it contains a dispersion contribution C

disp
6 that physically

represents the interaction of fluctuating instantaneous dipole
moments, which are due to the movements of electrons, which
correlate between interacting species at long range. Secondly,
in the case of the heteronuclear dimers, a permanent molecular
dipole moment induces a dipole moment on the atom, which in
turn interacts with the permanent molecular dipole moment.
This induction contribution C ind

6 is usually smaller than the
dispersion contribution.

The dispersion contribution to the isotropic van der Waals
C6 coefficient can be calculated from the following integral,

C
disp
6 = 3

π

∫ ∞

0
ᾱX(iω)ᾱY(iω)dω, (1)

where i is the unit imaginary number, ω is frequency, and

ᾱmol(iω) = 1
3 [αxx(iω) + αyy(iω) + αzz(iω)] (2)

is the orientation-averaged molecular dynamic dipole polar-
izability. The induction contribution to the isotropic van der
Waals C6 coefficient can be expressed as

C ind
6 = μ2

XᾱY(0) + μ2
Y ᾱX(0), (3)

where μ is the corresponding permanent molecular dipole mo-
ment. If the monomer X is an atom in the spherical-symmetry
ground state and the overlap of the charge distribution of
interacting species can be neglected, the first term in the
above equation vanishes. The total isotropic C6 coefficient
of the atom + molecule system is a sum of the dispersion and
induction contributions.

For molecule + molecule systems in their ground rotational
state there also exists a (non-Born-Oppenheimer) rotational
contribution to the effective isotropic C6 resulting from a
second-order coupling of the dipole-dipole term [30–32].
It has the form Crot

6 = μ4/6B where B is the molecule
rotational constant. Then the total isotropic C6 coefficient for
the molecule + molecule system is a sum of the dispersion,
induction, and rotational contributions.

Proper choice of the electron basis set is crucial for
quantum chemistry calculations of the dipole moments and
polarizabilities. For lithium and sodium atoms we have used
available core-valence correlation-consistent basis sets cc-
pCV5Z designed by Prascher et al. [33], which we augmented
by one set of diffuse functions. Effective-core potentials
(ECPs) with tailored valence basis sets for heavy (K-Fr)

alkali-metal atoms have been optimized by Lim et al. [34].
These ECPs are small-core type potentials, i.e., the outermost
nine electrons are described explicitly. To eliminate possible
errors due to the basis incompleteness we have improved the
original valence basis sets by adding g and h functions. and
augmenting the basis sets by one set of diffuse functions.
These basis sets have been tested on the atomic static
dipolar polarizabilities, which have been calculated with the
spin-restricted open-shell coupled cluster method [35] with
single, double, and noniterative triple excitations [RCCSD(T)]
employing a finite-field approach. In all cases the agreement
with the reference values of Derevianko et al. [36] was very
good (the difference for Na was 2.2 a.u.; less than one atomic
unit for other alkali metals).

All alkali-metal dimers in their ground electronic state
X1�+ (near their equilibrium lengths) have their excited states
significantly separated in energy, thus we can properly describe
them by a single-reference Slater determinant, which is ideal
for using the coupled cluster approach [35]. For the molecular
calculations we took the equilibrium distances, which were
optimized by the Paris group [26,27].

For the molecular dynamic polarizability calculations we
employed the time-independent coupled cluster polarization
propagator method in singles and doubles approximation
(TI-CCSD). This was introduced by Moszynski et al. [37]
and implemented in MOLPRO 2010.2 program [38]. Several
approximations to the full time-independent polarization
propagator were discussed by Korona et al. [39]. In our study,
we used the so-called CCSD(3) approximation of the TI-CCSD
method, which is exact to the third order of the electronic
correlation operator. In benchmark calculations against the dy-
namic dipole polarizabilities based on the full-configuration-
interaction response functions, the CCSD(3) approximation
demonstrated systematically a smaller error than the other
approximations introduced there [37,39]. Finally, in this paper
we have used a finite-field CCSD(T) approach in order to
evaluate dipole moments and static dipole polarizabilities
of the alkali-metal dimers. Such calculations were also
needed to verify the accuracy of the TI-CCSD dynamic
polarizabilities.

III. RESULTS AND DISCUSSION

The dipole moments of the heteronuclear alkali-metal
dimers calculated with the finite-filed CCSD(T) method as
the first derivatives of energy with respect to the electric
field applied are collected in Table I). The FF-CCSD(T) data
are in good agreement with those obtained by Aymar and
Dulieu [26], with an error of at most 10% for LiNa and KRb
molecules; note that for these species the dipole moment and
charge separation between atoms is significantly smaller than
in other cases and the corresponding dipole moments are small.
The dipole moment we have obtained for KRb (0.62 D) is
somewhat larger than the experimental value (0.566 ± 0.017 D
[4]) and the value in Ref. [32]. For the sake of consistency we
used our calculated values in further calculations. In addition
to the finite-field CCSD(T) values we also calculated the
finite-field CCSD values in order to check how important is
the inclusion of triply excited configurations in calculations of
the alkali-metal dimer dipole moments. The FF-CCSD values
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TABLE I. Dipole moments (in Debye), rotational constant (in cm−1), the orientation-averaged molecular static dipole polarizability (in
atomic units), and the anisotropy of the molecular static dipole polarizability (in atomic units) of the ground X1�+ states of heteronuclear
alkali-metal dimers calculated at the equilibrium interatomic distances from Ref. [26].

Dimer re/a0 [26] B/hc μ ᾱFF
mol(0) ᾱTI

mol(0) �αFF
mol(0) �αTI

mol(0)

LiNa 5.4518 0.425 0.48 237.7 237.6 156.3 155.7
LiK 6.268 0.293 3.41 324.2 326.9 234.5 240.7
LiRb 6.5 0.254 3.99 347.2 352.1 262.0 272.7
LiCs 6.93 0.218 5.39 391.9 399.1 317.8 333.1
NaK 6.61 0.094 2.72 358.1 362.7 247.2 260.9
NaRb 6.88 0.070 3.31 387.1 393.9 279.2 299.7
NaCs 7.27 0.058 4.63 439.3 448.0 339.4 364.1
KRb 7.688 0.037 0.62 523.5 532.3 367.6 409.5
KCs 8.095 0.030 1.98 596.0 606.8 436.1 488.9
RbCs 8.366 0.017 1.32 638.6 653.0 462.1 531.1

are also in good agreement with our reference FF-CCSD(T)
data (the FF-CCSD values are systematically higher by 10%).
The fact that the triples contribution to the dipole moments
is not too substantial indicates that the FF-CCSD(T) result
might be very close to real values as the expansion of the
molecular wave function in terms of number of excitations
should converge rather quickly.

In order to verify the quality of the molecular dynamic
dipole polarizabilities calculated with TI-CCSD we performed
further tests by checking their values in the static limit against
the polarizabilities calculated with the FF-CCSD(T) approach
and literature data. As the reference values we have used those
published by Deiglmayr et al. [27] who used a two-electron
full configuration interaction method with carefully tailored
large-core effective core potentials including core polarization
potentials. This approach has proven to be accurate, for
example, in predicting experimental values of the dipole
moments of KRb [4], LiCs [40], and transition dipole moments
RbCs [41]. We have also used for comparison the values of
Urban and Sadlej [42], which were obtained with an entirely
different approach—using all-electron basis sets with scalar
relativistic effects included. Our finite-field results agree very
well with the results from Refs. [27,42]; our FF-CCSD(T)
values of the orientation-averaged molecular static dipole
polarizability are systematically right in between their values
with differences not exceeding 6%. The agreement between
our TI-CCSD and FF-CCSD(T) values of the orientation-
averaged molecular static dipole polarizability is even better
(see Table I). With the exception of LiNa, where the difference
is indeed negligible, the TI-CCSD values are systematically
higher than the FF-CCSD(T) values with the differences never
exceeding 2.5%. The anisotropy of the molecular static dipole
polarizability �αmol(0) exhibits the same tendency. With the
exception of LiNa the TI-CCSD values are systematically
higher than the FF-CCSD(T) values with the differences
ranging from 2.5% to 13%.

In the evaluation of formulas (1) and (3) we used the
TI-CCSD values of the molecular dynamic dipole polariz-
abilities, the FF-CCSD(T) values of the molecular dipole
moments and molecular static dipole polarizabilities, and
the values of the atomic static and dynamic polarizabilities
from Ref. [36]. The integral in Eq. (1) was evaluated

using Gauss quadrature for 50 frequencies also provided by
Derevianko et al. [36].

Tables II and III contain the predicted isotropic van der
Waals C6 coefficients for the A + AB and AB + AB systems,
respectively. In the case of the A + AB systems there is a very
clear progression in increase of the C6 coefficient for both
A and B from Li toward Cs. The induction contribution to
C6 is usually small; only in the case of significantly polar
LiCs, LiRb, NaCs, and NaRb molecules it is within the
range 10–23%. Our C6 values for the K + KRb, Rb + KRb,
Rb + RbCs, and Cs + RbCs systems are systematically larger
than those reported by Kotochigova [24] by 8%, 6%, 35%,
and 41%, respectively. The result for KRb + atom is clearly
in good agreement with the result of Kotochigova, however,

TABLE II. The isotropic C6 van der Waals coefficients (in atomic
units) for the alkali-metal A + AB systems. The last column shows
the value based on the pairwise atom-atom additive model.

Atom Dimer C
disp
6 C ind

6 C6 Cadd
6

Li LiNa 2217 6 2223 2856
LiK 2885 294 3179 3711
LiRb 3098 407 3505 3934
LiCs 3452 740 4192 4454

Na LiNa 2358 6 2364 3023
NaK 3405 187 3592 4003
NaRb 3673 275 3948 4239
NaCs 4092 539 4631 4783

K LiK 4821 520 5341 6219
NaK 5364 334 5698 6344
KRb 7428 17 7445 8171
KCs 8298 175 8473 9056

Rb LiRb 5688 790 6478 7235
NaRb 6357 539 6896 7373
KRb 8154 19 8173 8964
RbCs 9751 87 9838 10 353

Cs LiCs 7652 1803 9455 9911
NaCs 8555 1324 9879 10 073
KCs 10 995 242 11 237 12 005
RbCs 11 772 110 11 882 12 509
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TABLE III. The isotropic C6 van der Waals coefficients (in atomic
units) for the alkali-metal AB + AB systems.

Dimer C
disp
6 C ind

6 Crot
6 C6

LiNa 3582 17 110 3709
LiK 6024 1167 404 491 411 682
LiRb 6963 1711 876 031 884 705
LiCs 8670 3520 3 397 216 3 409 406

NaK 7461 820 508 325 516 606
NaRb 8696 1313 1 497 080 1 507 089
NaCs 10 822 2916 6 932 958 6 946 696

KRb 14 202 62 3456 17 720
KCs 17 716 723 450 681 469 120

RbCs 20 301 345 160 336 180 982

the difference for RbCs + atoms is significantly larger. The
dynamic polarizability in Ref. [24] has been obtained as a
sum-over state with appropriate transition dipole moments
of the RbCs molecule. It is likely that this way the RbCs
dynamic polarizability might have been underestimated us-
ing such a procedure by neglecting some contributions or
underestimating the continuum contribution. Note also that
the induction contribution for atom + diatom has not been
included in Ref. [24].

It was proposed recently to approximate the C6 coefficients
by simply adding the pairwise atom-atom C6 coefficients
[24,43]. Our calculations have verified this model as seemingly
reasonably good for heavy atoms (Cs and Rb) interacting with
weakly polar molecules. This nice agreement is, however,
fortuitous, since this additive approximation includes only
dispersion and no induction. In this case, the approximation
of the trimer dispersion forces by simply adding them among
dimers overcompensates the lack of the induction interaction.

As expected, the effective isotropic C6 coefficients for the
AB + AB systems very strongly depend on the AB dipole
moment. Only the LiNa and KRb dimers with the smallest
dipole moments are dominated by electronic contribution
to the C6 coefficient, in other cases rotational contribution
completely dominates the total C6 coefficient. For the AB + AB
systems, there is also a very distinct pattern in increase of
the electronic contribution similar to the A + AB systems. The
KRb isotropic C6 coefficient is higher by 10% compared to the
value of Kotochigova [24] and by 6% with respect to the value
given by Buchachenko and coworkers [32]. Our results are in
agreement with those reported by Quéméner et al. [25] for the
LiNa (difference of 4%), LiK (20%), LiRb (17%), and LiCs
(11%) systems. These values are very sensitive to the dipole
moment and rotational constant of the molecule, thus even
small differences in these characteristics can easily translate
into a 20% difference in the dominating rotational part of the
C6 coefficient.

Known C6 coefficients allow us to determine the energy
limits for single partial-wave scattering. The p-wave or d-
wave scattering starts to dominate if the collision energy is
comparable to the appropriate centrifugal barrier heights: For
the A + AB collisions it is the p wave, while for the bosonic
AB + AB collisions it is the d-wave scattering. In Table IV
we have included the centrifugal barrier heights for the

TABLE IV. Heights (in μK) of p-wave centrifugal barriers Vp

for the A + AB systems and d-wave centrifugal barriers Vd for the
AB + AB systems, respectively, with mean scattering lengths ā (in
a0) for the corresponding collisions.

Atom Dimer Vp ā Dimer Vd ā

Li LiNa 2442 39 LiNa 2293 30
LiK 1844 44 LiK 111 110
LiRb 1581 46 LiRb 28 157
LiCs 1397 48 LiCs 8 244

Na LiNa 684 49
NaK 380 58 NaK 64 125
NaRb 300 61 NaRb 16 187
NaCs 256 65 NaCs 6 251

K LiK 221 68
NaK 177 71
KRb 112 81 KRb 119 64
KCs 95 85 KCs 15 155

Rb LiRb 64 86
NaRb 56 89
KRb 47 95
RbCs 32 104 RbCs 17 131

Cs LiCs 29 105
NaCs 26 108
KCs 23 112
RbCs 19 117

A + AB scattering and bosonic AB + AB scattering. Their val-
ues approximately determine the single partial-wave regime.
The same table contains also the mean scattering lengths [44],
which illustrate, in a sense, a characteristic length scale of the
corresponding interaction potential.

IV. CONCLUSIONS

In conclusion, we have reported a complete ab initio study
of the isotropic C6 van der Waals coefficients in all possible
A + AB and AB + AB systems, where A and B are two distinct
alkali-metal atoms and AB are molecules in their ground
state. Given the rapid development of the field and many
ongoing experiments with polar alkali-metal molecules, we
expect that these results will be beneficial for modeling their
collisional properties, which are crucial for stability studies
of the ultracold molecular dipolar gases in traps. In future
studies we would like to pay increased attention to the role of
anisotropy in ultracold collisions, and we would also like to
exploit our results when constructing potential energy surfaces
for various collisional systems.
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[14] M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M.
Launay, Phys. Rev. Lett. 94, 033201 (2005).
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