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Effective-momenta approach for the four-body Coulomb problem
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We propose approximate separable solutions for the Schrödinger equation corresponding to the four-body
Coulomb problem. By exploring several asymptotic limits, we find configurations where the nondiagonal terms
of the Hamiltonian can be introduced in the two-body Coulomb-like distortion factors leading to modified
momenta. The present effective momenta model is used to study the double ionization of He by ion impact
at the fully differential level. Possible differences arising from proton and antiproton impact are explored at
impact energies in the range 700 keV/amu–6 MeV/amu. The results are represented in terms of contour plots
as a function of the electrons’ emission angles, and the four-body dynamics for the double-ionization process
is analyzed. Finally, we compare diverse representations for the fully differential cross section. A detailed
interpretation of the features of the process is done by overlapping the recoil level lines over the contour plots.
Ternary plots are tested as an alternative tool to explore the different physical mechanisms involved in the double
emission process at the fully differential level.
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I. INTRODUCTION

Almost 50 years ago, Vainstein et al. introduced the usually
denominated Vainshtein Presnyakov and Sobelmann (VPS)
method, which represents one of the first proposals to decouple
the relative motion of the different pair of particles conforming
a three-body Coulomb system [1]. This approximation, in
the ion-atom collisions context, assumes that the emitted
electron can be described by a Coulomb wave function and
leads to a wave equation for the electron-projectile pair. The
latter includes a nonseparable Hamiltonian term which was
initially neglected in those days. Some years later, Felden and
collaborators [2–4], studied the nonseparable terms within
the framework of the VPS method. They approximately
accounted for the residual Hamiltonian by modifying, at
the three-body wave-function level, the impact energy by
adding a state-dependent constant. When used to describe the
e + H(1s) → e + H(2s) process, this model led to improved
results compared to the Born approximation. The introduction
of the 3C wave function [5–8] meant a significant theoretical
breakthrough and was widely used in subsequent years to
study the ionization of atoms by electron, ion, and photon
impact. This approximate analytical model for the three-body
continuum consists in the product of three independent
Coulomb wave functions corresponding to the three pairs of
particles involved. This function satisfies the denominated
Redmond asymptotic conditions [9] in the �0 asymptotic
region, where the three particles are far apart from each other,
and founded the base of many distorted-wave theories [10,11].
During the 1990s several authors worked upon the
improvement of the 3C model by considering additional
regions (�j, j = 1,2,3) in which one of the particles is located
far away from the remaining pair [12–15] or the Wannier region
in which two electrons leave the parent nucleus in a collinear
direction [16]. Most of these works make use of dynamical
(momentum or coordinate-dependent) effective charges to
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account for the correlation terms neglected in the 3C model.
Although based on the satisfaction of desirable physical limits,
none of these proposals provide a clear indication on how the
nondiagonal kinetic-energy terms are explicitly approximated.

These models were soon applied to the evaluation of a
triply differential cross section for the ionization of hydrogen
by electron impact at fixed momentum transfers [16,17] and
photo-double-ionization of He [18] with partial success. The
theory of coordinate-dependent momenta was employed by
Jones and Madison in the (e,2e) context obtaining similar
results to those presented by Berakdar and Briggs [16] using
the 3C and DS3C at intermediate and high electron ejection
energies. Nevertheless, these models hardly improved the poor
results provided by the 3C at low ejection energies.

Multivariable hypergeometric functions allow an approx-
imate treatment of the nondiagonal kinetic-energy terms
[19,20]. These functions couple the two-body motions, satisfy
the Kato cusp conditions at the coalescence points, and fulfill
the appropriate asymptotic conditions. However, they are not
suited for the reaction region where all the particles are close.

Distorted-wave models for four-body systems were studied
by Belkic et al. [21] but only restricted to the cases in
which two or three particles in the final state form a closed
separate bounded subsystem. Their distorted-wave models
were applied to study transfer-ionization [21] and double-
capture processes [22] for He2+collisions on He. An extensive
review on four-body distorted-wave models has been published
by Belkic et al. [23].

By the mid-1990s, Berakdar explored the full four-body
continuum problem proposing a product of six Coulomb
distortion factors [24]. In recent years, this model was applied
in the (e,3e) context by Götz et al. [25], including an extension
of the dynamical screening model for a three-electron system.

On the other hand, by the late 1980s, with the rise of
new powerful computing systems, full-numerical treatments
became feasible and allowed for a more accurate description of
atomic processes. In the ion-atom context, the works of Read-
ing and Ford, Dı́az et al., and Pindzola et al. [26–28] focused
on the calculation of total cross sections for double ionization
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of He as well as the double- to single-ionization ratio values at
high impact energies. Their results were in excellent agreement
with the available experimental data. For differential cross
sections, Foster [29] and Guan [30] calculated in recent years
angular distributions for the double ionization of He with
the time-dependent close-coupling method, obtaining some
discrepancies among each other which must yet be solved.

Nevertheless, for many applications, perturbative ap-
proaches based on analytical wave functions are desirable since
they provide fast access to the physical mechanisms involved
in a collision reaction [31,32] and large accurate-enough data
sets can be provided in short periods of time. In this sense,
and despite the great numerical advance achieved in the past
two decades, the search for an accurate analytical model for
the many-body continuum remains an actual challenge and a
problem of potential interest.

In this work, we focus on the four-body Coulomb problem
in the continuum and propose separable wave functions for
the different asymptotic regions which approximately include
the information contained in the nonorthogonal kinetic-energy
terms. As particular cases of interest, we consider (i) the
asymptotic limit where two particles are near each other
while the others are far from any of the other three particles
and (ii) the limit in which they are arranged as two pairs
of particles which are far from each other. In the former,
the nondiagonal kinetic terms present in the Schrödinger
equation are incorporated in the electron-electron distorted
wave via an effective interelectronic momentum. Similarly,
in the latter, the present analysis leads to a distorted wave
for the interaction among heavy particles, which includes
an effective internuclear momentum. In both cases, these
effective momenta explicitly depend on the projectile charge.
In Sec. III, we use a model based on these effective momenta
to evaluate the fully differential cross sections (FDCS) for
the double ionization of helium by ion impact within the first
Born approximation [33]. In Sec. IV, we compare alternative
representations which have been used during the past decade
to analyze these FDCS: contour plots and recoil maps. Two-
dimensional ternary plots are proposed as a potential tool to
highlight the physical mechanisms involved [34,35]. Finally,
in Sec. V we draw our conclusions and outlook. Atomic units
are used throughout this work unless explicitly stated.

II. THEORETICAL MODEL

We consider a system composed by a projectile and a two
active electron atom. The orthogonal Jacobi coordinate system
{x1,X1,σ } chosen for the four particles in this work is shown
in Fig. 1(a) where mP is the projectile mass, mT the target
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FIG. 1. Coordinate scheme for the four-body problem: (a) Jacobi
generalized coordinates and (b) relative coordinates.

core mass, and mi with i = 1,2 the corresponding electrons
masses (which are equal to unity). Here, x1 is the position of
the first electron relative to the target nucleus, X1 represents
the relative position of the second electron relative to the
center of mass of the nucleus-first electron subsystem, and
σ is the relative position of the projectile to the atomic center
of mass. When the target nucleus is considered as infinitively
massive compared to the electrons, the Jacobi coordinates X1

and σ are approximately equal to x2 and R. This situation is
illustrated Fig. 1(b) together with the other relative coordinates
between the different pairs of particles. Here si = xi − R are
the electron-projectile relative positions and x12 = x1 − x2 is
the interelectronic position vector. Assuming that the atomic
center of mass is located in the atomic core, the four-body
Schrödinger equation for this system can be written as(

− 1

2μT

�2
x1

− 1

2μT

�2
x2

+ VT1 + VT2 + V12 − 1

2ν
�2

R

+VP1 + VP2 + VPT

)
�f = E�f . (1)

The quantity μT = mT

mT +1 is the reduced mass of each electron
relative to the atomic core, while μP = mP

mP +1 is the reduced
mass of each electron relative to the projectile. The reduced
mass between the projectile and the target core is ν = mP mT

mP +mT
.

The potential term VTi
= ZT Zi/xi, is the Coulomb interaction

of electron i with the target core, V12 = 1/x12 is the inter-
electronic repulsion, VPT = ZP ZT /R is the projectile-atomic
core interaction, and VPi

= ZP Zi/si represents the Coulomb
interaction between electron i and the projectile.

On the other hand, the conjugate momenta associated to
the Jacobi coordinates here used are {k1,K1,Kσ }. Here, k1

is the momentum of one electron relative to the target, K1

is the momentum of the second electron relative to the electron-
nucleus subsystem, and Kσ denotes the momentum of the
projectile relative to the whole atom. It is important to note
that for an infinitively massive target nucleus K1 ≈ k2 and
Kσ ≈ Kf . The total energy for the four-body continuum is
then given by

E = K2
f

2ν
+ k2

1

2μT

+ k2
2

2μT

. (2)

For further developments it is convenient to define the
remaining relative momenta of the four particles as follows:
k12 = (k1 − k2)/2 the relative momentum between the elec-
trons and pi = ki(μP /μT ) − Kf (μP /ν) the momentum of the
ith electron relative to the projectile.

Since we are concerned with continuum states, we propose
the following solution for the four-body system in the
continuum:

�f = eiKf ·Reik1·x1eik2·x2ϕk1 (x1)ϕk2 (x2)ϕk12 (x12)

×ϕp1 (s1)ϕp2 (s2)ϕKf
(R)

= eiKf ·Reik1·x1eik2·x2χf (x1,x2,R) . (3)

This functional form accounts for the removal of the kinetic-
energy terms off the Schrödinger equation via the plane-wave
factors. In addition, the separable nature of the distorted waves
proposed in the different relative coordinates provide a conve-
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nient route to analytically explore the distortion effects induced
by the Coulomb potentials VT1 ,VT2 ,V12, VP1 ,VP2 , and VPT .

Inserting this function into Eq. (1), we obtain

(H − E)χf =
(

− 1

2μT

�2
x1

− i

μT

k1 · ∇x1 − 1

2μT

�2
x2

− i

μT

k2 · ∇x2 + VT1 + VT2 + V12

− 1

2ν
�2

R − i

ν
Kf · ∇R + VP1 + VP2 + VPT

)
χf . (4)

To evaluate how the differential operators act on the χf function, we note that ∇xi
ϕpi

(si) = ∇si
ϕpi

(si), ∇Rϕpi
(si) =

−∇si
ϕpi

(si), ∇x1ϕk12 (x12) = ∇x12ϕk12 (x12), and ∇x2ϕk12 (x12) = −∇x12ϕk12 (x12). Introducing these expressions into Eq. (4), and
after a lengthy algebra, we find

(H − E)χf

=
⎡
⎣ ∑

j=1,2

(
− 1

2μT

�2
xj

ϕk1 (xj )

ϕkj
(xj )

− i

μT

kj · Gkj
(xj ) + VTj

)
+

(
− 1

2μ12

�2
x12

ϕk12 (x12)

ϕk12 (x12)
− i

μ12
k12 · Gk12 (x12) + V12

)

+
∑
j=1,2

(
− 1

2μP

�2
sj
ϕpj (sj )

ϕpj (sj )
− i

μP

pj · Gpj
(sj ) + VPj

)
+

(
− 1

2ν

�2
RϕKf

(R)

ϕKf

(R) − i

ν
Kf · GKf

(R) +VPT

)
+ HND

⎤
⎦χf , (5)

where

Gk(r) = ∇rϕk(r)

ϕk(r)
(6)

is a functional operator acting on the ϕ function. Here r and k are used to indicate any of the involved coordinates and momenta.
In Eq. (5), HND represents the nondiagonal terms of the Hamiltonian which for the present coordinate system are given by

HNDχf =
(

1

μT

[
Gk2 (x2) − Gk1 (x1) − Gp1 (s1) + Gp2 (s2)

] · Gk12 (x12) − 1

μT

Gp1 (s1) · Gk1 (x1) − 1

μT

Gp2 (s2) · Gk2 (x2)

+ 1

ν
GKf

(R) · [
Gp2 (s2) + Gp1 (s1)

] − 1

ν
Gp1 (s1) · Gp2 (s2)

)
χf . (7)

When HND is neglected, an exact separable solution is found
for Eq. (5). In this case, the wave function χf becomes a 12C
function:

χf (x1,x2,R) = χ+
f (x1,x2,R) χ−

f (x1,x2,R) , (8)

χ±
f (x1,x2,R) = D±

k1
(x1)D±

k2
(x2)D±

k12
(x12)D±

p1
(s1)

×D±
p2

(s2)D±
Kf

(R), (9)

where the minus and plus signs are associated to outgoing or
incoming boundary conditions, respectively. This wave func-
tion is the four-body problem generalization of the 6C wave
function found for the three-body problem [19]. When incom-
ing boundary conditions are considered for the wave function,
the proposed solution reduces to a product of six Kummer hy-
pergeometric functions (3C in the three-body problem [5,7]).

A step forward in the present analysis is made by proposing
known functional forms for some of the functions in Eq. (3).
By so doing, we are led to a new set of coupled equations for
the unknown remaining functions in Eq. (5).

Clearly, the adequate choice for a function that describes
the two-body Coulomb distortion is the well-known Kummer
hypergeometric function:

D±
k (r) = N± (k) 1F1 [∓iη,1,±i (kr ∓ k · r)] , (10)

which is a solution of(
− 1

2μ
�2 + Z

r

)
D±

k (r) = i
k
μ

· ∇D±
k (r) . (11)

As an example, if five Coulomb distortion factors are
proposed in Eq. (3), the only function left undetermined is ϕKf

,
which depends on R,x1 and x2. As expected, the corresponding
differential equation concentrates the information on the whole
four-body coupling. Unfortunately, analytical solutions for this
remaining equation are unknown and further approximations
are required in order to gain insight into the problem. In the
next sections we analyze physically meaningful asymptotic
limits and propose analytical wave functions which go beyond
the simple 12C function.

A. Asymptotic regions

In the following, we summarize several asymptotic limits
for the four-body system in the continuum. Based on the fact
that a closed analytical solution for the three-body problem
is not available yet, in this work we consider neither the
condensation region (where all the particles are close) nor
the situation in which three of the particles are close while
the remaining one is far from this subsystem. Instead, we
generate analytical models which go beyond the simple 6C
model by satisfying the proper asymptotic conditions in the
denominated ϒ , 
, and � regions, which are defined as
follows.
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(i) ϒ . The four particles are far away from each other:
x1,2 → ∞, s1,2 → ∞, x12 → ∞, and R → ∞. In this re-
gion, all the two-body solutions are asymptotically correct,
and they can be replaced by eikonal functions. The terms
conforming HNDχf are of order O(1/r2), and can be
neglected.

(ii) 
1. The electrons are close together: x1,2 → ∞,
s1,2 → ∞, R → ∞, x12/x1,2 → 0, x12/s1,2 → 0, and x12/

R → 0.
(iii) 
2. One electron is close to the projectile: si →

∞, x1,2 → ∞, x12 → ∞, R → ∞, sj /si → 0, sj /x1,2 → 0,
sj /x12 → 0, and sj /R → 0 .

(iv) 
3. One electron is close to the target nucleus: xi →
∞, s1,2 → ∞, x12 → ∞, R → ∞, xj/xi → 0, xj/x12 → 0,
xj/s1,2 → 0, and xj/R → 0.

(v) 
4. The projectile is close to the target nucleus:
x1,2 → ∞, x12 → ∞, s1,2 → ∞, R/x1,2 → 0, R/s1,2 → 0,
and R/x12 → 0.

(vi) �1. One electron is close to the target nucleus
and the other is close to the projectile: xi → ∞, x12 →
∞, sj → ∞, R → ∞, xj/xi → 0, xj/x12 → 0, xj/sj →
0, xj/R → 0, si/xi → 0, si/x12 → 0, si/sj → 0, and
si/R → 0.
(vii) �2. One electron is close to the other and the heavy

particles are close together: x1,2 → ∞, s1,2 → ∞, x12/x1,2 →
0, x12/s1,2 → 0, R/x1,2 → 0, and R/s1,2 → 0 .

For the 
1 region the wave function can then be written
as (incoming boundary conditions will be used in what
follows)

χf (x1,x2,R) = Dk1 (x1)Dk2 (x2)ϕk12 (x12)Dp1 (s1)

×Dp2 (s2)DKf
(R). (12)

Neglecting terms O(1/r2) in the asymptotic variables, the
ϕk12 (x12) function must be a solution of

(H − E)χf =
[
− 1

2μ12

�2
x12

ϕk12 (x12)

ϕk12 (x12)
−

(
i

k12

μ12
− 1

μT

Fk2 (x2)

+ 1

μT

Fk1 (x1) + 1

μT

Fp1 (s1) − 1

μT

Fp2 (s2)

)

· Fk12 (x12) + V12

]
χf , (13)

where we have made use of the functional operator introduced
by Berakdar [13]:

Fk(r) = ∇rDk(r)

Dk(r)
. (14)

Provided that the asymptotic limit of this operator has a
closed analytical form,

Fk(r) → Ek(r) = iμZ
(
k̂ + r̂

)
kr(1 + k̂ · r̂)

, (15)

for r → ∞, and the Schrödinger equation in the 
1 region is
given by

(H − E)χf

= 1

ϕk12 (x12)

[
− 1

2μ12
�2

x12
ϕk12 (x12) − i

(
k12

μ12
− 1

μT

Ek2 (x2)

+ 1

μT

Ek1 (x1) − 1

μT

Ep1 (s1) + 1

μT

Ep2 (s2)

)

· ∇x12ϕk12 (x12) + V12ϕk12 (x12)

]
χf . (16)

The ϕk12 (x12) function describes the relative motion of the
two close particles, and must be a solution of a differential
equation similar to the Coulomb equation, with an additional
first-order derivative term which couples the equation to the
other variables. In the next section we propose different
alternative approximations to deal with this term.

A similar procedure for the 
3 region leads to

χf (x1,x2,R)

= ϕk1 (x1)Dk2 (x2)Dk12 (x12)Dp1 (s1)Dp2 (s2)DKf
(R). (17)

In this particular case, the resulting asymptotic equation for
ϕk1 (x1) reads

(H − E)χf = 1

ϕk1 (x1)

[
− 1

2μT

�2
x1

ϕk1 (x1)

− i

(
k1

μT

+ 1

μT

Ek12 (x12) − 1

μT

Ep1 (s1)

)

· ∇x1ϕk1 (x1) + VT1ϕk1 (x1)

]
χf . (18)

For the other 
 regions similar equations can be derived
applying the same method.

In the �1 region we write

χf (x1,x2,R)

= ϕk1 (x1)Dk2 (x2)Dk12 (x12)Dp1 (s1)ϕp2 (s2)DKf
(R). (19)

The asymptotic equation for ϕk1 (x1) and ϕp2 (s2) reads in this
case

(H − E)χf =
{

1

ϕk1 (x1)

(
− 1

2μT

�2
x1

ϕk1 (x1) − i

μT

[
k1 + Ek12 (x12) − Ep1 (s1)

] · ∇x1ϕk1 (x1) + VT1ϕk1 (x1)

)

+ 1

ϕp2 (s2)

[
− 1

2μP

�2
s2
ϕp2 (s2) − i

μP

(
p2 − μP

μT

Ek12 (x12) − μP

μT

Ek2 (x2) − μP

ν
EKf

(R) − μP

ν
Ep1 (s1)

)

· ∇s2ϕp2 (s2) + VP2ϕp2 (s2)

]}
χf . (20)

As the last particular case here studied, we consider the �2 region for which we propose

χf (x1,x2,R) = Dk1 (x1)Dk2 (x2)ϕk12 (x12)Dp1 (s1)Dp2 (s2)ϕKf
(R). (21)
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The asymptotic Schrödinger equation in the �2 region is then given by

(H − E)χf =
{

1

ϕk12 (x12)

[
− 1

2μ12
�2

x12
ϕk12 (x12) − i

μT

(
μT

μ12
k12 + Ek2 (x2) − Ek1 (x1) − Ep1 (s1) + Ep2 (s2)

)

· ∇x12ϕk12 (x12) + V12ϕk12 (x12)

]
+ 1

ϕKf
(R)

(
− 1

2ν
�2

RϕKf
(R) − i

ν

[
Kf − Ep2 (s2) + Ep1 (s1)

]
· ∇RϕKf

(R) + VPT ϕKf
(R)

)}
χf . (22)

We note that Eqs. (13), (16), (18), (20), and (22) all
consist in sums of differential equations which resemble the
two-body Coulomb problem. However, we note that the factors
multiplying the terms involving gradients do not consist of the
typical momenta but instead can be interpreted as coordinate-
dependent effective momenta. These effective momenta are
the sum of the corresponding two-body asymptotic momentum
plus coordinate-dependent vectors that account for the nondi-
agonal Hamiltonian contribution [Eq. (7)]. In other words, at
the asymptotic regions under study, the information contained
in the nondiagonal terms can be associated to a particular
two-body subsystem. These effective momenta account for
the four-body correlations at nonasymptotic distances, since
the momenta depend on the four-body coordinates. As all
the interparticle distances tend to infinite, the HND terms
incorporated by these effective momenta vanish and the 6C
model is naturally recovered.

In early works developed for the three-body problem
[12,14,15], the common assumption was that the linear cor-
rection terms were independent (or slowly varying functions)
of the coordinates in the differential equation, leading to a
coordinate-dependent effective momenta. However, such an
assumption implies to neglect all the derivatives in terms
of coordinates of the correction terms in the corresponding
differential equation. Since the effective momenta derivative
is O (1/r), the Sommerfeld parameter a (r) is proportional to r

and their derivative scale is of zeroth order in r . This becomes
clear by looking at the series expression for the hypergeometric
function:

1F1 {a (r) ,1,i [k (r) r + k (r) · r]}
=

∑
n

[a (r)]n
n!

in [k (r) r + k (r) · r]n . (23)

A complete treatment of the derivatives in the parameters
of the hypergeometric functions can be found in a recent
paper by Ancarani and Gasaneo [36]. At this point, further
approximations need to be made to retain the functional form
of the Kummer hypergeometric function.

B. Approximations in the momentum formalism

Depending on the process under consideration, only some
terms of the nondiagonal kinetic energy will prevail, deter-
mining the relevance of the different asymptotic regions. Now
we will consider the 
1 region, where the relevance of the e-e
correlation is enhanced for atomic double-ionization collisions
which are mediated by the denominated two-step-1 (TS1)

mechanism in which the projectile hits an electron first, which
in a subsequent stage hits and removes a second one.

The easiest assumption is to consider coordinate-
independent nondiagonal kinetic energy terms, by taking fixed
physically meaningful interparticle distances and directions.
For atomic double ionization by bare ion impact, the following
approximations are made.

(a) First, we consider the asymptotic emission geometry:
x̂i ‖ k̂i and ŝi ‖ p̂i [37].

(b) The reaction zone around the target is limited by the
Wannier radius (RW ). Outside this radius the electrons-target
ion motion is well described by an eikonal wave. We use Rau’s
expression for the Wannier radius [38],

RWT = 4
√

2(ZT − 1/4)
/(

k2
1 + k2

2

)
. (24)

(c) To obtain a reference value for the projectile-electron
distances, we define the characteristic time τi = RWT /ki and
approximate the projectile-electron distance by

RCSi
= |τivP + b − RWT k̂i |. (25)

The impact parameter b value is such that the reduced
probability function bP (b) for single ionization has its max-
imum. These probabilities are calculated with the continuum
distorted-wave–eikonal initial state method, for each collision
energy. As a result, each electron sees an effective relative
distance with respect to the projectile which is associated to
its emission energy and direction.

With these hypotheses the relative electron-electron motion
in the 
1 region can be described by a Coulomb wave function
with a modified momentum given by

k̃12 = k12 + μ12ZT k̂1

k1RW

− μ12ZT k̂2

k2RW

+ μ12

μT

μP ZP p̂1

p1RCS1

− μ12

μT

μP ZP p̂2

p2RCS2

, (26)

Although other similar physical pictures can be used to approx-
imate the nondiagonal terms of the kinetic-energy operator, we
find that conditions (a)–(c) provide an instantaneous picture
of the system at the time at which each electron reaches the
characteristic radius RWT . In Sec. III we use the effective
momentum given by Eq. (26) in the evaluation of the FDCS
for double ionization of helium by ion impact.

C. Reduction of the four-body solution to the
particular three-body case

The present proposal naturally reduces to its three-body
limits when the charge and the associated kinetic-energy term
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of any of the particles involved are turned off. Two cases will
now be considered: (a) two electrons and a heavy particle
[(e,2e) processes, photo-double-ionization of atoms) and (b)
one electron in the field of two heavy centers (atomic single
ionization by ion impact).

In first place we consider case (a). In this case, any possible
reference to the projectile is removed at the wave-function
level. In this case, Eq. (13) is given by

(H − E)χ3B
f =

{
1

ϕk12 (x12)

[
− 1

2μ12
�2

x12
ϕk12 (x12) −

(
i

μ12
k12

+ iZT (k̂2 + x̂2)

k2x2(1 + k̂2 · x̂2)
− iZT (k̂1 + x̂1)

k1x1(1 + k̂1 · x̂1)

)

· ∇x12ϕk12 (x12) + V12ϕk12 (x12)

]}
χ3B

f . (27)

When the Wannier radius is considered as the characteristic
electronic distance, the interelectronic effective momentum
results:

k̃12 = k12 + μ12ZT k̂1

k1RWT

− μ12ZT k̂2

k2RWT

. (28)

This effective momentum and the related differential equation
can be compared with the one derived by Macri et al. [15]
in parabolic coordinates for their �3 region [Eq. (23) in their
article]. A similar derivation can be made for their �1,2 regions.

We now turn our attention to case (b) in which we explore
the limit in which all the interactions and coordinates of the
second electron in Eq. (21) are removed. For the �2 region,
we then obtain

K̃f = Kf + μP ZP p̂1

p1RCS1

. (29)

From this expression, we note that when the electron is located
between the two heavy particles (N-e-N) the internuclear (NN)
effective relative momentum K̃f decreases compared to Kf .
In contrast, when the electron is found along the internuclear
axis but on either side (e-N-N or N-N-e), K̃f is increased
compared to Kf .

III. DOUBLE-IONIZATION CROSS SECTIONS

In this section we test the models previously introduced
and with this aim we focus on the double ionization of He by
bare ion impact. We explore the range of intermediate to high
impact energies, assuming a first-order interaction between the
projectile and the target atom. Within this context, the FDCS
can be written as

dσ

dk1dk2dQ⊥
= (2π )4

v2
P

|Tf i |2. (30)

Here, Q⊥ is the perpendicular component (with respect to the
beam axis) of the momentum transferred by the projectile
which can be defined as Q = Ki − Kf . The first-order
transition matrix Tf i in a distorted-wave formalism is given by

Tf i = 〈χ−
f |Wi |χ+

i 〉, (31)

where the operator Wi represents the unsolved part of the initial
Hamiltonian:

Wi = ZP ZT

R
− ZP

|R − x1| − ZP

|R − x2| . (32)

The initial state is given by

χ+
i = 1

(2π )3/2 eiKi ·R�+
i (x1,x2) . (33)

For the atomic ground state we propose [39]

�+
i (x1,x2) = Ni(e

−ax1−bx2 + e−bx1−ax2 )(e−zcx12 + C0e
−λx12 ),

(34)

with variational parameters Ni = 1.9358, a = 1.4126, b =
2.2068, λ = 0.199, C0 = −0.6649, and zc = 0.01. This wave
function includes initial angular correlation (through the
explicit x12 dependence) and leads to an energy 〈E〉 =
−2.9019 a.u., only 0.0489 eV apart from the exact energy
−2.9037 a.u. This wave function differs from the original
Bonham and Kohl wave function in the e−zcr12 factor which
replaces the 1 appearing in the original function, and provides
a convergence factor for integration purposes.

For high impact energies and low Q values the double
emission is mediated by the TS1 mechanism. It seems clear for
this case that the best possible description of the interelectronic
correlation is needed (
1 asymptotic region). Therefore, we
propose for the final state

χf (x1,x2,R) = Dk1 (x1)Dk2 (x2)ϕk12 (x12)Dp1 (s1)

×Dp2 (s2)DKf
(R), (35)

where

ϕk12 (x12) = Dk̃12
(x12) (36)

and k̃12 is given by Eq. (26). As calculations using the full
6C functions demand a prohibitive amount of time, we replace
the hypergeometric functions in the electron-projectile coor-
dinates s1 and s2 by their corresponding Coulomb factors [8].
The Gramm-Schmidt procedure has been used in all cases in
the forthcoming analysis, to account for the orthogonalization
of the final to initial atomic state.

In the following, we evaluate the cross sections given by
Eq. (30) for proton and antiproton impact on He, at impact
energies in the range 700 keV–6 MeV, with a momentum
transfer value Q = 0.9. We describe the calculated FDCSs
for double ionization of He in the coplanar emission geometry
(Q, k1, and k2 all laying in the scattering plane defined by Ki

and Kf ), and we represent them in terms of contour plots as a
function of the electron emission angles θ1 and θ2 with respect
to the forward beam axis direction. In Figs. 2(a)–2(c) we
show the FDCSs for 700-keV proton impact (θQ = 40.18◦),
when the electrons are ejected with equal energies of 3, 10,
and 15 eV, respectively. In Figs. 2(d)–2(f) similar results for
antiproton impact are shown.

The first thing we note is that in all cases the FDCS show
maxima for electronic emission configurations at which k1 +
k2 is either parallel or antiparallel to Q. We will refer to these
maxima as “binary peak” and “recoil peak,” respectively, based
on the similarities found with their analog counterparts for
single-ionization processes which we now describe [40].
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FIG. 2. Angular distributions of the two ejected electrons in the scattering plane. The polar angles are measured from the direction of the
incident beam. The calculated ionization FDCS are given in units of 10−5 a.u. for proton and antiproton impinging on He at Ei = 700 keV. The
momentum transfer Q is 0.9 a.u. The contour plots (a)–(c) correspond to proton impact and (d)–(f) to antiproton impact. The (a) and (d) plots
correspond to ejected electrons with 3 eV in equal energy regime, (b) and (e) to 10 eV electron ejection energies, and (c) and (f) to the case of
15 eV electron energies.

The binary peak in the final momenta distribution can
be explained in terms of the TS1 mechanism: the projectile
hits an electron which then hits the other one and both
emerge in almost perpendicular directions. The direction of
the total electronic momentum k1 + k2 equals the projectile
momentum transfer and the target core remains as a spectator
in this case (the recoil momentum pR ≈ 0). The recoil peak
can be explained in a similar way: the projectile hits an

electron, which then hits the target core first (pR ≈ 2Q) and
then removes the second electron (k1 + k2 ≈ −Q). As a result,
for fixed Q, the recoiling ion acquires higher momentum
than in the former case. A third mechanism which has been
denominated “back-to-back” has been proposed and consists
in the removal of an electron by the projectile which then
hits the target nucleus (k1 ≈ −Q,pR ≈ 2Q). In a subsequent
stage, the recoiling nucleus hits the other electron and the final
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FIG. 3. Contour plots of the angular distributions of the two electrons for double ionization of He by proton impact (a), (b) and antiproton
(c), (d) impact. The impact energies considered are Ei = 2000 keV (a) and (c), and Ei = 6000 keV (b) and (d). The emission geometry
considered is that of Fig. 2. The FDCS are in units of 10−5 a.u.

configuration is given by k1 + k2 ≈ 0,pR ≈ Q. This situation
corresponds to both electrons leaving the atom in opposite
directions with the recoil acquiring the projectile momentum
transfer. This mechanism results from the threshold Wannier
configuration and it is forbidden in atomic photo-double-
ionization by a selection rule. For charged particle impact the
selection rule disappears, and this structure turns important
in some approximations that overestimate the interelectronic
repulsion as the 3C model [33]. A quick inspection of Fig. 2
clearly evidences that the back-to-back mechanism is not
present for the present model, and this is due to the coupling
introduced via Eq. (36). For a more detailed scheme on these
first-order collisions, we refer the reader to [40].

The binary peaks are then associated to electrons emerging
preferentially close to the main diagonal region at which the
double emission is forbidden by the interelectronic repulsion.
The recoil peaks, on the other hand, are placed far from the
diagonal and represent electrons being emitted in the backward
direction. As an example, in Fig. 2(b) the binary peak is
centered at (θ1 ≈ −5◦, θ2 ≈ −75◦), while the recoil is located
at (θ1 ≈ −70◦, θ2 ≈ 165◦).

When the impinging projectiles are protons, the binary
peak is enhanced with respect to the antiproton counterpart.
The postcollisional interaction introduced by the effective-
momentum theory in the final state tends to focus the electron

in the forward or backward direction depending on the
projectile nature.

In contrast to the 10 eV and 15 eV cases, for 3 eV
emitted electrons, the angular distributions show momenta
in practically opposite directions and no binary structure is
observed. Provided that the TS1 mechanism is mediating the
double-electron emission, this result is consistent with the
Wannier theory in which the electrons near the threshold
region emerge in opposite directions. As the emission energy
is increased, the electrons depart from the collinear geometry
as expected.

In Fig. 3 we show similar distributions for increasing
projectile energies. Both electrons are emitted with 10 eV,
while the projectile energies considered are 2 MeV for the
panels (a) and (b) and 6 MeV in (c) and (d) cases. As
in Fig. 2, the first (second) column corresponds to proton
(antiproton) impact. At these collision energies we observe
that the structures move toward the Q direction (parallel or
antiparallel). Tiny differences are obtained between proton
and antiproton impact at a collision energy of 2 MeV
for this particular configuration. Differences are practically
nonexistent at an impact energy of 6 MeV. This situation is
in contrast with the experimental results of Fischer et al. [41],
which suggest a possible dependence of the FDCS on the
projectile charge sign at an impact energy of about 6 MeV.
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FIG. 4. Contour plots of the angular distributions of the two electrons for double ionization of He by proton impact at 700 keV/amu. The
electrons are ejected with equal energies of 10 eV in the collision plane and the momentum transfer Q is (a) 1.2 a.u. and (b) 1.6 a.u. The FDCS
are in units of 10−5 a.u.

In Fig. 4 we analyze the dependence of the FDCS with
the momentum Q transferred by the projectile (proton impact
only). We show the electron angular distribution for Q =
1.2 a.u. [Fig. 4(a)] and Q = 1.6 a.u. [Fig. 4(b)], when
both electrons emerge with equal energies of 10 eV. These
distributions can be compared to the distribution shown in
Fig. 2(b). We note that as the Q value increases, the relative
importance of the binary peak decreases compared with the
recoil peak. We note that the electrons are not able by
themselves to account for the whole momentum transfer and
the recoiling target nucleus must participate in the collision. On
the other hand, the Gramm-Schmidt orthogonalization process
eliminates the contribution of direct collisions between the
heavy particles and the only way for the recoiling nucleus to
acquire momentum is via electron impact. As a result, the main
mechanism that leads to double-electron emission for large Q

and low emission energies is the recoil mechanism.

IV. REPRESENTATION TYPES IN DOUBLE IONIZATION

The development of the reaction microscope during the
1990s [42] allowed for a completely new insight of collision
processes. In particular, atomic double-ionization processes by
either ion or electron impact were experimentally explored [41,
43]. As a result, different graphical representations have been
used in order to highlight the main physical trends exhibited
by the data. In the following, we briefly analyze some of these
representations.

For two emitted electrons the simplest representation is
given by a two-dimensional Cartesian or polar graph, where
either the angular or the energetic distribution is displayed
for one of the emitted electrons keeping the emission energy
and direction of the other electron fixed [44]. This angular
representation is similar to that widely used in (e,2e) studies
since the 1970s and is probably the easiest to assimilate. In
fact, applied in recent years in (e,3-1e) studies, it helped to
identify second-order contributions in the projectile-atom
interactions [45].

When two variables are required in the analysis [either
(θ1,θ2) [41,43] or (E1,E2) [46]], the usual graphical repre-
sentation is the so-called contour plot, as used in the previous
section. Nevertheless, we note that this representation does not
provide a complete description of the process. In particular,
the role played by the target ion recoil momentum during
the collision process is hard to infer. To help identify the
binary, recoil, and back-to-back mechanisms, in our former
works [33,40] we have drawn contour lines for the FDCS over
the recoil ion momentum magnitude contour plot in terms of
(θ1,θ2). This procedure allowed us to analyze the four-body
dynamics in the angular distributions highlighting the analo-
gies between k1 + k2 in the different regions and the single
ionization counterpart for the FDCS. In Figs. 5(a) and 5(b) we
show the FDCS corresponding to Figs. 2(b) and 2(e) as contour
lines over the recoil distribution for proton and antiproton
impact. We observe that the binary peak is located in the low
recoil region, while the recoil peak remains near the region
associated to large values of the recoil momentum. In both
cases, a small displacement is observed relative to the extreme
values. This shift can be ascribed to the postcollisional effect
of momenta exchange provided by the model.

Another possible representation is provided by the denom-
inated ternary plots where the distributions are displayed in
a triangle, as used for tau meson decay [34]. In these plots
each of the magnitudes is represented as the relative distance
to a given triangle side. In recent years, this representation was
applied to describe the FDCS for single atomic ionization of
He by C6+ impact [35], and it is available in many scientific
drawing programs.

We now represent the FDCS obtained in the preceding
section with ternary plots, for which we use the variables Q,
pR, and k1 + k2:

πk1+k2 = |k1 + k2|2
P 2

, πQ = |Q|2
P 2

, πpR
= |pR|2

P 2
, (37)

where

P 2 = |Q|2 + |pR|2 + |k1 + k2|2. (38)

022705-9
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FIG. 5. Angular distributions of the FDCS for two electrons drawn over the corresponding absolute values of the target recoil momentum,
for the same dynamical conditions and projectiles considered in Figs. 2(b) and 2(e). The scale on each plot indicates the absolute values for the
target recoil momentum.

According to Viviani’s theorem the sum of these variables is
the height of the triangle, which is assumed to be one. Another
normalization criteria could be used [47].

The momentum-conservation law Q = pR + k1 + k2 re-
stricts inside of a circle the scatter dots that represent the
FDCS in the ternary plot.

From the momentum-conservation law the first-order tran-
sitions due to the projectile can be related to recoil momentum
values close to 0, Q, or 2Q, when the momentum of
each electron is close in magnitude to Q. In the present
representation, the binary peak is expected to be close to the
πpR

axis. On the other hand, the recoil peak corresponds to
πk1+k2 = πQ and πpR

takes its largest possible value. Finally,
the back-to-back emission is associated to the smallest values
of πk1+k2 . We note that in this representation the presence of
events displaced from the regions above mentioned indicates
that higher collision orders are present. In contrast to what
happens in photo-double-ionization processes, we note that
for charged particle impact the back-to-back emission for
equal energy electrons is not forbidden by any selection
rule. However, as stated above, models which overestimate

the interelectronic repulsion tend to increase the relative
contribution of this mechanism to the FDCS.

In Figs. 6(a) and 6(b) we show the ternary plot for the FDCS
evaluated with the present model for the double ionization
of He by 700 keV H+ projectiles. The electron emission
energies are E1 = E2 = 10 eV and the momentum transfer
Q = 0.9 a.u. We point out the presence of a cutoff for πQ which
is clearly related to the fixed Q value chosen. Furthermore, the
condition |k1 + k2| � k1 + k2 trims a sector of the circular
allowed region. For the present case, we can easily translate
into this representation the main features observed in Fig. 5.
For both projectiles the main emission is observed in the
region associated to large recoil values. We note, however,
that for proton impact the binary peak is much more intense
than for antiproton impact. In addition, and as stated above,
the binary structure is not located in the punctual zero recoil
ion momentum region as a consequence of the momentum
exchange between the four particles. Antiprotons enhance
the recoil peak as a consequence of the projectile-electron
repulsion: during the collision the electron is pushed against
the He nucleus. Proton projectiles, on the other hand, pull the

FIG. 6. Ternary plots for the distributions corresponding to Figs. 2(b) and 2(e). The left panel corresponds to proton impact and the right
one to antiproton, respectively. The FDCS are expressed in atomic units.
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FIG. 7. Ternary plots for the distributions corresponding to Figs. 4(a) and 4(b), respectively. FDCS are expressed in atomic units.

electrons outwards of the parent ion leading to a comparatively
more relevant electron-projectile interaction.

In Figs. 7(a) and 7(b) we show the ternary plot for the
FDCS corresponding to the cases shown in Figs. 4(a) and 4(b),
respectively. We note that the above discussed mechanisms
are easily recognized, and we observe from the comparison
of these figures with Fig. 6(a) that as Q increases the
allowed region is reduced and the constraints imposed by
Eq. (38) and by the maximum total electronic momentum
are clearly visible. The binary structure diminishes and the
double emission is mediated by the recoiling target core as
discussed in the previous section. In this sense, the present
ternary representation complements the interpretation of the
contour plots previously shown by evidencing the role of
the recoiling target nucleus in the double-electron emission.
Nevertheless, we notice that other possible combinations of
variables, or particular projections of the involved momenta,
can be also used to generate alternative ternary representations.

Finally, we point out that, for the H+ + He → H+ +
He2+ + 2e process, Schulz and collaborators recently pro-
posed a quaternary representation of the DDCS in terms
of a three-dimensional (3D) plot [31,48]. This representa-
tion is particularly convenient when diverse mechanisms as
TS1, shake off (SO), and two-step-2 (TS2) participate in
the description of the double-ionization process. The 3D
representation helps to identify and separate the relative
contribution of mechanisms involving first-order (TS1 and
SO) and higher-order (TS2) collisions. We have explored the
quaternary representation (not shown here) for the cases shown
in the previous section, without any visible advantage over the
2D representation here proposed. It could be useful though to
tackle emission geometries for which the TS1, SO, and TS2
become competitive.

V. CONCLUSIONS

We have studied the Schrödinger equation for a four-body
system interacting via Coulomb potentials. Separable solutions
which can be expressed as a product of six independent
functions have been proposed. These solutions satisfy an
equation with a separable operator plus a coupled nondiagonal
term. We have shown that when some of the relative two-body

motions are modelized by Coulomb waves the remaining
independent functions must account for the nonorthogonal
kinetic energy and satisfy coupled differential equations.
Different asymptotic limits have been explored in order to
include as much information as possible of the nondiagonal
operator which is neglected in the 6C model. The resulting
equations have been analyzed for different physically mean-
ingful asymptotic conditions in the problem. For some of these
regions, we have developed approximated wave functions
that account for the nondiagonal kinetic energy in terms of
Coulomb-like distortion factors with effective momenta. These
models are based on considering fixed values for the coupling
variables in the respective equations. We have considered
this as the most physically sound choice, even when many
other alternatives are possible to approximately decouple the
equations, as indicated in the text.

The present model has been used to evaluate the FDCS
for the double ionization of He by ion impact, focusing on
the possible differences arising from the projectile charge sign
at different impact energies. The results are represented as
contour plots in the electrons emission angles, which shows
the characteristic dynamic of a four-body reaction. The present
results clearly exhibit the denominated binary and recoil
structures, but show no evidence of a back-to-back emission
mechanism. This is a consequence of the electron-electron
interaction being weakened by the coupling terms hereby
considered. We observe that the FDCS for proton impact
are quite different from those corresponding to antiproton
impact, as corresponds to a four-body formalism at the
lowest impact energies considered. As the impact energy
increases the projectile charge sign turns less relevant as
expected.

We discussed the different representation schemes which
have been used during the past decade to highlight the
physics underlying the double-ionization processes at the fully
differential level. In particular, we suggest a 2D ternary plot
representation as a complementary tool to simultaneously
identify the role played by the recoil ion, the projectile, and the
emitted electrons during the double-ionization process. Such a
detailed insight on the four-body dynamics is hardly possible
using the standard contour plot representation so far used in
the field.
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Finally, we note that despite the long times needed to
acquire statistics, more fully differential experimental data is
urgently needed to further refine the distorted-wave models
currently under use. In this sense, we point out that during
the past decade most of the theoretical work cited as well as
the different representations explored have been based upon a
single set of measurements [41]. A wider data set would be

welcome and would surely improve our understanding of the
present collision system.
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[33] S. D. López, C. R. Garibotti, and S. Otranto, Phys. Rev. A 83,

062702 (2011).
[34] R. H. Dalitz, Philos. Mag. 44, 1068 (1953).
[35] S. Otranto, R. E. Olson, and J. Fiol, J. Phys. B: At. Mol. Opt.

Phys. 39, L175 (2006).
[36] L. U. Ancarani and G. Gasaneo, J. Phys. A: Math. Theor. 43,

085210 (2010).
[37] M. R. H. Rudge and M. J. Seaton, Proc. R. Soc. A 283, 262

(1965).
[38] A. R. P. Rau, Phys. Rev. A 4, 207 (1971).
[39] S. Otranto, G. Gasaneo, and C. R. Garibotti, Nucl. Instrum.

Methods, Phys. Res. B 217, 12 (2004).
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