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Our approach to the dissociative recombination and competitive processes based on the multichannel quantum
defect theory is extended to the full account of the dissociative excitation, including the electronic excitation
of the molecular ion. Compared to other existing modelings, ours relies on a simpler and less-time-consuming
discretization of the vibrational continua of the target ion and to a more accurate account of the Rydberg-valence
interactions via a second-order solution of the Lippman-Schwinger equation. A thorough study of the competition
among the dissociative recombination, vibrational excitation, and dissociative excitation is performed, including
a detailed analysis of the two different mechanisms governing the ion dissociation. The application of our method
to the high-energy electron collisions with H2

+ and HD+ ions results in a cross section in good agreement with
the best previous modeling and with the most recent measurements performed in the Test Storage Ring of the
Max-Planck-Institut für Kernphysik in Heidelberg.
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I. INTRODUCTION

Dissociative recombination (DR) of molecular cations with
electrons [1] is one of the simplest paradigms for the reactive
collisions and a major elementary process, driving the charged-
particle densities in astrophysical ionized media, fusion plas-
mas in the divertor region, hypersonic entry plasmas, and in
many other cold media of technological interest [2,3].

Within this paper, rotational structure and interactions are
neglected and, consequently, the DR process writes

AB+(v+
i ) + e−(ε) −→ [A + B]ε . (1)

This scheme is appropriate for diatomic systems but can be
generalized for polyatomic ones. v+

i stands for the initial
vibrational quantum number in the relevant modes of the
target cation, considered in its ground electronic state, ε is
the energy of the incident electron, whereas, ε is the relative
kinetic-energy release of the products.

DR is competing with the elastic, inelastic, or superelastic
electron scattering,

AB+(v+
i ) + e−(ε) −→ AB+(v+

f ) + e−(εf ), (2)

corresponding to εf equal, smaller, or larger than ε, respec-
tively. These processes, consequences of the autoionization,
are also very important for the chemistry and for the energetics
of the molecular species in cold reactive media.

During the last 60 years, DR and its competitive processes
have been the subject of an increasing number of experimental
and theoretical papers. Indeed, the first robust modeling of the
DR, based on the application of the configuration interaction
method of Fano [4] to molecular processes, was that of
Bardsley [5], who proposed two mechanisms, both assisted

by the autoionization: the direct mechanism, consisting of the
capture of the electron into a dissociative state, and the indirect
mechanism, relying on the temporary capture of the electron
into a bound (Rydberg) state of the neutral AB∗, subsequently
predissociated by a repulsive state AB∗∗. In opposition to this,
Giusti-Suzor [6] assumed that the two mechanisms interfere
and applied the multichannel quantum defect theory (MQDT)
[7–10], rather than the configuration interaction method [11].

At high energies, when ε exceeds the energy necessary to
break up the target cation, electron impact ion dissociation,
i.e., dissociative excitation (DE),

AB+(v+
i ) + e−(ε) −→ [A + B+]ε + e−(εf ) (3)

becomes possible and adds incoherently to the previous
scattering processes (1) and (2), resulting most often in the
decrease in the DR yield.

The purpose of this paper is to improve our MQDT
treatment of the dissociative recombination by the account
of the dissociative excitation in order to produce reliable
high-energy DR cross sections.

The role of the DE on the DR has been addressed since
1995 for HD+ [12–14]. Our initial approach [13,14] has been
restricted to a first-order account of the break up of the target
via the vibrational continuum of its electronic ground state—a
process which we call DE of the first kind (DE1)—and relied
on the inclusion of this continuum in the survival factor (cf.
Eq. (A5) in Ref. [6]).

A more rigorous account of DE was eventually given
by Takagi [15]. He divided the continuum part of the
vibrational spectrum in narrow energy bands and, integrating
the energy-normalized wave function between their borders,
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he discretized this continuum. This allowed treating the DE
process [Eq. (3)] as vibrational excitation [Eq. (2)]. He also
addressed the problem of the DE via excited electronic states of
the cation—a process which we may call DE of the second kind
(DE2)—completing an efficient approach which, from then
on, could provide correct DR and DE cross sections at high
energies. However, within his approach, the Rydberg-valence
interaction was computed in the first order only.

Inspired by the seminal work of Takagi [15], we have built
our own theoretical and numerical method, resulting, in a first
stage in DE1 evaluations for HD+ and DT+ [16,17] within a
collaboration with a group from Bucharest University. When
DE2 was included in our formalism, this latter group decided
to split and to publish, on their own, a series of results [18].

The purpose of the present paper is to provide an improved
theoretical and numerical method for the study of the DR at
high energies in comparison with Takagi [15] and Stroe and
Fifirig [18]. It relies on an alternative discretization technique
of the vibrational continua of the target ion and on a more
accurate account of the Rydberg-valence interactions. More
specifically, we elaborated a rigorous second-order approach
of the reactive electron-molecular cation collisions, avoiding
the serious inconsistencies in solving the Lippman-Schwinger
equation in the same interaction region as in Ref. [18] and
providing a more-detailed characterization of the two distinct
processes DE1 and DE2.

Our paper is organized as follows: The main elements of
our low-energy approach of the DR are summarized in Sec. II.
The extension of our method by the inclusion of DE is the
subject of Sec. III. Section IV is devoted to the illustration of
the competition among dissociative recombination, vibrational
excitation, and dissociative excitation. Our main results and
their comparison with the experimental and the best theoretical
results are presented in Sec. V. Section VI provides our
conclusions. An extensive appendix illustrates the solution of
the Lippman-Schwinger equation, generalized to the case of
the DE inclusion.

II. THE MQDT-TYPE APPROACH TO THE LOW-ENERGY
DISSOCIATIVE RECOMBINATION

A. The relevant states and channels

In this section, we restrict ourselves to the case where
the energy of the incident electron prevents reaching the
dissociation threshold of the ion in the ground electronic state.
Consequently, the processes described in Eqs. (1) and (2) lead
to the formation of intermediate collision complexes whose
properties actually determine their final outcome. The account
of these states allows the writing of the preceding reactions in
the more explicit form

AB+(v+
i ) + e−(ε) → AB∗(c), AB∗∗, AB∗→

{
[A+ B]ε,

AB+(v+
f ) + e−(εf ),

(4)

in which AB∗(c) stands for states from the monoelectronic
ionization continuum but bound from the vibrational point of
view, AB∗∗ stands for states from the vibrational continuum—
i.e., dissociative—but bound from the electronic point of view,

and AB∗ stands for states both electronically and vibrationally
bound.

The occurrence of the AB∗ states, often called “Rydberg
resonances,” is the main reason for building an approach of
the DR [5,6] based on the MQDT [7–10].

The processes (4) result from the coupling between
ionization and dissociation channels, i.e., groups of states
characterized by a common set of quantum numbers and by
the same fragmentation threshold (either for ionization or for
dissociation), having the energy below or above this thresh-
old. More specifically, within a quasidiabatic representation
[5,6,19], an ionization channel is built starting from the ground
electronic state of the ion in one of its vibrational levels v+—
which we call “core 1”—and is completed by gathering all the
monoelectronic states of a given orbital quantum number l,
describing an “optical” electron. These monoelectronic states
describe, with respect to the v+ threshold, either a “free”
electron—in which case the total state AB∗(c) corresponds
to (auto)ionization—or a bound electron—in which case the
total state AB∗ corresponds to a temporary capture into a
Rydberg state. Meanwhile, a dissociation channel relies on
an electronically bound state AB∗∗ whose potential energy
in the asymptotic limit is situated below the total energy
of the system. Accordingly, the ionization channels gather
together AB∗ and AB∗(c) states, and the dissociation channels
correspond to AB∗∗ states.

Given the total energy of the molecular system, a channel
is open if this energy is higher than the energy of its
fragmentation threshold and is closed in the opposite case.

In order to simplify the equations appearing in Sec. III,
we restrict our discussions and derivations in Secs. II–IV and
in the Appendix to the case where only one single partial
wave of the Rydberg electron in an ionization channel is
available. In the following, we omit the dependence on the
orbital quantum number l unless it is specifically required.
The generalization of these equations to the case of further
partial waves is straightforward, and our present calculations
(corresponding to the results in Sec. V) involve two partial
waves for one of the relevant symmetries, namely, 1�+

g .

B. Interactions in the reaction region

The MQDT approach starts with the building of the
interaction matrix V , performed in the A region [20] where the
Born-Oppenheimer context is appropriate for the description
of the collision system.

For a given symmetry � (quantum number related to the
projection of the total electronic orbital angular momentum on
the internuclear axis), the states belonging to an ionization
channel may be modeled reasonably well with respect to
hydrogenic states in terms of the quantum defect μ�(R),
which is dependent on the internuclear distance R, but is
assumed to be independent of energy. An ionization channel
of core 1, labeled by v—vibrational quantum number of a
Rydberg state—rather than v+—standing for a vibrational
quantum number of the ion core—can be coupled to a
dissociation channel, labeled dj , on the electronic level first,
through an R-dependent scaled Rydberg-valence interaction
term V (e)�

dj
(R), which is assumed to be independent of the

energy of the electronic state.
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This is the only possible interchannel electronic coupling,
and by integrating these couplings over the internuclear
distance, the nonvanishing elements of the interaction matrix
V is as follows:

V �
dj ,v

(E,E′) = 〈
F�

dj

∣∣V (e)�
dj

(R)
∣∣χ�

v

〉
. (5)

Here, χ�
v is the vibrational wave function associated with an

ionization channel in the interaction (i.e., the A) region, and
F�

dj
is the radial wave function of a dissociative state dj of

symmetry �.
Starting from the interaction matrix Vand from the zero-

order Hamiltonian H0, (diagonal in both the ionization and the
dissociation channel’s representations), we build the reaction
matrix K, which satisfies the Lippmann-Schwinger equation,

K = V + V
1

E − H0
K. (6)

This can be solved perturbatively. However, in a previous
paper [21], we have shown that when the Rydberg-valence
interactions V (e)�

dj
do not depend on the energy of the Rydberg

electron as we assume presently, Eq. (6) can be solved exactly
in the second order.

In order to express the effects of the short-range interaction
in terms of phase shifts, we perform a unitary transformation of
our initial basis into a new one, corresponding to eigenchannels
[6] via the diagonalization of the reaction matrix K,

KU = − 1

π
tan(η)U , (7)

where U is a matrix whose columns are the eigenvectors and
the diagonal matrix tan(η) contains the eigenvalues.

C. Dynamics in the outer region: The calculation
of the cross section

In the external “B region” [20], the Born-Oppenheimer
representation is no longer valid for the neutral molecule, and
a frame transformation into the close-coupling representation
[12,22,23] is performed via the projection coefficients,

Cv+,�α =
∑

v

U�
v,α〈χv+ (R)| cos

[
πμ�(R) + η�

α

]|χv(R)〉, (8)

and

Cd,�α = U�
dα cos η�

α . (9)

These can be organized in a matrix C. On the other hand,
the coefficients Sv+,�α and Sdj ,�α are obtained by replacing
the cosine with the sine in Eqs. (8) and (9) and generate the
matrix S.

C and S are the building blocks of the generalized scattering
matrix X , involving all the channels, open (“o”) and closed

(“c”), and organized in four submatrices,

X = C + iS
C − iS =

(
Xoo Xoc

Xco Xcc

)
. (10)

Imposing boundary conditions leads to the physical scattering
matrix [7],

S = Xoo − Xoc

1

Xcc − exp(−i2πν)
Xco, (11)

where the diagonal matrix ν is formed with the effective
quantum numbers νv+ = [2(Ev+ − E)]−1/2 (in atomic units)
associated with each vibrational threshold Eν+ of the ion
situated above the current total energy E (and, consequently,
labeling a closed channel).

For a molecular ion, initially on the level v+
i recombining

with an electron of energy ε, the cross section of capture into all
the dissociative states dj of the same symmetry “sym” [gerade
(ungerade), singlet (triplet)] and electronic angular momentum
projection � can be written as

σ
sym,�

diss←v+
i

= π

4ε
ρsym,�

∑
j

∣∣Sdj ,v
+
i

∣∣2
, (12)

whereas, the total cross section for DR is obtained by summing
over all available �’s,

σ
sym
diss←v+

i

=
∑
�

σ
sym,�

diss←v+
i

. (13)

Here, ρsym,� is the ratio between the spin multiplicities of the
neutral and the target ion.

Similarly, the total cross section for vibrational excitation
from the initial vibrational state v+

i into the state v+
f writes

σ
sym
v+

f ←v+
i

=
∑
�

σ
sym,�

v+
f ←v+

i

, (14)

where

σ
sym,�

v+
f ←v+

i

= π

4ε
ρsym,�

∣∣Sv+
f ,v+

i

∣∣2
. (15)

III. EXTENSION OF OUR THEORETICAL APPROACH
TO THE HIGH-ENERGY DISSOCIATIVE
RECOMBINATION: THE ROLE OF THE

DISSOCIATIVE EXCITATION

A. The states and channels related to the vibrational
continua of the ion

At energies higher than the dissociation threshold of the
ion, we have to take into account the autoionization resulting
into states from the continuum part of the vibrational spectrum,
i.e., dissociative excitation [DE, Eq. (3)]. In terms of resonant
states involved and the competition between the different exit
channels, this corresponds to the replacement of Eq. (4) with
the following:

AB+(v+
i ) + e−(ε) → AB∗(c),AB∗∗,AB∗∗(c) →

⎧⎨
⎩

[A + B]ε,
AB+(v+

f ) + e−(εf ),

[A + B+]ε′ + e−(εf ),
(16)
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FIG. 1. (Color online) HD+-HD states relevant for the electron-
HD+ reactive collisions. Potential-energy curves for dotted curve
(blue): HD+2�+

g (1sσg); dashed curve (orange) HD+2�+
u (2pσu);

solid line (red): HD∗∗1�+
g (2pσ 2

u ) dissociative states. The vibrational
levels relying on the ground and excited cores are represented by
horizontal thin lines, colored blue and orange, respectively.

where AB∗ has been removed (since all the bound ionization
channels are open and the capture into Rydberg states is
excluded) and AB∗∗(c) has been added, labeling dissociative
states from the monoelectronic continuum. These states,
representing a free electron in the field of a dissociating ion, can
be organized either into dissociation channels or into ionization
ones, but the latter option has been preferred so far. In order
to be explicit on the developments that we implemented, we
refer concretely to the case of H2 and HD systems.

The AB∗∗(c) states invoked above are, in this case, built
on two electronic states of the ionic cores, the 2�+

g (1sσg)—
referred to as core 1—dotted (blue) potential-energy curve
(PEC) and 2�+

u (2pσu)—referred to as core 2—dashed (or-
ange) PEC in Fig. 1. We have discretized their vibrational
continua by providing a wall of 15 eV height at R = 25 a.u.

[10] (1 a.u. = a0 = 0.052 9177 nm). This corresponds, for
every partial wave of the incident electron, to about 334 and
291 further ionization channels for the ground cores of HD+

and H2
+, respectively—responsible for DE1—and to 383 and

375 ionization channels for the excited cores of HD+ and H2
+,

respectively—responsible for DE2.
Finally, since the temporary capture into bound Rydberg

states AB∗ is excluded above the dissociation limit of the ion
PEC, the collision process is exclusively driven by the direct
mechanism.

B. Further interactions implied by the dissociative excitation
in the reaction region

When dissociative excitation is included in our approach,
the coupling between a given dissociation channel dj and an
ionization one v, built on core 1—Eq. (5)—is extended to
the continuum part of the vibrational spectrum (previously
discretized as shown in the preceding subsection).

On the other hand, every channel v is coupled to the further
ionization channels built on core 2, labeled generically by w.

These couplings are quantified at the electronic level by
the R-dependent interaction term Ṽ (e)�(R)—assumed to be
energy independent—and they have the following form:

V �
wv(E,E′) = 〈

χ�
w

∣∣Ṽ (e)�(R)
∣∣χ�

v

〉
. (17)

Besides the elements given by Eqs. (5) and (17) in which
v and w span, for every � symmetry, all the available
vibrational levels (bound and discretized continua), the re-
maining elements of the interaction matrix—V �

didj
, V �

diw
, V �

vv′ ,

and V �
ww′—vanish, since in the quasidiabatic representation

chosen here, they concern pairs of channels associated with
the same ionic core [19].

Consequently, the actual reaction matrix in block form is
as follows:

K =
⎛
⎝Kd̄ d̄ Kd̄ v̄ Kd̄w̄

Kv̄d̄ Kv̄v̄ Kv̄w̄

Kw̄d̄ Kw̄v̄ Kw̄w̄

⎞
⎠, (18)

where the collective indices d̄, v̄, and w̄ in Eq. (18) span the
ensembles of all the available individual ones and dj , v, and
w are labeling dissociation channels, ionization channels built
on core 1, and ionization channels built on core 2, respectively.
Whereas, the matrix formed by the first two rows and columns
stand for the DR at low energies, the third row and the third
column complete the reaction matrix for the correct description
of the DR at high energies, including the DE.

As in the case of DR at low energy (Sec. II), the Lippmann-
Schwinger equation can be solved exactly in second order
when the interactions V (e)�

dj
and Ṽ (e)� do not depend on

the energy of the incident electron. Whereas, the first-order
solution of Eq. (6) accounts for the electronic coupling
between ionization and dissociation channels, the second-
order one goes further in accuracy, accounting for electronic
coupling between ionization channels, an aspect which was
not addressed in the previous papers [15,18]. The derivation
of this solution for the DE-assisted DR is given in full detail
in the Appendix, which is a thorough quantitative analysis of
the interactions brought by the DE. We outline here only the
output of this derivation.

The nonvanishing elements for all the allowed
di, dj , v, v′, w, and w′ dissociation and ionization channels
are as follows:

K�
vdj

= K�
dj v

= V �
vdj

, (19)

K�
vw = K�

wv = V �
vw, (20)

K�
vv′ = 1

W

∫∫ [
χ�

v (R)V (e)�
dj

(R)F�
d (R<)

×G�
d (R>)V (e)�

dj
(R′)χ�

v′ (R′)
]
dR dR′. (21)

In Eq. (20), W denotes the Wronskian of the regular (Fd )
and the irregular (Gd ) solution of the dissociative state
nuclear Schrödinger equation. Due to the previously explained
reasons, all the other elements will vanish, namely,

Kdidj
= 0, Kdiw = Kwdj

= 0, Kww′ = 0. (22)
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Taking all of these into account, the second-order reaction
matrix has the form

K =
⎛
⎝O V d̄ v̄ O

V v̄d̄ Kv̄v̄ V v̄w̄

O V w̄v̄ O

⎞
⎠, (23)

where the elements of each block are given by Eqs. (5), (17),
and (20) and O is the null matrix.

C. Dissociative recombination and excitation dynamics:
The calculation of the cross section

The inclusion of dissociative excitation due to the presence
of the discretized continuum levels of the two cores increases
not only the dimension of the interaction matrix V [Eq. (17)]
and the reaction matrix (18), but also that of the frame
transformation C and S matrices. Consequently, the sum on
the right-hand side of Eq. (8) is extended to the quasicontinuum
levels, and further matrix elements, corresponding to the
quasicontinuum levels of the second core (w), occur.

The X matrix and, finally, the S matrix are eventually built
according to Eqs. (10) and (11), respectively. The DE1 and
DE2 processes are actually treated as vibrational excitations
from an initial vibrational state v+

i to the (discretized)
ionization continua of the two cores. The cross sections for
these processes are given by

σ
sym,�

DE1,v+
i

= π

4ε
ρsym,�

∑
v+

h <v+<v+
max(ε)

∣∣Sv+,v+
i

∣∣2
, (24)

and

σ
sym,�

DE2,v+
i

= π

4ε
ρsym,�

∑
w+<w+

max(ε)

∣∣Sw+,v+
i

∣∣2
. (25)

The total DE cross section has the form

σDE,v+
i

=
∑

sym,�

σ
sym,�

DE,v+
i

, (26)

where

σ
sym,�

DE,v+
i

= σ
sym,�

DE1,v+
i

+ σ
sym,�

DE2,v+
i

. (27)

v+
h is the highest bound vibrational level built on core 1,

whereas, v+
max(ε) and w+

max(ε) are the highest quasicontinuum
vibrational levels situated below the current total energy
E = Ev+

i
+ ε, corresponding to core 1 and core 2, respectively.

IV. ILLUSTRATIONS OF THE COMPETITION BETWEEN
THE RELEVANT SIMULTANEOUS PROCESSES

In order to distinguish between the two types of
excitations—vibrational and dissociative—and to understand
the intimate link between them, we will explore a broad energy
range, from zero to energies above the dissociation energy of
the ion (2.67 eV).

To simplify our analysis, we neglect the indirect mecha-
nism in the low-energy region and restrict ourselves to the
open channels, i.e., accounting for the direct process only.
Consequently, the X matrix from Eq. (10) reduces to its Xoo

component, and all the resonant parts from the second term of
the S matrix in Eq. (11) are missing.

1 2 3 4 5 6 7
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2 )

1Σ
g
+

FIG. 2. (Color online) Direct dissociative recombination of the
ground-state HD+ ion with a d (l = 2) electron into the lowest
1�+

g (2pσu)2 HD∗∗ state. Dotted black curve: only v+ = v+
i = 0

included in the calculation. Dashed (blue) curve: all bound vibrational
levels (v+ = 0–20) are included. Solid (red) curve: bound vibrational
levels and discretized vibrational levels from the continuum of the
ground-state ion (dissociative excitation of the first kind) are included.

Figure 2 displays the cross section for the DR of a
ground-state HD+ (v+

i = 0) ion with a d (l = 2) electron into
the lowest 1�+

g (2pσu)2 HD∗∗ dissociative state in three cases:
the entrance ionization channel—corresponding to the ground
vibrational state of the ion—available only (dotted black
curve), all the ionization channels corresponding to the bound
vibrational state of the ion available [dashed (blue) curve], and
all the ionization channels built on bound and quasicontinuum
vibrational levels available [solid (red) curve].

Although the results in Fig. 2 come from the full MQDT
calculations as those described in the preceding section, in
order to get a better insight into the mechanisms illustrated
there, we recall a simple model, qualitatively appropriate in
our case, based on the following approximations:

(i) The first-order solution of the Lippman-Schwinger
equation (6) is adopted, and

(ii) the R dependence of the quantum defects is neglected.
Within these assumptions, the direct DR cross section can

be written as a product of a capture cross section σcap and a
“survival” factor fsurv [6],

σ
sym,�

diss←v+
i

= σcapfsurv, (28)

where

σcap = π

ε
ρsym,�ξ 2

vi
, (29)

and

fsurv = 1[
1 + ∑

vopen
ξ 2
v

]2 . (30)

All these quantities rely on the strength of the Rydberg-valence
interaction,

ξv = πV �
dv. (31)

The simplest case in Fig. 2 comes from the account of one
single ionization channel, the entrance one. Here, DR is in
competition with the elastic scattering only, and according to
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FIG. 3. (Color online) DE1 and DE2 cross sections for the HD+

ground-state ion on impact with electrons. The contribution of the
lowest dissociative state of the 1�+

g symmetry and of the l = 2 partial
wave of the Rydberg electron is illustrated, the calculations having
been performed in the second order of the reaction matrix. The solid
(green) line stands for the total DE cross section, whereas, the dashed
black and dotted red lines illustrate the the DE1 and DE2 cross
sections, respectively.

the preceding equations, one finds the cross section given by
the smooth dotted black curve.

In the second case, we involve further ionization channels,
namely, those associated with the bound vibrational levels,
which mean that we allow for more autoionization through
vibrational excitation. At very low energy, the cross section—
the dashed (blue) curve in Fig. 2—evolves smoothly and is
identical to that from the first case. However, when the energy
rises, it drops suddenly as each new vibrational threshold opens
in agreement with the simple predictive equations (28)–(31).
When the last vibrational bound level is reached (v+ = 20),
the cross section continues to decrease without displaying any
further steplike structure. Notice that autoionization through
vibrational excitation results in the decrease in the DR cross
section by a factor of up to 5 with respect to the first case
discussed.

Finally, at energies higher than the dissociation threshold of
the ion as shown in Sec. III, the vibrational excitation continues
to compete with the dissociative recombination but becomes
richer, being extended to dissociative excitation. The solid
(red) curve in Fig. 2 represents the cross section of DR assisted
by DE1 only and shows that this latter process decreases the
DR with respect to that affected by vibrational excitation only
[dashed (blue) curve] by a factor up to 2.

As for the DE2 process, it is completely negligible at low
energies, but it becomes dominant above 10 eV as Fig. 3
illustrates for the case of the HD+-HD system.

V. RESULTS FOR THE DISSOCIATIVE RECOMBINATION
OF BENCHMARK CATIONS: HD+ AND H2

+

The most-recent high-energy experiments devoted to the
benchmark diatomic hydrogen cation have been performed on
HD+ in Heidelberg, Stockholm, Aarhus [24], and Tokyo [12].
Therefore, we have performed extensive calculations on this
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FIG. 4. (Color online) Dissociative recombination of the ground
state of the HD+ ion, global cross sections. Dashed blue (solid
red) curves: second-order calculations with dissociative excitation
neglected (accounted). Black dot-dashed curve: computation of
Takagi [15]. Circles: measurements of Tanabe et al. [12]. Triangles:
measurements representing the Heidelberg data in Al-Khalili et al.
[24].

hydrogen isotopolog: We have computed the DE-assisted DR
cross section for capture into all the dissociative states within
every relevant symmetry 1�+

g , 1,3�+
u , 1,3�u,g , and for a broad

range of energies, i.e., between the dissociation thresholds—
2.67 and 12 eV. The results are shown in Fig. 4.

These calculations have been carried out using the first
order and, alternatively, the second order of the solution
of the Lippman-Schwinger equation for the reaction matrix
[Eq. (6) and the Appendix] and have relied on molecular data
previously used [25–27]. Our most accurate cross section, i.e.,
the solid (red) curve in Fig. 4, is in better agreement with the
most recent measurements [24] than the previous theoretical
estimations [15] below 8 eV. One may notice the huge effect of
the dissociative excitation, which when taken into account in
the theoretical modeling, makes the dissociative recombination
cross section decrease by a factor up to 4 around 7 eV.

Significant structures due to the opening of the final
channels with D (n � 3) or H (n � 3) have already been
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FIG. 5. (Color online) Dissociative recombination of the ground-
state HD+ ion, contributions from each symmetry (indicated in the
panel) to the global DR cross section.
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FIG. 6. (Color online) Dissociative recombination of the ground-
state HD+ ion, contributions of each pair of atomic states result-
ing from dissociation. “H (n = 1) + D (n = 2,3,4, . . .)” stands for
“D (n = 1) + H (n = 2,3,4, . . .)” too.

experimentally found at energies between 1 and 3 eV [28].
These structures represent the DR via the vibrational contin-
uum of the monoexcited molecular Rydberg states. It should
be noted that such processes can both increase and decrease the
DR rate since the multiple crossings involved can open addi-
tional pathways both for autoionization (reducing the effective
survival factor) and towards the atomic final states (increasing
the rate of DR yielding excited atoms) [28]. Such processes,
where dynamical transitions occur from the doubly excited dis-
sociative states to monoexcited Rydberg states via a multitude
of curve crossings, are not included in the present calculation
since we focus on the high-energy region (ε > 3 eV).

Figure 5 provides the contributions of each of the seven
symmetries considered in our analysis—all � and �, gerade
and ungerade, singlet and triplet symmetries, except the
3�+

g characterized by a negligible Rydberg-valence coupling.
Whereas, the 1�+

g symmetry dominates below 5 eV, 3�g is the
most important above this energy and diminishes in favor of
1�g above 9 eV.

2 4 6 8 10 12
ε (eV)

0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e 
at

om
ic

 y
ie

ld

n=1
n=2
n=3
n=4
n=5
n≥6

FIG. 7. (Color online) Dissociative recombination of the ground-
state HD+ ion, relative atomic H(n), or D(n) final-state yields.
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FIG. 8. (Color online) Dissociative recombination—black
curves—and dissociative excitation—lighter (green) curves—of the
H2

+ molecular ion. Thin (thick) solid curves: first-order (second-
order) calculations. Dashed curves: theoretical results of Takagi [15].

Figures 6 and 7 provide the branching ratios and the relative
atomic yields, respectively, assuming that no redistribution
of the capture flux is effective at large internuclear distances
via interactions with highly excited Rydberg states. Besides
the atomic n = 1 ground state, the excited atomic states n =
2–5 are dominantly populated around 6, 9, 10, and 12 eV,
respectively.

Since the measurements on H2
+ are not vibrationally

resolved [29,30], we have compared our cross sections for this
isotopolog with the best-available theoretical data. Figure 8
displays a good agreement between our results and those
of Takagi [15], both for dissociative recombination and
dissociative excitation. The cross sections of Takagi, computed
within the first order of the reaction matrix, are smaller than
our first-order ones, probably due to the different modalities
in managing the very highly excited dissociative states and
of their coupling with the ionization. One may also notice
the huge importance of the electronic couplings between the
ionization channels in the case of the dissociative excitation,
illustrated by the notable difference at high energies between
the second-order and the first-order cross sections.

VI. CONCLUSION

We have extended our approach of dissociative recombina-
tion in order to fully include its competition with dissociative
excitation. This was achieved by extending our collision
formalism to the case of two active electronic states of
the cation by discretizing, in a simple and efficient way,
the corresponding vibrational continua and by a complete
inclusion of the relevant interactions via a rigorous derivation
of the reaction matrix in the second order. The computed cross
sections for the HD+-HD system agree better than the previous
modelings with the most recent storage ring measurements.

In the present paper, we focused on the role of competition
of the dissociative excitation with respect to the dissociative
recombination. However, we also performed preliminary
computations of the dissociative excitation cross section itself
for H2

+, which proved to agree well with previous theoretical
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estimations. A systematic series of further calculations are
under way in order to provide extensive DE cross sections,
which will be compared with the most recent, yet unpublished,
measurements.

On the other hand, after having tested our approach by
comparison with experiment and previous theory, we plan to
perform more detailed DR and DE computations on isotopes
of H2

+ and major impurity hydride cations. This will provide
new input data for the kinetic predictions of the hydrogen
plasmas in the wall and divertor regions of the fusion devices,
strongly needed in the present collisional-radiative models.
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APPENDIX: THE REACTION MATRIX APPROPRIATE
FOR THE MODELING OF HIGH-ENERGY DISSOCIATIVE

RECOMBINATION AND DISSOCIATIVE EXCITATION

According to the Lippmann-Schwinger equation (6) in the
energy representation, the elements of the reaction matrix for
a given value of �—which are omitted in this Appendix for
the sake of simplicity—write [21]

Kji(E
′,E) = Vji(E

′,E)

+
∑

k

P
∫

dE′′ Vjk(E′,E′′)Kki(E′′,E)

E − E′′ . (A1)

Here, E, E′, and E′′ are the energies associated with the
ionization or dissociation channels labeled by i, j , and k, and
P refers to the principal value of the integral on the right-hand
side.

The following specific indices are used:
(i) d: a dissociation channel.

(ii) v/v′/v′′: an ionization channel associated with core 1.
(iii) w/w′/w′′: an ionization channel associated with

core 2.

As shown in Sec. III B as we restrict ourselves to the
quasidiabatic representation, for all di, dj , v, v′, w, and w′,
we have

Vdidj
= 0, Vdiw = 0, Vvv′ = 0, Vww′ = 0. (A2)

As for the remaining interaction matrix elements, their proper-
ties rely on the assumption that the electronic couplingsV (e)

dj
(R)

and Ṽ (e)(R)—introduced in Eqs. (5) and (17), respectively—
are independent of the energy of the external electron in the
involved ionization channels. This means that the dependence
on energy comes from the dissociative channels only and,
consequently,

Vvdj
(E′,E) = Vvdj

(E), (A3)

and

Vvw(E′,E) = Vvw. (A4)

In Eq. (A4), Vvw are independent of E′ and E.
In block form, the reaction matrix has the structure given

by Eq. (18).
In the first order, the reaction matrix is equal to the interac-

tion matrix V , introduced in Sec. II B and whose only nonva-
nishing matrix elements are those given by Eqs. (5) and (17).

From now on, we will focus on the second order K(2) of the
reaction matrix (18) omitting the “(2)” superscript for the sake
of simplicity.

For any two dissociative channels d1 and d2, Eq. (6) implies

Kd1d2 (E1,E2)

= Vd1d2 (E1,E2) +
∑
dj

P
∫

dE
Vd1dj

(E1,E)Kdj d2 (E,E2)

E2 − E

+
∑

v

P
∫

dE′ Vd1v(E1,E
′)Kvd2 (E′,E2)

E2 − E′

+
∑
w

P
∫

dE′′ Vd1w(E1,E
′′)Kwd2 (E′′,E2)

E2 − E′′ . (A5)

Meanwhile, since Vd1d2 = Vd1w = 0 according to (A2), the
above equation reduces to

Kd1d2 (E1,E2) =
∑

v

P
∫

dE′ Vd1v(E1,E
′)Kvd2 (E′,E2)

E2 − E′ .

(A6)

In a similar way, for any two vibrational and dissociative
channels w and d1, respectively, Eq. (6) writes

Kwd1 (E′′,E)

= Vwd1 (E′′,E) +
∑

v

P
∫

dE′ Vwv(E′′,E′)Kvd1 (E′,E)

E − E′

+
∑
w′

P
∫

dE′ Vww′(E′′,E′)Kw′d1 (E′,E)

E − E′

+
∑
dj

P
∫

dEj

Vwdj
(E′′,Ej )Kdj d1 (Ej ,E)

E − Ej

. (A7)

Using Eqs. (A2) and (A4), Eq. (A7) becomes

Kwd1 (E′′,E) =
∑

v

VwvP
∫

dE′ Kvd1 (E′,E)

E − E′ . (A8)
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The right-hand side of Eq. (A8) is independent of E′′, and
hence, we can write

Kwd1 (E′′,E) = Kwd1 (E). (A9)

Once we explored the blocks Kd̄d̄ and Kw̄d̄ of the reaction
matrix (18), and now, we focus on the block Kv̄d̄ . For any two
indices v,d1,

Kvd1 (E′,E)

= Vvd1 (E′,E) +
∑
v′′

P
∫

dE′′ Vvv′′ (E′,E′′)Kv′′d1 (E′′,E)

E − E′′

+
∑
w

P
∫

dE′′ Vvw(E′,E′′)Kwd1 (E′′,E)

E − E′′

+
∑
dj

P
∫

dE1
Vvdj

(E′,E1)Kdj d1 (E1,E)

E − E1
. (A10)

The use of the third equation of (A2) and of (A3) reduces the
above equation to

Kvd1 (E′,E) = Vvd1 (E) +
∑
w

VvwP
∫

dE′′ Kwd1 (E′′,E)

E − E′′

+
∑
dj

P
∫

dE1
Vvdj

(E1)Kdj d1 (E1,E)

E − E1
.

(A11)

Furthermore, due to (A9), the first sum on the right-hand side
of the above equation vanishes. Indeed,

∑
w

VvwP
∫

dE′′ Kwd1 (E′′,E)

E − E′′

=
∑
w

VvwKwd1 (E)P
∫

dE′′

E − E′′ = 0, (A12)

as the principal part of the last integral is zero. Consequently,
(A11) reduces to

Kvd1 (E′,E) = Vvd1 (E) +
∑
dj

P
∫

dE1
Vvdj

(E1)Kdj d1 (E1,E)

E − E1
.

(A13)

Noticing that Eq. (A13) does not depend on E′, we may write

Kvd1 (E′,E) = Kvd1 (E). (A14)

Returning now to Eq. (A6) and using Eqs. (A3) and (A14), we
find

Kd1d2 (E1,E2) =
∑

v

Vd1v(E1)Kvd2 (E2)P
∫

dE′

E2 − E′ = 0

(A15)

for all d1,d2.
Moreover, Kdj d1 = 0 in Eq. (A13) implies

Kvd1 (E′,E) = Vvd1 (E) (A16)

for all v,d1. Based on this latter result, Eq. (A8) becomes

Kwd1 (E′′,E) =
∑

v

VwvVvd1 (E)P
∫

dE′

E − E′ = 0 (A17)

for all w,d1.

We next calculate elements of the blocks Kw̄w̄ and Kv̄w̄.
For any two indices w1,w2, we have

Kww′(E,E′)

= Vww′(E,E′) +
∑

v

P
∫

dE′′ Vwv(E,E′′)Kvw′(E′′,E′)
E′ − E′′

+
∑
w′′

P
∫

dE′′ Vww′′ (E,E′′)Kw′′w′(E′′,E′)
E′ − E′′

+
∑
dj

P
∫

dE1
Vwdj

(E,E1)Kdj w′(E1,E
′)

E′ − E1
. (A18)

According to Eq. (A2), Vww′ = Vww′′ = Vwdj
= 0. Conse-

quently, (A18) reduces to

Kww′(E,E′)=
∑

v

P
∫

dE′′ Vwv(E,E′′)Kvw′(E′′,E′)
E′ − E′′ . (A19)

In order to evaluate Kvw′(E′′,E′) in Eq. (A19), again, we
use (A1),

Kvw′(E,E′)

= Vvw′(E,E′) +
∑

v

P
∫

dE′′ Vvv′ (E′,E′′)Kv′w′(E′′,E′)
E′ − E′′

+
∑
w

P
∫

dE′′ Vvw(E,E′′)Kww′(E′′,E′)
E′ − E′′

+
∑
dj

P
∫

dE1
Vvdj

(E,E1)Kdj w′(E1,E
′)

E′ − E1
. (A20)

Making use of Eqs. (A2) and (A17) and the symmetry property
of the reaction matrix together with Eq. (A4), the Kvw′ term
will read as

Kvw′(E,E′) = Vvw′ +
∑
w

VvwP
∫

dE′′ Kww′(E′′,E′)
E′ − E′′ .

(A21)

Now, the right-hand side of Eq. (A21) is independent of E, so
we can write

Kvw′(E,E′) = Kvw′(E′). (A22)

Using this and Eq. (A3), Eq. (A19) becomes

Kww′(E,E′) =
∑

v

VwvKvw′(E′)P
∫

dE′′ 1

E′ − E′′ = 0

(A23)

for all w,w′.
Turning now to the elements of the block Kv̄w̄, we have,

for any v,w,

Kvw(E,E′)

= Vvw(E,E′) +
∑
v′

P
∫

dE′′ Vvv′′ (E,E′′)Kv′′w(E′′,E′)
E′ − E′′

+
∑
w′

P
∫

dE′′ Vvw′ (E,E′′)Kw′w(E′′,E′′)
E′ − E′′

+
∑
dj

P
∫

dE1
Vvdj

(E,E1)Kdj w(E1,E
′)

E′ − E1
. (A24)
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If we use Eqs. (A2) and (A3) and the fact that Kw′w =
0 and Kdj w = Kwdj

= 0—proved previously in Eqs. (A23)
and (A17)—the above equation for Kvw then becomes

Kvw(E,E′) = Vvw (A25)

for all v,w.
Lastly, we calculate elements of the block Kv̄v̄ . For any two

vibrational channels v,v′,

Kvv′ (E,E′)

= Vvv′ (E,E′) +
∑
v′′

P
∫

dE′′ Vvv′′ (E,E′′)Kv′′v′ (E′′,E′)
E′ − E′′

+
∑
w

P
∫

dE′′ Vvw(E′,E′′)Kwv′(E′′,E′)
E′ − E′′

+
∑
dj

P
∫

dE1
Vvdj

(E,E1)Kdj v′(E1,E
′)

E′ − E1
. (A26)

By Eqs. (A2) and (A3), Vvv′ = 0 and Vvdj
(E′,E) = Vvdj

(E).
Furthermore, by Eq. (A16), Kdj v′ (E,E′) = Kv′dj

(E′,E) =

Vdj v′ (E). Also, by Eq. (A25), Kwv′ (E′′,E′) = Kv′w(E′,E′′) =
Vwv′ . Consequently, the above equation for Kvv′

becomes

Kvv′ (E,E′) =
∑
w

VvwVwv′P
∫

dE′′

E′ − E′′

+
∑
dj

P
∫

dE1
Vvdj

(E1)Vdj v′ (E1)

E′ − E1
. (A27)

This further reduces to

Kvv′ (E,E′) =
∑
dj

P
∫

dE1
Vvdj

(E1)Vdj v′(E1)

E′ − E1
(A28)

for all v,v′ since the principal value of the integral on the
right-hand side of Eq. (A27) is zero. The elements Kvv′ in
Eq. (A28) can be calculated as in Eq. (21).

Finally, using Eqs. (A15), (A17), (A23), (A25), and (A28),
the second-order reaction matrix can be written as in Eq. (23)
of Sec. III B.
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