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Three-body-continuum Coulomb problem using a compact-kernel-integral-equation approach
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We present an approach associated with the Jacobi matrix method to calculate a three-body wave function that
describes the double continuum of an atomic two-electron system. In this approach, a symmetrized product of two
Coulomb waves is used to describe the asymptotic wave function, while a smooth cutoff function is introduced
to the dielectronic potential that enters its integral part in order to have a compact kernel of the corresponding
Lippmann-Schwinger-type equation to be solved. As an application, the integral equation for the (e−, e−, He2+)
system is solved numerically; the fully fivefold differential cross sections (FDCSs) for (e,3e) processes in helium
are presented within the first-order Born approximation. The calculation is performed for a coplanar geometry
in which the incident electron is fast (∼6 keV) and for a symmetric energy sharing between both slow ejected
electrons at excess energy of 20 eV. The experimental and theoretical FDCSs agree satisfactorily both in shape
and in magnitude. Full convergence in terms of the basis size is reached and presented.
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I. INTRODUCTION

The three-body-continuum Coulomb problem is one of
the fundamental unresolved problems of theoretical physics.
In atomic physics, a prototype example is a two-electron
continuum which arises as a final state in electron-impact
ionization and double photoionization of atomic systems
such as helium. Several discrete-basis-set methods for the
calculation of such processes have recently been developed
including the Coulomb-Sturmian separable expansion method
[1,2], the convergent close coupling (CCC) [3,4], the J-matrix
method combined to Faddeev-Merkuriev equations [5–7]. In
all these approaches the continuous Hamiltonian spectrum is
represented in the context of complete square integrable bases.
Despite the enormous progress made so far in discretization
and subsequent numerical solutions of three-body differential
and integral equations of the Coulomb scattering theory,
a number of related mathematical problems remain open.
Actually, the use of a product of two fixed charge Coulomb
waves for the two outgoing electrons as an approximation to
the three-body-continuum state is typical of these approaches.
As a consequence, a long-range potential appears in the kernel
of the corresponding Lippmann-Schwinger (LS) equation.
Long-range potentials have been suspected to give rise to
such severe singularities in the kernels, that their compactness
properties are lost. The corresponding solutions therefore are
divergent as the size of the basis used is increased.

To try to solve such a problem, many approaches have
been developed. One can underline here the work of
Mukhamedzhanov et al. [8,9] who within an effective two-
body formulation of the three-particle theory, have proved
that, for all energies, the nondiagonal kernels occurring in the
integral equations which determine the transition amplitudes
for all binary collision processes, possess on and off the
energy shell only integrable singularities. They also proved that
diagonal kernels possess only one nonintegrable singularity
and then the latter can, however, be isolated explicitly and dealt
with in a well-defined manner. Hence, after a few iterations
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these kernels become compact. But it is very important to stress
that this is true provided all three particles have charges of the
same sign, i.e., all Coulomb interactions are purely repulsive.
Therefore the applicability of this technic to atomic target will
not work since there, the nucleus and the electron have charges
of the opposite sign. Another approach based on the modified
Faddeev-Merkuriev integral equations has been proposed by
Yakolev et al. [10]. Recently, Zaytsev et al. have proposed
an approach where the generalized parabolic coordinates are
used to treat the three-body-continuum Coulomb problem. The
development of the method is chiefly based upon the fact
that the asymptotic wave operator is separable in terms of
generalized parabolic coordinates [11]. A resulting compact
integral equation for the expansion coefficients as the solution
for a back-to-back electron emission from helium atom has
been obtained. With the use of the Lanczos smoothing factor
defined in [12], they showed the convergence behavior of these
coefficients as the number N of the basis used is increased. But
they were not able to go further than N = 15 basis functions.

In this paper, we calculate a three-body wave function that
describes the double continuum of an atomic two-electron
system. An approximate solution is expressed in the form of a
Lippmann-Schwinger-type equation. Since in this work, we
address the question of compactness of the kernel of this
integral equation, a symmetrized product of two Coulomb
waves is used to describe the asymptotic part of the wave
function, while a smooth cutoff function is introduced to the
dielectronic potential that enters the integral part in order to
have a compact kernel. The integral equation for the (e−, e−,
H++

e ) system is then solved numerically. We apply our method
to the calculation within first Born approximation, of the FDCS
for (e,3e) processes in helium in the small momentum transfer
regime. The calculation is performed for a coplanar geometry
in which the incident electron is fast (∼6 keV) and for a
symmetric energy sharing between both slow ejected electrons
at excess energy of 20 eV. As our aim is to study the rate of
convergence as the basis used is enlarged, we arbitrary choose
and present FDCS for four or five different fixed values of one
of the ejected electron θ1(while the other one θ2 varies) and
show the convergence of FDCS when the size of the basis is
increased.
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The paper is organized as follows. After this introduction,
in Sec. II, we briefly present the theoretical approach used to
generate the double continuum wave function of an atomic
two-electron system. Section III is devoted to the results and
discussion. We first give some small details about how we
calculate the FDCS for the (e,3e) process we study in helium,
then the experimental and theoretical FDCSs are compared.
Finally, we study, the convergence of our results as a function
of the basis parameters. The paper ends in Sec. IV with a brief
summary. Atomic units are used throughout.

II. THEORY

The two-electron continuum wave function with an asymp-
totic ingoing wave behavior is a solution of the following
Schrödinger equation:[
E + 1

2
�1 + 1

2
�2 + Z

r1
+ Z

r2
− 1

r12

]
�(−)(k1,k2; r1,r2) = 0,

(1)

where r1 and r2 are the position vectors of electron 1 and 2
and k1 and k2 their corresponding momentum. r12 = |r2 − r1|
is the interelectronic distance. Z = 2 denotes the charge of
the infinitely massive nucleus the position of which coincides
with the origin of the laboratory system. E is the total energy
of the two electrons.

Both electrons are identical particles, so we can in-
troduce the new functions �

(−)
i (k1,k2; r1,r2) (i = 1,2),

such that �(−) = (1/
√

2)[�(−)
1 + �

(−)
2 ]. Taking into ac-

count the exchange symmetry of the solution of Eq. (1),
�(−)(k1,k2; r1,r2) = g�(−)(k1,k2; r2,r1), where g = +1
(−1) for a singlet (triplet) state, we have

�
(−)
2 (k1,k2; r1,r2) = gP̂12�

(−)
1 (k1,k2; r1,r2). (2)

Let us now rewrite Eq. (1) in the following way:[
E + 1

2
�1 + 1

2
�2 + Z

r1
+ Z

r2

]
�

(−)
1 = V (r1,r2)�(−)

1 , (3)

where

V (r1,r2) = 1

r12
. (4)

Equation (3) is the basic equation for the numerical calcu-
lation of the double continuum wave function. The operator
in the left-hand side of Eq. (3) act in the two independent
subspaces r1 and r2. Its free solution is a symmetrized product
of two Coulomb wave functions ϕ(−)(ki ,r2; Z) ϕ(−)(kj ,r1; Z).
Instead of solving this equation directly, however, it is more
convenient to write it in the integral form [7],

�
(−)
1 (k1,k2; r1,r2)

= [ϕ(−)(k2,r2; Z) ϕ(−)(k1,r1; Z)θ (k1 − k2)

+ gϕ(−)(k1,r2; Z) ϕ(−)(k2,r1; Z)θ (k2 − k1)]

+
∫∫

dr′
1 dr′

2G
(−)(r1,r2; r′

1,r
′
2; E)

×V (r′
1,r

′
2) �

(−)
1 (k1,k2; r′

1,r
′
2). (5)

This new equation incorporates the boundary conditions
through the Green’s function G(−) associated with the operator
of the left-hand size of Eq. (3). θ is the modified step function
with θ (0) = 1/2.

The Green’s function G(−) can be evaluated as a convolution
integral along a contour C in the complex energy E plane [5]:

G(−)(r1,r2; r′
1,r

′
2; E)

= 1

2πi

∫
C

dEg(−)(r1,r′
1; E − i0; Z)

× g(−)(r2,r′
2; E − E − i0; Z). (6)

The contour C runs from −∞ to +∞ along the real axis
of the complex E plane. We now perform a partial wave
decomposition of the wave function �

(−)
1 and write

�
(−)
1 (k1,k2; r1,r2) = 2

π

1

k1 k2

∑
L,M,λ0,l0

{
ψLM

l0λ0
(r1,r2; k1,k2)

×YLM∗
l0λ0

(̂k1,̂k2)θ (k1 − k2)

+ g ψLM
l0λ0

(r1,r2; k2,k1)

× YLM∗
l0λ0

(̂k2 ,̂k1) θ (k2 − k1)
}
. (7)

L is the total angular momentum and M its projection on the
quantization axis. l0 and λ0 are the individual angular momenta
of the two electrons. YLM

l0λ0
(̂p,̂q) is the bipolar harmonics. The

partial wave function ψLM
l0λ0

in Eq. (7) can be further expanded
in a basis of Coulomb Sturmian functions [13] and bipolar
harmonics:

ψLM
l0λ0

(r1,r2) =
∑

l, λ, n, ν

CL(lλ)
nν (E) 〈r1,r2|n l ν λ; LM〉 , (8)

with

〈r1,r2|n l ν λ; LM〉 = φκ
nl(r1)

r1

φκ
νλ(r2)

r2
YLM

l λ (̂r1, r̂2). (9)

The Coulomb Sturmian functions φκ
νλ(r) form a complete and

discrete set of L2-integrable functions defined as follows:

φκ
νλ(r) =

[
κ(ν − λ − 1)!

ν(ν + λ)!

]1/2

(2κr)λ+1e−κrL2λ+1
ν−λ−1(2κr),

(10)
ν � 1 + λ,

where κ is a nonlinear basis parameter. Lα
n(x) is a Laguerre

polynomial. These functions are known to be orthogonal with
the weight 1/r ,

∞∫
0

dr

r
φκ

νλ(r)φκ
ν ′λ(r) = κ

ν
δνν ′ ,

and lead to a representation of the Coulomb potential in the
form of an infinite tridiagonal (Jacobi) matrix [14–16]. Note
that any radial Coulomb eigenstate ϕαl(r; Z) can be expanded
into a series of Sturmian functions:

ϕαl(r; Z) =
∑

ν

Sνl(α,Z)φκ
νl(r). (11)
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For the continuum states with which we are concerned, the
expansion coefficient takes the form,

Sνl(k; Z) =
[

ν(ν + l)!

κ(ν − l − 1)!

]1/2

2l(sin ζ )l+1 e−πt/2 ξ−it

× |�(l + 1 − it)|
(2l + 1)!

(ξ )−(ν−l−1)

× 2F1(−ν + l + 1,l + 1 − it ; 2l + 2; 1 − ξ 2),

(12)

where t = −Z/k and ξ = exp (iζ ) = (ik − κ)/(ik + κ).
Collecting all above expansions together, we finally obtain

from Eq. (8) the following system of equations for the
coefficients CL(lλ)

nν (k1,k2):

CL(lλ)
nν (k1,k2)

= il0+λ0δ(lλ)(l0λ0)e
−i(σl0 (k1,Z)+σλ0 (k2,Z)) Snl0 (k1,Z)Sνλ0 (k2,Z)

+
N−1∑

n′ ν ′, n′′ ν ′′=0

[
1

2π i

∫
C
dE g

(−)l
nn′ (E,Z) g

(−)λ
νν ′ (E − E,Z)

]

×
∑
l′′ λ′′

V
L(lλ)(l′′λ′′)
n′ν ′,n′′ν ′′ C

L(l′′λ′′)
n′′ν ′′ (E), (13)

where

V
L(lλ)(l′λ′)
nν,n′ν ′ = 〈n l ν λ; LM| 1

r12
η(r1,r2)|n′ l′ ν ′ λ′; LM〉 (14)

denotes the modified matrix element of the potential defined
by Eq. (4) in the basis (9). The upper limit in the sum
in Eq. (13) means that the matrix elements of the mutual
potential are assumed to be zero for any value of the index
n exceeding (N − 1). It is known that the potential in 1/r12

contains long-range terms. And therefore the kernel of the
corresponding LS equation is no more compact. In order
to solve this problem and to have a compact kernel in the
Lippmann-Schwinger Eq. (13), we introduced (14) in the
matrix element of the potential defined by Eq. (4), the cutoff
function η (r1,r2) defined as

η(r1,r2) = e−αr1e−αr2

M∑
m1=0

(αr1)m1

m1!

M∑
m2=0

(αr2)m2

m2!
, (15)

where m1, m2, and M are constant, and M = 10 is sufficient
to achieve convergence. The optimal value for the parameter
α ≈ 5 has proved to be appropriate in practical calculations (as
it is shown in Fig. 2, its variation does not lead to a significant
change on the cross sections). The convergence behavior of
the cross sections as the number N of the basis function (10)
is increased is presented in Fig. 3.

Taking into account that partial Coulomb Green’s function
g(±l)(r,r ′; E; Z) can be standardly represented by a sum over
the Coulomb eigenstates ϕαl(r; Z),

g(±)l(r,r ′; E; Z) =
∑

α

ϕ∗
αl(r; Z)ϕαl(r ′; Z)

E − εα ± i0
, (16)

and keeping in mind the decomposition (11) of the Coulomb
eigenfunctions, the contour integral in Eq. (13) becomes

1

2π i

∫
C
dE g

(−)l
nn′ (E,Z) g

(−)λ
νν ′ (E − E,Z)

=
∑

α

S∗
nl(α,Z)Sn′l(α,Z) g

(−)λ
νν ′ (E − εα,Z). (17)

At this step we could apply Eq. (16) again and obtain a
double summation integration in (17), but it is not convenient
for the numerical calculations. It is useful now to remember the
following representation for the matrix element g

(±)λ
ν ν ′ (E) [17]:

g
(±)λ
νν ′ (E; Z) = − 2

p
Sν<λ(p,Z) C(±)

ν>λ(p,Z),

(18)
ν< = min{ν, ν ′}, ν> = max{ν, ν ′},

with p = √
2E. C(±)

nl (p,Z) is a Pollaczek function that can be
written as follows [14,18]:

C(±)
nl (p,Z) = 1

2

[
n(n − l − 1)!

κ(n + l)!

]1/2

× eπt/2ξ it

(2 sin ζ )l+1|�(l + 1 ∓ it)|q
±l
n , (19)

where

q±l
n = −2

(n + l)!�(l + 1 ∓ it)

�(n + 1 ∓ it)
(ξ )∓(n−l)

× 2F1(−l ∓ it, n − l; n + 1 ∓ it ; ξ∓2).

The function C(+)
nl (p,Z) [C(−)

nl (p,Z)] is determined for Im(p) >

0 [Im(p) < 0 ] in the complex p plane and the analytical
continuation writes [18]

C(+)
nl (p,Z) = C(−)

nl (p,Z) + 2iSnl(p,Z). (20)

Equation (17) can be effectively used if E < 0, i.e., for low
energy (e ,2e) reactions. Details are presented in [5]. For
E > 0, the direct evaluation of the contour integral in Eq. (13)
can be performed rotating the contour of integration. This
method was proposed by Shakeshaft [19]. We only give the
final result here. For this purpose, we first move from the
energy to the momentum space. For the sake of clarity, we
change the notations; we replace g

(±)λ
νν ′ (E; Z) by Gλ(−)

νν ′ (p; Z)
and rewrite the matrix element of the three-body Green’s
function (6) in the basis (10) as follows:

G
lλ(−)
nn′,νν ′ (E) = 1

4π i

∫
C

dE G l(−)
nn′ (

√
E0 + E ; Z − 1)

×Gλ(−)
νν ′ (

√
E0 − E ; Z), (21)

where E0 = E. Now we rotate the contour C by a positive
angle ϕ. This may be done by the following change of variable
E → E0e

iϕt with t real and varying from −∞ to +∞. This
contour crosses cuts of both Green’s functions in the complex
E plane. By using the analytical continuation (20) while
integrating along unphysical sheets, we arrive at the following
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FIG. 1. Fully fivefold differential cross section (FDCS) for electron impact double ionization reaction of helium. The incident energy is
E0 = 5599 eV and the energies of the slow ejected electrons are E1 = E2 = 10 eV. The scattering angle θs of the fast incident electron is fixed
and equal to 0.45◦ while the angles of the ejected electrons are θ1 and θ2. One of these angles, θ1, is fixed and the other varies. The solid dots
with error bars are the absolute experimental data of Lahmam-Bennani [3].

expression:

G
λl(−)
νν ′,nn′ (E) = E0e

iϕ

4π i

{∫ ∞

0
dt

[(
Gλ(+)

νν ′ (k; Z)

+ 4i

k
Sνλ(k; Z)Sν ′λ(k; Z)

)
G l(−)

nn′ (p; Z)

+
(
G l(+)

nn′ (k; Z) + 4i

k
Snl(k; Z)Sn′l(k; Z)

)

×Gλ(−)
νν ′ (p; Z)

]}
, (22)

where k = √
E0(1 + teiϕ), and p = √

E0(1 − teiϕ). The
integration (22) is reduced from 0 to ∞ since k(−t) = p(t).
This last integral is calculated fully numerically and we
checked that the results do not depend on the angle ϕ.

III. RESULTS AND DISCUSSION

To illustrate the efficiency of the numerical scheme de-
scribed above, calculations of the fully fivefold differential
cross section FDCS for the He(e,3e)He2+ reaction on the

helium atom were performed. Here, we consider the case of
very high incident energies and small momentum transfer. In
this dipole limit, it is expected that a first Born treatment is
sufficient. The FDCS is given by

σ (5) ≡ d5σ

d�sdE1d�1dE2d�2

= 4psp1p2

pi

1

Q4
| 〈�(−)(p1,p2)| exp(iQ · r1)

+ exp(iQ · r2) − 2|�0〉 |2 , (23)

where (Ei,pi), (Es,ps), (E1,p1), and (E2,p2) are the energy
and momentum of the incident, scattered, and the two ejected
electrons, respectively; Q = pi − ps is the momentum transfer.
�0 and �(−) are the initial and the final double continuum wave
function of helium. The helium ground-state wave function �0

is obtained as a result of diagonalization of the matrix of the
Hamiltonian of the three-body system. This ground-state wave
function can be expanded in a basis of the Coulomb Sturmian
functions (10) for the radial coordinates and bipolar harmonics
for the angular coordinates [13]. In the present calculation, we
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put nmax = νmax = 15 and lmax = 3. By choosing the nonlinear
parameter κ0 = 2, we obtain E0 = −2.90327 a.u. for the
ground-state energy [20].

The wave function �(−) for the final state of the (e−, e−,
H++

e ) system is obtained by the method outlined above. In
these calculations, it is sufficient to take into account three
values (0, 1, and 2) of the total angular momentum L and a
maximum value lmax of 3 for the individual angular momenta.
The number N of Coulomb Sturmian functions is 50 with the
dilation parameter κ = 0.4. The α parameter of the splitting
function (15) is equal to 5.

In Fig. 1, we present the results of the FDCS (23). We
consider the same kinematic as in the experiments of Lahmam-
Bennani et al. [3,21] where the geometry of the (e,3e)
process is coplanar asymmetric and both ejected electrons
share the excess energy of 20 eV, with a momentum transfer
of 0.24 a.u.. The FDCS is measured as a function of one of
the ejection angles, say θ2 for fixed values of θ1, the other
angle.

In Fig. 1, the results of the FDCS are presented for four
values of θ1, the two first are for an ejection in the half
front plane (θ1 = 41◦,111◦) and the two last for an ejection
in the half rear plane (θ1 = 235◦,249◦). The presented results
are just to demonstrate that the shape and the magnitude
of cross sections agree satisfactorily with the experiment of
Lahmam-Bennani et al. [3,21] and do not necessitate any
renormalization of the data as it is usually needed with other
approaches. This constitutes an evident proof that the cutoff
function (15) introduced in (14), in order to have a compact
kernel, does not lead to a considerable loss of information. We
keep in mind that our aim is to study the rate of convergence
of our results with the increases of the basis size “N”. It
can also be easily seen from the pictures in Fig. 1, that
in the optical limit [21,22], the positions of the minima at
p̂1 = ±p̂2(θ1 = ±θ2) are well reproduced.

In the following, we study the convergence of our results as
a function of the Coulomb Sturmian basis parameters. Before
starting our discussion, it is worth mentioning that we have
tested the behavior of the cross sections by changing the
smoothing parameter α of (15). As we can see in Fig. 2,
no significant change has been observed on the FDCS, by
changing this parameter. We have also tested the calculations
of the matrix elements in (14) by using different techniques
of quadrature (that are known to be very fast and stable) and
checked that the results are stable even for very large values of
the Sturmian function indices. The same conclusions apply to
the calculation of the Green function (22). The matrix elements
associated with the dielectronic interaction potential have been
evaluated by means of the technic outlined in [13].

The convergence of our results has been studied as a
function of the number of pairs (l,λ) of electron angular
momenta, as a function of the number of pairs (n,ν) of
Sturmian indices for a fixed value of N (the maximum value of
n or ν) and as a function of N . Choosing lmax � 5, we checked
that the results for the FDCS are stable with respect to the
number of pairs (l,λ) of electron angular momenta. For a fixed
value of N , we also checked that the results converge with
respect to the number of pairs (ν,n). The partial sums of each
pair contribution converge to five-digit accuracy. We also used
the ε algorithm [23] based on Padé approximants to accelerate
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FIG. 2. Dependance of the fully fivefold differential cross section
(FDCS) for electron impact double ionization reaction He(e,3e)He2+

on the α parameter of the cutoff function (15). The incident energy
is E0 = 5599 eV and the energies of the slow ejected electrons are
E1 = E2 = 10 eV. The scattering angle θs of the fast incident electron
is fixed and equal to 0.45◦ while the angles of the ejected electrons
are θ1 and θ2. θ1 = 27◦ and θ2 varies. The calculations are performed
for two different values of α.

the convergence of the partial sums. In that case, we reach at
least eight-digit accuracy.

In Fig. 3 we show the evolution of FDCS for lmax = 3 and
three different values of N . It is clearly seen that convergence
is reached.
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FIG. 3. Convergence of the fully fivefold differential cross section
(FDCS) for electron impact double ionization reaction He(e,3e)He2+

on the number N of the radial basis functions. The incident energy
is E0 = 5599 eV and the energies of the slow ejected electrons are
E1 = E2 = 10 eV. The scattering angle θs of the fast incident electron
is fixed and equal to 0.45◦ while the angles of the ejected electrons
are θ1 and θ2. θ1 = 27◦ and θ2 varies. The calculations are performed
for lmax = 3 and three different values of N.
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IV. CONCLUSIONS

In this paper, we have presented an approach to calculate a
three-body wave function that describes the double continuum
of an atomic two-electron system. The wave function is
calculated in such a way as the corresponding Lippmann-
Schwinger-type equation for the (e−, e−, H++

e ) system possess
a compact kernel. In order to achieve our aim that was to
study the rate of convergence as the basis used is enlarged,
we performed a first Born calculation of the fully differential
cross section for electron impact double ionization of helium.
In particular, we considered the most studied case of a
coplanar kinematic that has been treated experimentally by the
Lahmam-Bennani group. This kinematic involves a very high
incident energy (∼6 keV), a very small momentum transfer
(Q = 0.24 a.u.) and slow ejected electrons sharing the excess
energy of 20 eV.

The results of the theoretical FDCSs obtained agree
satisfactorily with the experimental data both in shape and
in magnitude. These results need no scaled parameter to be
compared to experimental data. This is an evident proof that
the cutoff function introduced inside the dielectronic potential,

in order to have a compact kernel of the corresponding
Lippmann-Schwinger-type equation, does not lead to a con-
siderable loss of information compared to the absolute data.
We have examined the convergence of our results with respect
to the basis parameters. The convergence is reached in terms of
the number of electron angular momenta, in terms of the partial
sums of each pair (ν,n) for a fixed N and in terms of the total
number of Sturmian basis functions used. We think that the
proposed scheme can also be effective for various application
in atomic physics. Its application for the study of double
ionization of helium by photon impact will be presented.
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Louvain for providing me with access to the supercomputer of
the Calcul Intensif et de Stockage de Masse (CISM) which is
supported by the Fonds National de la Recherche Scientifique
(FNRS).

[1] Z. Papp and W. Plessas, Phys. Rev. C 54, 50 (1996).
[2] Z. Papp, J. Darai, C.-Y. Hu, Z. T. Hlousek, B. Kónya, and S. L.

Yakovlev, Phys. Rev. A 65, 032725 (2002).
[3] A. Kheifets, I. Bray, A. Lahmam-Bennani, A. Duguet, and

I. Taouil, J. Phys. B 32, 5047 (1999).
[4] A. S. Kheifets and I. Bray, Phys. Rev. A 69, 050701(R) (2004).
[5] S. A. Zaytsev, V. A. Knyr, Yu. V. Popov, and A. Lahmam-

Bennani, Phys. Rev. A 75, 022718 (2007).
[6] V. A. Knyr, S. A. Zaytsev, Yu. V. Popov, and A. Lahmam-

Bennani, in The J-matrix Method: Recent Developments and
Selected Applications, edited by A. Alhaidari, E. J. Heller, H. A.
Yamani, and M. S. Abdelmonem (Springer, Dordrecht, 2008).

[7] M. S. Mengoue, M. G. Kwato Njock, B. Piraux, Yu. V. Popov,
and S. A. Zaytsev, Phys. Rev. A 83, 052708 (2011).

[8] A. M. Mukhamedzhanov, E. O. Alt, and G. V. Avakov, Phys.
Rev. C 61, 064006 (2000).

[9] A. M. Mukhamedzhanov, E. O. Alt, and G. V. Avakov, Phys.
Rev. C 63, 044005 (2001).

[10] S. L. Yakovlev and Z. Papp, Theor. Math. Phys. 163, 666 (2010).
[11] S. A. Zaytsev, J. Phys. A: Math. Theor. 41, 265204 (2008); 42,

015202 (2009).
[12] Z. Papp, Phys. Rev. C 38, 2457 (1988).
[13] E. Foumouo, G. L. Kamta, G. Edah, and B. Piraux, Phys. Rev.

A 74, 063409 (2006).
[14] E. J. Heller and H. A. Yamani, Phys. Rev. A 9, 1201 (1974).
[15] H. A. Yamani and L. Fishman, J. Math. Phys. 16, 410 (1975).
[16] J. T. Broad and W. P. Reinhardt, Phys. Rev. A 14, 2159 (1976).
[17] E. J. Heller, Phys. Rev. A 12, 1222 (1975).
[18] J. T. Broad, Phys. Rev. A 31, 1494 (1985).
[19] R. Shakeshaft, Phys. Rev. A 70, 042704 (2004).
[20] G. W. F. Drake, Handbook of Atomic, Molecular and Optical

Physics (Springer, New York, 2006).
[21] A. Lahman-Bennani, I. Taouil, A. Duguet, M. Lecas, L. Avaldi,

and J. Berakdar, Phys. Rev. A 59, 3548 (1999).
[22] J. Berakdar and H. Klar, J. Phys. B 26, 4219 (1993).
[23] E. J. Weiniger, Comput. Phys. Rep. 10, 191 (1989).

022701-6

http://dx.doi.org/10.1103/PhysRevC.54.50
http://dx.doi.org/10.1103/PhysRevA.65.032725
http://dx.doi.org/10.1088/0953-4075/32/21/301
http://dx.doi.org/10.1103/PhysRevA.69.050701
http://dx.doi.org/10.1103/PhysRevA.75.022718
http://dx.doi.org/10.1103/PhysRevA.83.052708
http://dx.doi.org/10.1103/PhysRevC.61.064006
http://dx.doi.org/10.1103/PhysRevC.61.064006
http://dx.doi.org/10.1103/PhysRevC.63.044005
http://dx.doi.org/10.1103/PhysRevC.63.044005
http://dx.doi.org/10.1007/s11232-010-0049-8
http://dx.doi.org/10.1088/1751-8113/41/26/265204
http://dx.doi.org/10.1088/1751-8113/42/1/015202
http://dx.doi.org/10.1088/1751-8113/42/1/015202
http://dx.doi.org/10.1103/PhysRevC.38.2457
http://dx.doi.org/10.1103/PhysRevA.74.063409
http://dx.doi.org/10.1103/PhysRevA.74.063409
http://dx.doi.org/10.1103/PhysRevA.9.1201
http://dx.doi.org/10.1063/1.522516
http://dx.doi.org/10.1103/PhysRevA.14.2159
http://dx.doi.org/10.1103/PhysRevA.12.1222
http://dx.doi.org/10.1103/PhysRevA.31.1494
http://dx.doi.org/10.1103/PhysRevA.70.042704
http://dx.doi.org/10.1103/PhysRevA.59.3548
http://dx.doi.org/10.1088/0953-4075/26/22/025



