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Dipole matrix elements have been calculated with different methods in the intermediate-coupling scheme to
study their impact on the Stark effect of highly charged ions. Special emphasis has been devoted to the 1s3l fine
structure of He-like ions that is widely employed for Stark broadening analysis in dense plasmas. Apart from
a wavelength shift in the total Heβ group in the x-ray energy range, important differences in the Stark width,
induced line dips, and relative intensities of maxima are demonstrated for different methods of calculation. We
found that these differences were related to the precision of the fine-structure dipole matrix elements and related
wavelengths and explored the particularities of atomic structure precision for line broadening purposes that was
distinct from the current database approaches. Based on advanced multi-configuration-Dirac-Fock simulations,
we propose a complete set of high-precision matrix elements and wavelengths. Detailed numerical results are
presented for He-like aluminum. We also discuss the influence of relativistic approximations in atomic structure
on the line broadening.
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I. INTRODUCTION

The Stark effect had successfully been introduced to plasma
spectroscopy more than 50 years ago and since then, has
become an important standard diagnostics for the density de-
termination [1–4]. Line broadening covers almost 20 orders of
magnitude in density, ranging from low-density astrophysical
plasmas to above solid density plasmas for compressed fuels
in inertial fusion science. Due to this huge density range and
the possibility of employing a large variety of diagnostic test
elements (either intentionally inserted as tracer elements or
presented as intrinsic elements), charge states, and principal
quantum numbers, line broadening in plasmas has become a
very interdisciplinary science.

Line broadening theory was originally applied to lines
originating from single excited states but also has been
transferred to the autoionizing states 2l2l′, 1s2l2l′, and
1s2l3l′ [5,6]. Powerful methods have been developed [6–11]
that employ a generalized atomic structure input (energies
and reduced matrix elements) for broadening calculations
of very complex configurations. This has opened up the
possibility for advanced studies of matter under extreme
conditions via the analysis of autoionizing states [12]. Also,
the investigation of quantum-mechanical interference effects
via transitions of hole states induced by free-electron XUV
or x-ray lasers via photoionization of inner shells now seems
possible [13,14].

*frank.rosmej@upmc.fr

Although, today, databases (e.g., Ref. [15] and related
Refs. [16–20]) have greatly improved the accessibility of
atomic data for various ions and atoms (transition probabilities
and, in particular, energy levels), Stark profile calculations
request particular supplementary information that usually
cannot be extracted either from the databases or from the ex-
periments. The example of the Heβ transition group of highly
charged ions might illustrate this circumstance: Databases
provide the transition wavelength and transition probability
for the 1s3p 1P1-1s2 1S0 transition, however, the electric
field mixes the 1s3d 1D2 and 1s3p 1P1 states via the dipole
matrix element 〈1s3d 1D2|r|1s3p 1P1〉. This results in a Stark
transition 1s3d 1D2-1s2 1S0. It is difficult to measure the dipole
matrix element 〈1s3d 1D2|r|1s3p 1P1〉 directly, and databases
do not provide information either. Therefore, essential data
for Stark broadening calculations are missing, and the line
profile calculation relies almost entirely on theoretical atomic
structure calculations (as far as the important Stark coupling
is concerned). We note that transition energies for the fine-
structure matrix elements could be deduced from a complete
set of energy levels that are provided by databases for some
elements and simple configurations, however, these are data
that are also either calculated or not available (in particular,
for many electron systems and autoionizing states).

It is the aim of the present paper to critically analyze the
current situation of atomic structure calculations for Stark
broadening applications. Based on sophisticated relativistic
atomic structure calculations, we propose a benchmark set of
energy levels, transitions energies, and dipole matrix elements
and compare them with widely employed atomic structure
codes and methods.
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II. FINE-STRUCTURE DIPOLE MATRIX ELEMENTS
AND ELECTRIC-FIELD EFFECTS

The interaction of the electric field E with the atom requests
the calculation of matrix elements with the electric-field
Hamiltonian. In the dipole approximation, the matrix elements
can be expressed in terms of the reduced dipole matrix element
(energies are in units of e/2a2

0),

〈γ JM|Helec|γ ′J ′M ′〉
= −2E(−1)J−M

(
J

−M

1
0

J ′
M ′

)
〈γ J‖r‖γ ′J ′〉. (1)

The dipole transition matrix element 〈γ JM|rq |γ ′J ′M ′〉 is
related to the reduced matrix 〈γ J‖r‖γ ′J ′〉 via the Wigner-
Eckart theorem,

〈γ JM|rq |γ ′J ′M ′〉

= (−1)J−M

(
J

−M

1
q

J ′
M ′

)
〈γ J‖r‖γ ′J ′〉. (2)

The spontaneous transition probability A is given by

AJ ′J = 64π4e2a2
0

3hλ3
|〈γ J‖r‖γ ′J ′〉|2

∑
Mq
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)2

= 64π4e2a2
0

3hλ3 (2J ′ + 1)
|〈γ J‖r‖γ ′J ′〉|2, (3)

AJ ′,J = 2.0261 × 10−12

(2J ′ + 1) λ3
SJ,J ′ = 6.6702 × 10−5 (2J + 1)

(2J ′ + 1) λ2
fJ,J ′

(4)

where λ’s are the wavelengths in [m], fJ,J ′ is the oscillator
strength, and SJ,J ′ is the line strengths (in units of e2 a2

0 ) that
is given by

S = |〈γ J‖r‖γ ′J ′〉|2, (5)

and its relation to the oscillator strength via

fJ,J ′ = 8π2meca
2
0

3h (2J + 1) λ
|〈γ J‖r‖γ ′J ′〉|2. (6)

We note that the reduced matrix elements Eq. (1) cannot gener-
ally be deduced from the spontaneous transition probabilities
Eq. (3) because the reduced matrix element contains a sign.

In plasmas, the electric microfield distribution of ions and
electrons requests the consideration of a large number of
electric-field values. The Hamiltonian has to be diagonalized
for each electric-field value; this is a complex and very
time-consuming task. In order to avoid direct numerical
calculation of, e.g., the Schrödinger equation (implying the
calculation of wave functions, etc.), transforming the problem
to reduced matrix elements has been proposed [7–11]. In this
approach, atomic structure calculations of energy levels and all
possible dipole matrix elements serve as an external input to the
final Stark profile calculations. Combined with the frequency
fluctuation method [8,9], this separation considerably reduces
the numerical burden that allows treating complex configu-
rations. Even simulations for transitions in hollow ions [12]
and interference effects of autoionizing states [13,14] become
possible on simple workstations.

 1D2

 3D2

  3P1

  1P1

  1S0

FIG. 1. Heβ Stark profile of aluminum showing different electric-
field-induced transitions kTe = 100 eV and ne = 1020 cm−3.

Our primary concern is the Heβ emission of highly charged
He-like ions that are widely used in high-density plasma
diagnostics [6,21,22]. Moreover, the simplicity of the 1s3l

fine structure allows transparent discussion of all essential
Stark broadening effects. Figure 1 shows the Stark broadening
calculations for the Heβ emission of He-like aluminum.
The selected moderate density of ne = 1020 cm−3 allows
identifying the relevant Stark coupling via the fine-structure
matrix elements 〈1s3l 2S+1LJ |r|1s3l′ 2S ′+1L′

J ′ 〉 that are not
yet masked too much by a large number of overlapping
transitions. It can be clearly seen that the electric-field
effect induces the transitions 1s3d 1D2-1s2 1S0 and 1s3s
1S0-1s2 1S0. As intermediate-coupling effects are included
in the atomic structure calculations, we also encounter the
transitions from the triplet system: 1s3p 3P1-1s2 1S0 is the
usual intercombination line, and 1s3d 3D2-1s2 1S0 is induced
by the electric field. The transition 1s3s 3S1-1s2 1S0 is
rather weak and outside the spectral interval depicted by
Fig. 1. Figure 1 (and also the following figures) presents
the Stark broadening calculations carried out with the PPP

code [8,10]. The simulations demonstrate that not only is
the resonance wavelength 1s3p 1P1-1s2 1S0 important for the
overall distribution of the broadening effects, but also are
transitions from the 1s3s and 1s3d levels. Therefore, the
complete set of energy levels in the fine-structure 1s3l is
important together with its related dipole matrix elements.

Table I compares various atomic data that have been
calculated with different methods and codes, indicated as
“MCDFGME,” “HFR,” “FAC,” and “MZ.” The second column
indicates the atomic transition, the third column indicates the
corresponding wavelength, and the fourth column indicates
the related oscillator strength (being proportional to the square
of the reduced matrix element). As for nonhydrogenic ions,
the Stark effect is quadratic with an energy shift given by

�Eα ≈ E2
Z

∑
α �=α′

|〈nα′|⇀

d|nα〉|2
Enα − Enα′

= E2
Z

∑
α �=α′

|〈nα′|⇀

d|nα〉|2λαα′

hc
,

(7)

in the fifth column, Table I presents the product of the oscillator
strengths and the squares of the corresponding wavelengths
[see Eq. (6)].
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TABLE I. Selected wavelengths and electric-dipole oscillator strengths related to the 1s3l fine structure of He-like aluminum ions. The first
values are calculated with the MCDFGME method, the second values are calculated with HFR, the third values are calculated with FAC, and the
fourth values are calculated with MZ, see text. Transitions of Nos. 3, 4, 10, and 12 also indicate the values from NIST [15–20].

Number Transition λ(10−10 m)/�λ(10−13 m) fE1 fE1 λ2

1 1s2 1S0-1s3s 1S0 6.6451/ −9.6
6.6434/ −9.5

6.6481/ −10.0
6.6444/ −9.7

2 1s2 1S0-1s3s 3S1 6.6585/ −23.0
6.6571/ −23.2
6.6618/ −23.7
6.6576/ −22.9

3 1s2 1S0-1s3p 1P1 6.6355/ ± 0 1.505 × 10−1 6.626
6.6339/ ± 0 1.631 × 10−1 7.178
6.6381/ ± 0 1.515 × 10−1 6.676
6.6347/ ± 0 1.524 × 10−1 6.709

NIST: 6.6348 1.506 × 10−1 6.630

4 1s2 1S0-1s3p 3P1 6.6455/ −10.0 4.546 × 10−4 2.008 × 10−2

6.6442/ −10.3 3.642 × 10−4 1.608 × 10−2

6.6485/ −10.4 4.012 × 10−4 1.610 × 10−2

6.6447/ −10.0 4.627 × 10−4 2.043 × 10−2

NIST: 6.6447

5 1s2 1S0-1s3d 1D2 6.6373/ −1.8
6.6362/ −2.3
6.6407/ −2.6
6.6364/ −1.7

6 1s2 1S0-1s3d 3D2 6.6379/ −2.4
6.6368/ −2.9
6.6413/ −2.6
6.6370/ −2.3

7 1s3s 1S0-1s3p 1P1 4.5968 × 103 7.416 × 10−2 1.567 × 106

4.6086 × 103 7.362 × 10−2 1.564 × 106

4.4506 × 103 7.560 × 10−2 1.497 × 106

8 1s3s 3S1-1s3p 3P2 3.2375 × 103 5.722 × 10−2 5.997 × 105

3.2392 × 103 5.730 × 10−2 6.012 × 105

3.1872 × 103 5.886 × 10−2 5.979 × 105

9 1s3p 3P1-1s3s 1S0 1.0447 × 105 3.194 × 10−6 3.486 × 104

6.0316 × 104 4.183 × 10−6 1.522 × 104

9.1732 × 104 3.312 × 10−6 2.787 × 104

10 1s3d 1D2-1s3p 1P1 2.4354 × 104 3.222 × 10−3 1.911 × 106

1.8659 × 104 4.277 × 10−3 1.489 × 106

1.7467 × 104 4.579 × 10−3 1.397 × 106

NIST: 2.6525 × 104

11 1s3p 3P1-1s3d 3D2 5.8105 × 103 1.719 × 10−2 5.804 × 105

6.0006 × 103 1.692 × 10−2 6.092 × 105

6.1206 × 103 1.648 × 10−2 6.174 × 105

12 1s3d 3D2-1s3p 1P1 1.8178 × 104 3.636 × 10−4 1.201 × 105

1.4944 × 104 3.490 × 10−4 7.794 × 104

1.3849 × 104 3.948 × 10−4 7.572 × 104

NIST: 1.9581 × 104

The first method, MCDFGME, is developed in the present
paper and is proposed as a benchmark. It employs the
multiconfiguration Dirac-Fock code of Desclaux [23] and
Desclaux and Indelicato [24], and it includes QED corrections
to compute energies, wave functions, spontaneous radiative
transition probabilities, and corresponding matrix elements.

Details on the Hamiltonian and the construction of the wave
functions are described elsewhere [23,25–27]. For the radiative
transition probabilities and reduced matrix elements, the code
implements exact relativistic formulas [23,28–31].

For these transitions, the so-called optimized levels method
was used to determine the wave function and energy for each
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state involved. This method allows for a full relaxation of both
initial and final states, providing much better energies and wave
functions. However, spin orbitals in the initial and final states
are not orthogonal since they have been optimized separately.
To account for the wave-functions’ nonorthogonality, the code
uses the formalism described by Löwdin [32]. For the present
calculations, the nonrelativistic configurations (1s2 + 2s2 +
2p2), 1s2s, 1s2p, 1s3s, 1s3p, 1s3d, 1s4s, 1s4p, 1s4d, 1s4f ,
1s5s, 1s5p, 1s5d, 1s5f , 1s5g, 1s6s, 1s6p, 1s6d, 1s6f , 1s6g,
and 1s6h are selected to construct initial wave functions.
From the comparison of our calculated wavelengths with other
available data, we estimate that they are precise to less than
1% and to a maximum of 10% for the transition probabilities
and Stark matrix elements of the fine structure. The later
value was based on the difference of the length and velocity
form values for the transition probabilities and a comparison
with observed and calculated data presented in the National
Institute of Standards and Technology (NIST) atomic spectra
database [15–20]. The main source of this uncertainty is the
omission of the electronic correlation in the wave functions of
the excited levels.

The second method, HFR, employs the code developed
by Cowan [33] that is based on the multiconfiguration
Hartree-Fock method. Relativistic effects are included in
the Schrödinger equation as proposed by Cowan [33]. The
present calculations were performed, including intermediate
coupling and configuration interaction, taking into account
the configurations 1s2, 1s2s, 1s2p, 1s3s, 1s3p, 1s3d, 1s4s,
1s4p, 1s4d, 1s4f , 1s5s, 1s5p, 1s5d, 1s5f , 1s5g, 1s6s, 1s6p,
1s6d, 1s6f , 1s6g, and 1s6h. No scaling parameters have been
employed for the interaction integrals. The precision of x-ray
wavelengths for the present K-shell transitions is estimated to
be about 2 mÅ; transition probabilities are precise to about
20%. However, transitions in the fine structure are much less
precise: Transition energies may differ by a factor of 2 and
corresponding oscillator strengths up to 50%.

The third method, FAC, employs the code developed by Gu
[34]. The radial orbitals for the construction of the basis states
are derived from a modified self-consistent Dirac-Fock-Slater
iteration on a fictitious mean configuration with fractional
occupation numbers, representing the average electron cloud
of the configurations included in the calculations. The radiative
transition rates and matrix elements are calculated in the single
multipole approximation with arbitrary rank. The present
calculations were performed, including intermediate coupling
and configuration interactions. The following configurations
are taken into account: 1s2, 1s2s, 1s2p, 1s3s, 1s3p, 1s3d,
1s4s, 1s4p, 1s4d, 1s4f , 1s5s, 1s5p, 1s5d, 1s5f , 1s5g,
1s6s, 1s6p, 1s6d, 1s6f , 1s6g, and 1s6h. Wave-function
optimization has been performed on state 1s2, Breit corrections
are included for all states. The precision of x-ray wavelengths
is strongly configuration and code-option dependent. For the
present simulations, the precision of K-shell transitions is
estimated to be about 3 mÅ; transition probabilities are precise
to about 10%. However, transitions in the fine structure are
much less precise: Transition energies may differ up to about
50% and corresponding oscillator strengths up to 30%.

The last method, MZ, employs a code developed by
Vainshtein and Safronova [35] and Shevelko and Vainshtein
[36] that is based on a multiconfiguration Z expansion.

High-n and continuum states are included via hydrogenic wave
functions that are summed up in an analytic procedure; more
details are described in Refs. [35,36]. Relativistic effects are
included via the Breit Hamiltonian; Lamb shift and vacuum
polarization are also included. It was discovered long ago that
this method provided excellent agreement with wavelengths’
measurements even for multiple excited autoionizing states
[22,37,38]. The precision of x-ray wavelengths for the present
K-shell transitions is estimated to be better than about 0.5 mÅ;
transition probabilities are precise to about 5%. Unfortunately,
the various Z-expansion coefficients are not implemented in a
general manner to treat any type of configuration, such as the
case for MCDFGME, HFR, and FAC.

Table I shows a selection of different transitions in He-like
aluminum that are important for the present investigations.
The first six lines depict the x-ray transitions to the ground
state. As every code provides slightly different values for the
He-like resonance line Heβ = 1s3p 1P1-1s2 1S0, the second
values depict the relative differences (in units of 10−13 m) from
the selected x-ray transition and the respective Heβ transition
[whereas, a full comparison of MCDFGME with the NIST data is
provided in Table II(a) to be discussed below]. This difference
is important for the final broadening of the Heβ emission as the
Stark effect induces x-ray transitions to the ground state from
the 1s3d and 1s3s states, see Fig. 1. The comparison indicates
that the relative energy-level positions in the fine structure
between MCDFGME and MZ is excellent, whereas, for HFR and
FAC (apart from absolute differences for the Heβ wavelength),
important differences are encountered. As concerns the levels
1s3p 3P1 and 1s3p 1P1, they also do allow comparison with
experimental data via the observable transitions 1s3p 1P1-1s2

1S0 (No. 3 in Table I) and 1s3p 3P1-1s2 1S0 (No. 4 in Table I).
NIST indicates an energy difference of �ENIST(1s3p 1P1-1s3p
3P1) = 2.791 eV, MCDFGME provides �EMCDFGME(1s3p 1P1-
1s3p 3P1) = 2.816 eV that is in excellent agreement (relative
error of only 0.90%), whereas, �EHFR(1s3p 1P1-1s3p 3P1) =
2.896 eV (relative error of 3.8%) and �EFAC(1s3p 1P1-1s3p
3P1) = 2.921 eV (relative error of 4.7%) indicate a precision
that is worse by a factor of about 4 to 5. Only MZ is also in
excellent agreement: �EMZ (1s3p 1P1-1s3p 3P1) = 2.795 eV
(relative error of only 0.14%).

The total differences in the fine structure relevant to Stark
broadening are visualized in Fig. 2, that compares the line
broadening calculations for the data sets MCDFGME, HFR, and
FAC (note that no simulation for MZ is presented as the code
did not allow for obtaining a complete set of energies and
transition matrix elements for all states 1snl with n = 1–6
and l = 0–5). For better visualization, the calculations have
been shifted and peak normalized to the line center of the
Heβ transition of MCDFGME. Figure 2 discovers that deviations
are particularly large for states involving d-wave functions.
This suggests that not only the relative x-ray energies are the
subjects of “re-investigation” for the line broadening, but also
all matrix elements and wavelengths in the fine structure [see
also Eq. (6)].

Lines 7–12 of Table I depict transitions inside the 1s3l

fine structure. As suggested above, the deviations for states
involving d-wave functions are rather large. For example, the
MCDFGME oscillator strength f (1s3p 1P1 − 1s3d 1D2) (No.
10) is 25% smaller than HFR and 30% smaller than FAC; the
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TABLE II. Recommended complete set of fully relativistic data for Stark profile simulations, (a) atomic states of the configurations 1s2,
1s2l, and 1s3l, energy levels E (unit of eV) are counted from the ground state, J is the total angular momentum, e = even parity, and o =
odd parity. The column designated with NIST indicates the energy levels proposed by the NIST database [15–20]. (b) Dipole matrix elements
(units of e2a2

0 ), wavelengths (units of Å), and oscillator strengths.

Number Level 2J + 1 Parity E NIST � E(E − NIST)

1 1s2 1S0 1 e 0.000 0.0000 0.000
2 1s2s 3S1 3 e 1574.752 1574.9787 −0.23
3 1s2p 3P0 1 o 1587.824 1587.9705 −0.15
4 1s2p 3P1 3 o 1587.976 1588.1244 −0.15
5 1s2p 3P2 5 o 1588.608 1588.7598 −0.15
6 1s2s 1S0 1 e 1588.899 1588.9516 −0.05
7 1s2p 1P1 3 o 1598.240 1598.2902 −0.05
8 1s3s 3S1 3 e 1862.032 1862.3000 −0.27
9 1s3p 3P0 1 o 1865.627 1865.8683 −0.24
10 1s3p 3P1 3 o 1865.675 1865.9167 −0.24
11 1s3s 1S0 1 e 1865.793 1865.9939 −0.20
12 1s3p 3P2 5 o 1865.862 1866.1049 −0.24
13 1s3d 3D1 3 e 1867.802 1868.0683 −0.27
14 1s3d 3D2 5 e 1867.809 1868.0740 −0.27
15 1s3d 3D3 7 e 1867.877 1868.1437 −0.27
16 1s3d 1D2 5 e 1867.982 1868.2398 −0.26
17 1s3p 1P1 3 o 1868.491 1868.7072 −0.22

Low Up Matrix element Oscillator strength Wavelength
16 17 −1.136 × 100 3.222 × 10−3 2.4354 × 104

14 17 3.299 × 10−1 3.636 × 10−4 1.8178 × 104

13 17 −3.244 × 10−2 5.920 × 10−6 1.8002 × 104

11 17 1.059 × 100 7.416 × 10−2 4.5968 × 103

8 17 −5.806 × 10−2 1.777 × 10−4 1.9198 × 103

6 17 −2.399 × 10−1 3.941 × 10−1 4.4345 × 101

2 17 1.200 × 10−2 3.426 × 10−4 4.2209 × 101

1 17 −5.740 × 10−2 1.505 × 10−1 6.6355 × 100

12 16 −1.931 × 10−1 3.872 × 10−4 5.8496 × 103

10 16 2.724 × 10−1 1.398 × 10−3 5.3748 × 103

7 16 −5.408 × 10−1 6.439 × 10−1 4.5964 × 101

5 16 8.848 × 10−2 1.070 × 10−2 4.4379 × 101

4 16 −1.266 × 10−1 3.661 × 10−2 4.4279 × 101

12 15 1.406 × 100 1.953 × 10−2 6.1527 × 103

5 15 −6.450 × 10−1 5.688 × 10−1 4.4396 × 101

12 14 −5.620 × 10−1 3.012 × 10−3 6.3693 × 103

10 14 9.932 × 10−1 1.719 × 10−2 5.8105 × 103

7 14 1.590 × 10−1 5.572 × 10−2 4.5994 × 101

5 14 2.578 × 10−1 9.092 × 10−2 4.4407 × 101

4 14 −4.540 × 10−1 4.708 × 10−1 4.4306 × 101

12 13 1.534 × 10−1 2.236 × 10−4 6.3912 × 103

10 13 −5.933 × 10−1 6.115 × 10−3 5.8287 × 103

9 13 6.862 × 10−1 2.508 × 10−2 5.7017 × 103

7 13 1.440 × 10−2 4.596 × 10−4 4.5995 × 101

5 13 −7.035 × 10−2 6.774 × 10−3 4.4408 × 101

4 13 2.716 × 10−1 1.685 × 10−1 4.4308 × 101

3 13 −3.139 × 10−1 6.755 × 10−1 4.4284 × 101

8 12 1.353 × 100 5.722 × 10−2 3.2375 × 103

2 12 −2.967 × 10−1 2.091 × 10−1 4.2590 × 101

10 11 5.741 × 10−2 3.194 × 10−6 1.0447 × 105

7 11 8.771 × 10−2 1.680 × 10−2 4.6340 × 101

4 11 −3.885 × 10−3 3.396 × 10−5 4.4628 × 101

8 10 −1.045 × 100 3.251 × 10−2 3.4039 × 103

6 10 1.381 × 10−2 1.302 × 10−3 4.4796 × 101

2 10 2.302 × 10−1 1.259 × 10−1 4.2618 × 101

1 10 3.082 × 10−3 4.546 × 10−4 6.6455 × 100

8 9 6.044 × 10−1 1.072 × 10−2 3.4488 × 103
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TABLE II. (Continued.)

Low Up Matrix element Oscillator strength Wavelength

2 9 −1.332 × 10−1 4.216 × 10−2 4.2624 × 101

7 8 5.074 × 10−3 5.582 × 10−5 4.7001 × 101

5 8 1.142 × 10−1 1.747 × 10−2 4.5345 × 101

4 8 8.767 × 10−2 1.719 × 10−2 4.5240 × 101

3 8 5.059 × 10−2 1.718 × 10−2 4.5215 × 101

6 7 4.329 × 10−1 4.289 × 10−2 1.3273 × 103

2 7 −2.219 × 10−2 9.443 × 10−5 5.2786 × 102

1 7 −1.378 × 10−1 7.423 × 10−1 7.7575 × 100

4 6 2.154 × 10−2 3.498 × 10−6 1.3425 × 104

2 5 5.484 × 10−1 3.403 × 10−2 8.9478 × 102

2 4 −4.237 × 10−1 1.939 × 10−2 9.3758 × 102

1 4 7.021 × 10−3 2.000 × 10−3 7.8077 × 100

2 3 2.449 × 10−1 6.402 × 10−3 9.4844 × 102

MCDFGME wavelength λ(1s3p 1P1 − 1s3d 1D2) is 30% larger
than HFR and 40% larger than FAC. Moreover, the energy
differences of MCDFGME are in much better agreement with
NIST than the case for HFR and FAC. For example, for the
transition 1s3d 1D2-1s3p 1P1 (No. 10 in Table I), the MCDFGME

wavelength deviates only 8% from NIST and only 7% for the
transition 1s3d 3D2-1s3p 1P1 (No. 12 in Table I), whereas,
HFR deviates by 30% and 24% for these transitions, and FAC

deviates by 34% and 43%.

III. STARK BROADENING STUDIES OF Heβ

Due to the large number of transitions, it is difficult to
estimate the impact for the line broadening from the table-data
comparison. Figure 3(a) shows, therefore, the Heβ broadening
for different data for an electron density of 1022 cm−3 and an
electron temperature of kTe = 100 eV. It is easily observed
that all maxima are quite different for different data sets.
Figure 3(b) shows the same calculations, such as in Fig. 3(a),
however, HFR and FAC have been shifted and have been
scaled to peak intensity of the Heβ transitions MCDFGME.

FIG. 2. (Color online) Heβ Stark profile of aluminum for different
atomic data sets: black solid curve: MCDFGME; red dashed curve: HFR;
blue dotted curve: FAC; kTe = 100 eV; ne = 1020 cm−3. Simulations
for different data sets have been shifted and have been normalized to
the Heβ peak MCDFGME.

This comparison discovers that HFR and FAC provide second
maxima that are too small with separation that is too large from
the Heβ line that is directly related to the significant differences
in atomic data depicted in Table I (in particular, related to the
transition No. 10). This difference might partially explain the

FIG. 3. (Color online) (a) Stark profile simulations of aluminum
Heβ employing different atomic data k Te = 100 eV and ne =
1022 cm−3. (b) The same as Fig. 1(a), however, line profiles have been
shifted to the MCDFGME line center position and have been normalized
to peak intensity. Large discrepancies between the different data sets
are observed (indicated by the arrow).
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FIG. 4. (Color online) (a) Heβ Stark profile of aluminum for
different mixed sets of atomic data: kTe = 100 eV and ne =
1022 cm−3. Black solid curve: MCDFGME data; red dashed curve:
MCDFGME data, except for the matrix element 〈1s3d 1D2|r|1s3p 1P1〉
that employs HFR data; and blue dotted curve: HFR data. (b) The same
as Fig. 3(a), however, the curves have been normalized and have been
shifted to the peak intensity of MCDFGME.

often-observed discrepancy in Stark broadening analysis [6]
near the line center of Heβ [see also Fig. 3(b), arrow].

As the deviation of the data concerning the matrix element
〈1s3d 1D2|r|1s3p 1P1〉 is the largest in Table I, Figs. 4(a) and
4(b) present a “mixed” calculation. The black solid curve
shows pure MCDFGME data, and the red dashed curve is
calculated using MCDFGME data, except for the matrix element
〈1s3d 1D2|r|1s3p 1P1〉 where the HFR value is employed. The
blue dotted curve presents pure HFR data. From the red dashed
curve, it can clearly be seen that the simple exchange of this
matrix element already results in rather noticeable changes in
the spectral distribution and its peak intensity. Also, Fig. 4(b)
suggests that the overall broadening of the Heβ group is
strongly related to the matrix element 〈1s3d 1D2|r|1s3p 1P1〉.

In order to study the influence on the overall broadening
for certain matrix elements, Figs. 5(a)–5(c) present a
variation in different matrix elements based on the
MCDFGME data set. Figure 5(a) shows a variation in
〈1s3d 1D2|r|1s3p 1P1〉: The black solid curve presents
the original MCDFGME data set, the red dashed curve
employs MCDFGME data, except that the matrix element
〈1s3d 1D2|r|1s3p 1P1〉 is replaced by 2〈1s3d 1D2|
r|1s3p 1P1〉, and the blue dotted curve also employs MCDFGME

data, except that the matrix element 〈1s3d 1D2|r|1s3p 1P1〉
is replaced by 0.5〈1s3d 1D2|r|1s3p 1P1〉. Figure 5(a) shows
that the overall line broadening and the splitting between the
maxima are strongly dependent on the absolute value of the

  1x(1D2-
1P1)

2x(1D2-
1P1)

0.5x(1D2-
1P1)

  1x(3D2-
1P1)

2x(3D2-
1P1)

0.5x(3D2-
1P1)

  1x(3D2-
3P1)

2x(3D2-
3P1)

0.5x(3D2-
3P1)

FIG. 5. (Color online) (a) Variation in the dipole matrix element
〈1s3d 1D2|r|1s3p 1P1〉and its influence on the Heβ Stark profile of
aluminum for kTe = 100 eV and ne = 3 × 1022 cm−3. All data are
MCDFGME data, black solid curve: ab initio data set; red dashed curve:
only the matrix element 〈1s3d 1D2|r|1s3p 1P1〉 is multiplied by a
factor of 2; and blue dotted curve: the matrix element is multiplied
by a factor of 0.5. (b) The same as (a), however, only a variation in
the intercombination dipole matrix element 〈1s3d 3D2|r|1s3p 1P1〉is
involved. (c) The same as (a), however, only a variation in the
dipole matrix element of the triplet system 〈1s3d 3D2|r|1s3p 3P1〉is
involved.

〈1s3d 1D2|r|1s3p 1P1〉 matrix element. For the same reason,
the “red dotted curve” of Fig. 4(a) has a second maximum
that moves to the right because the HFR matrix element
is larger than those of MCDFGME (see No. 10 in Table I).
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Intermediate-coupling effects mix singlet and triplet
states and might, therefore, influence the broadening.
Figure 5(b) presents, therefore, a variation in the
intercombination matrix element 〈1s3d 3D2|r|1s3p 1P1〉.
The red dashed curve employs MCDFGME data, except that
the matrix element 〈1s3d 3D2|r|1s3p 1P1〉 is replaced by
2〈1s3d 3D2|r|1s3p 1P1〉, and the blue dotted curve also
employs MCDFGME data, except that the matrix element
〈1s3d 3D2|r|1s3p 1P1〉 is replaced by 0.5〈1s3d 3D2|r
|1s3p 1P1〉. The red dashed curve shows that an increase
in this matrix element results in a noticeable increase in
the overall broadening. This discovers that intermediate-
coupling effects [	(1s3d 3D2) ≈ 0.957 84	LS(1s3d 3D2) +
0.287 30	LS(1s3d 1D2)] may seriously influence the line
broadening. For the present configurations, however, the
effect is not pronounced very much. Note that the atomic
data, depicted in Table I (No. 12), differ very much from each
other, however, their absolute importance for the Stark effect
(last column of Table I) is much lower than, e.g., for No. 10.
The overall effect on the line profile is, therefore, reduced.

Figure 5(c) shows a variation in the matrix element
in the triplet system 〈1s3d 3D2|r|1s3p 3P1〉. The black
solid curve presents the original MCDFGME data set, the
red dashed curve equally employs all MCDFGME data,
except that the matrix element 〈1s3d 3D2|r|1s3p 3P1〉 is
replaced by 2〈1s3d 3D2|r|1s3p 3P1〉, and the blue dot-
ted curve also employs MCDFGME data, except that
the matrix element 〈1s3d 3D2|r|1s3p 3P1〉 is replaced by
0.5〈1s3d 3D2|r|1s3p 3P1〉. Figure 5(c) demonstrates that a
variation in the matrix elements in the triplet system has no
strong influence on the broadening for Heβ , but this might also
be different for other configurations.

Figure 6 presents a variation in fine-structure energies.
The black solid curve presents the original MCDFGME data
set. The red dashed curve shows a calculation where the
energy difference between states 1s3d 1D2 and 1s3p 1P1,
namely �E = E(1s3p 1P1) − E(1s3d 1D2) > 0 has been in-

  1x(1D2-
1P1)

2x(1D2-
1P1)

0.5x(1D2-
1P1)

FIG. 6. (Color online) Variation in the 1s3l fine-structure energies
and their influence on the Heβ Stark profile of aluminum for kTe =
100 eV and ne = 3 × 1022 cm−3. All data are MCDFGME data, black
solid curve: ab initio data set; red dashed curve: the energy difference
between states 1s3p 1P1 and 1s3d 1D2 has been increased by a factor
of 2; and blue dotted curve: the energy difference between states 1s3p
1P1 and 1s3d 1D2 has been decreased by a factor of 2.

creased by a factor of 2, i.e., E(1s3p 1P1) is replaced by
E(1s3p 1P1) + �E. The blue dotted curve shows a calculation
where this energy difference is decreased by a factor of 2, i.e.,
E(1s3p 1P1) is replaced by E(1s3p 1P1) − 0.5 �E. An im-
portant observation is made from this calculation (Fig. 6): The
intensity peak of the second maximum is strongly dependent
on the energy difference �E = E(1s3p 1P1) − E(1s3d 1D2);
if the energy difference is smaller, the second maxima have
a relatively higher intensity. This correlates with the data
depicted in Table I. As shown by Fig. 5, one of the most
important transitions for the electric-field effects seems to
be No. 10: The wavelengths of the present MCDFGME is
considerably larger (means a lower transition energy) than
those of FAC and HFR, whereas, FAC and HFR are very similar.
This might be the reason why the second maximum is higher
for MCDFGME than for FAC and HFR.

We note that the increase in the energy difference also
results in a slight blueshift of the whole Heβ group, the
decrease in a slight redshift (Fig. 6). These shifts, however,
seem to be much less important that those induced by oscillator
strength variations as presented in Fig. 5(a). Also, they are of
different origins, and comparison is limited.

Figures 5 [in particular, Fig. 5(a)] and 6 indicate that
different second maxima are the combined effects of different
energy levels (relative difference of the fine-structure levels)
and oscillator strength (of transitions within the fine structure).

IV. COMMENTS ON RELATIVISTIC EFFECTS

As the present MCDFGME method provides a fully
relativistic approach to calculate atomic structure, the
nonrelativistic case can be studied setting c → ∞. We
discover the surprising result that in this limit, fE1(1s3d 1D2 −
1s3p 1P1)MCDFGME

c→∞ = 4.66 × 10−3 (fE1(1s3d 1D2 − 1s3p

1P1)MCDFGME
c = 3.22 × 10−3) is close to the values

provided by the methods FAC (fE1(1s3d 1D2 −
1s3p 1P1)FAC = 4.58 × 10−3) and HFR(fE1(1s3d 1D2 −
1s3p 1P1)HFR = 4.28 × 10−3), see Table I. In order to study
the relativistic effects on the final line profile, Fig. 7 presents
the simulations for MCDFGME, MCDFGME nonrelativistic, FAC,
and HFR for a density of ne = 1020 cm−3. Apart from a general
shift in the whole Heβ emission, MCDFGME, FAC, and HFR

provide a clear level splitting in the fine structure that is visible
via the Stark transitions 1s3d-1s2 1S0 and 1s3s-1s2 1S0 (see the
discussion related to Fig. 1). This indicates that fine-structure
splitting effects are reasonably well described by FAC and
HFR, whereas, the MCDFGME nonrelativistic does not show
a reasonable splitting. At higher densities, however, these
effects appear to be of minor importance. This is demonstrated
with Fig. 8 that shows the case for ne = 1022 cm−3 and
kTe = 100 eV. From the normalized presentation of Fig. 8(b),
it can clearly be seen that the MCDFGME nonrelativistic
is very close to FAC and HFR simulations, whereas, the
fully relativistic approach of MCDFGME is different from all
curves. This indicates that the complete implementation of
relativistic effects in the MCDFGME approach [23–31] is very
important and strongly shows up in visible effects for the
Stark broadening even on a linear intensity scale.
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nonrelativistic

FIG. 7. (Color online) Influence of relativistic effects on the
Heβ Stark profile of aluminum for different atomic data sets:
black solid curve: MCDFGME; green dot-dashed curve: “MCDFGME

nonrelativistic;” red dashed curve: HFR; and blue dotted curve: FAC,
kTe = 100 eV and ne = 1020 cm−3.

V. COMPLETE RELATIVISTIC DATA SET
FOR STARK PROFILE CALCULATIONS

In order to provide a reference set of atomic data for Stark
profile calculations, Tables II(a) and II(b) list all energy levels
and possible electric-dipole transitions (wavelengths, matrix
elements with signs, and oscillator strengths) for the 1s2, 1s2l,
and 1s3l configurations. Table II(a) shows the definition of
energy levels that are designated according to the LS-coupling
scheme. The first column is a running number for the energy
levels, the second column specifies the level in spectroscopic
notation, the third column indicates the statistical weight, the
fourth column indicates the parity, the fifth column indicates
the energy in (eV) counted from the ground state (zero energy)
for the present MCDFGME calculations, in the sixth column are
the energy levels from NIST [15,20], and the last column
indicates the differences between the MCDFGME and the NIST
data. The last column indicates a systematic shift of about
−0.2 eV for the 1s3l levels. We are particularly interested in the
energy precision of the different fine-structure levels relative to
each other. For the important transition 1s3d 1D2 − 1s3p 1P

[see Figs. 5(a) and 6 and the related discussion in the text], the
agreement is within 0.04 eV, indicating a relative precision of
the fine-structure energy levels of about 8%. As indicated by
Figs. 5(a) and 6, 10% variations in energy levels and oscillator
strengths within the fine structure seem to not have an overall
great influence on the line shapes. It should be recalled here
that the difference in wavelength between FAC and MCDFGME

(see Nos. 10 and 12 in Table I) is about 40% and, compared to
HFR, is about 30% (see also discussion in Sec. II).

Table II(b) shows data relevant to the transitions. The first
column indicates the number of the lower atomic level, the
second column is the number of the upper atomic level, the
third column shows the dipole matrix elements, including
the signs in units of ea0, the fourth column shows the
oscillator strengths, and the fifth column shows the transition
wavelengths in angstroms. We note that, e.g., the wavelengths
of the He-like resonance transition 1s2p 1P1 − 1s2 1S0 is

nonrelativistic

nonrelativistic

FIG. 8. (Color online) (a) Influence on the Heβ Stark profile of
aluminum for different atomic data sets: black solid curve: MCDFGME;
green dot-dashed curve: MCDFGME nonrelativistic; red dashed curve:
HFR; and blue dotted curve: FAC; kTe = 100 eV; ne = 1022 cm−3. (b)
The same as (a), however, all calculations have been shifted and have
been normalized to MCDFGME data.

predicted by our present calculations to be at λMCDFGME =
7.7575 Å, whereas, the NIST data [15,17] provide an observed
wavelength of λobserved = 7.7575 Å, indicating excellent
agreement. For the intercombination transition 1s2p 3P1 −
1s2 1S0, λMCDFGME = 7.8078 Å, whereas, λobserved = 7.8069
Å [15,17]. Comparisons for the transitions 1s3p 1P1 − 1s2 1S0

and 1s3p 3P1 − 1s2 1S0 are provided in Table I. The agreement
between the present calculations and the observed data [15,18]
is very good, and the transition probabilities are in excellent
agreement (almost identical) with the NIST data [15,16].

The data in Table II will provide an important benchmark
set of atomic constants that not only may be employed for
the Stark profile calculation itself, but also may be employed
to study various different effects in Stark broadening theory,
such as, e.g., interference effects [4,12–14,39], microfield
approximations [40,41], and frequency fluctuation methods
[8,9]).

VI. CONCLUSION

A critical analysis of different calculation methods of
fine-structure energies and matrix elements for applications
in line broadening theory has been provided. The Heβ
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x-ray transition of highly charged ions that is frequently
employed for Stark broadening analysis in dense plasmas
has been studied as a test case. Despite its simple atomic
structure, strong deviations are demonstrated when employing
different methods and codes of calculation that are widely
used in the community. As current atomic databases do
not provide data relevant to Stark broadening, we have
performed corresponding benchmark simulations based on an
advanced multi-configuration-Dirac-Fock approach to provide
a complete reference data set. The fully relativistic approach
of the present MCDFGME method discovers visible deviations
for line broadening calculations compared to the case when
standard relativistic approximations are employed.

A complete reference data set, comprising all relevant en-
ergies and electric-dipole matrix elements in the intermediate-
coupling scheme for Stark profile simulations of all transitions
within the 1s2, 1s2l, and 1s3l configurations (e.g., Heα , Heβ ,
and Hα), is presented.
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W. Süß, M. Geißel, A. Y. Faenov, and T. A. Pikuz, J. Quant.
Spectrosc. Radiat. Transfer 71, 639 (2001).

[23] J. P. Desclaux, Comput. Phys. Commun. 9, 31 (1975).
[24] MCDFGME, a multiconfiguration Dirac-Fock and general matrix

elements program, edited by J. P. Desclaux and P. Indelicato
(2011), http://dirac.spectro.jussieu.fr/mcdf

[25] J. P. Desclaux, in Methods and Techniques in Computational
Chemistry, Small Systems of METTEC, edited by E. Clementi,
Vol. A (STEF, Cagliari, 1993), p. 253.

[26] P. Indelicato, Phys. Rev. A 51, 1132 (1995).
[27] P. Indelicato, Phys. Rev. Lett. 77, 3323 (1996).
[28] O. Gorceix, P. Indelicato, and J. P. Desclaux, J. Phys. B 20, 639

(1987).
[29] P. Indelicato, O. Gorceix, and J. P. Desclaux, J. Phys. B 20, 651

(1987).
[30] P. Indelicato, Nucl. Instrum. Methods Phys. Res. B 31, 14 (1988).
[31] P. Indelicato, F. Parente, and R. Marrus, Phys. Rev. A 40, 3505

(1989).
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