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Towards nonlocal density functionals by explicit modeling of the exchange-correlation hole
in inhomogeneous systems
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We put forward an approach for the development of a nonlocal density functional by a direct modeling of
the shape of exchange-correlation (xc) hole in inhomogeneous systems. The functional is aimed at giving an
accurate xc energy and an accurate corresponding xc potential even in difficult near-degeneracy situations such
as molecular bond breaking. In particular we demand that: (1) the xc hole properly contains −1 electron, (2) the
xc potential has the asymptotic −1/r behavior outside finite systems, and (3) the xc potential has the correct
step structure related to the derivative discontinuities of the xc energy functional. None of the currently existing
functionals satisfies all these requirements. These demands are achieved by screening the exchange hole in such
a way that the pair-correlation function is symmetric and satisfies the sum rule. These two features immediately
imply (1) and (2) while the explicit dependence of the exchange hole on the Kohn-Sham orbitals implies (3).
Preliminary calculations show an improved physical description of the dissociating hydrogen molecule. Though
the total energy is still far from perfect, the binding curve from our nonlocal density functional provides a
significant improvement over the local density approximation.
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I. INTRODUCTION

The local density approximation (LDA) is the simplest
functional in density functional theory (DFT) and has been
around since the advent of DFT [1,2]. Although the LDA has
only a local dependence on the density, it has been tremen-
dously successful in describing the ground-state properties of
solids, surfaces, and large molecules. Its shortcomings have
been obvious from the beginning and an enormous effort has
gone into the search for better approximations. This task has
proved to be exceedingly difficult. One should, however, not be
surprised or disappointed. Density functional theory provides
a way to reduce the full, interacting many-body problem to
a simple noninteracting one. Therefore, an accurate density
functional for the total energy would provide a surprisingly
simple way to solve the complicated many-body problem, at
least as far as static properties are concerned. Nevertheless, in
the past decades considerable progress has been made. With
the advent of the generalized gradient approximations (GGAs)
[3,4], bond lengths and atomization energies were greatly
improved as compared to those of the LDA. Unfortunately,
the exchange-correlation (xc) potentials of the GGAs have
several undesirable features. In particular, they decay too fast
outside finite systems [5,6], unlike a correct −1/r decay.
Consequently, neither the LDA nor the GGAs produce proper
Rydberg levels [7] and ionization potentials are too low.

An important class of extensions to the GGAs came from
the observation that exchange energies are much larger than
correlation energies. This suggests that exchange should be
treated exactly, while using a GGA only for the correlation
energy. Full inclusion of “exact exchange” does however not
work well in practice, since there is a large cancellation
of errors between the LDA or the GGA versions of the
exchange and correlation energies. On the other hand, using

only a portion of exact exchange combined with a GGA
does yield quite accurate bond energies in molecules [8]. An
important advantage of “exact exchange” is that it provides
some necessary improvements of the xc potential. For instance,
the inclusion of “exact exchange” gives a stepped structure
in the xc potential [9,10] thus improving the description of
the atomic shells as well as enabling a neutral dissociation
of heteronuclear molecules [11–13]. It also gives an xc
potential with the proper asymptotic (−1/r) behavior which
gives rise to Rydberg levels and a highest occupied KS
eigenvalue in better agreement with the negative of the
ionization potential. Usually, however, only a fraction of full
exchange is incorporated in the so-called hybrid functionals
meaning that the desirable features mentioned above are only
partially obtained. It seems that only functionals with a massive
amount of fitting parameters are able to handle 100% “exact
exchange” [14,15], though they will always suffer from weak
singularities in the response functions of metals. We mention
here that inclusion of “exact exchange” is not mandatory in
order to have good properties of the xc potential. The proper
step structure as well as the correct asymptotics away from
finite systems can also be obtained by modeling the potential
directly [7,16]. Such model potentials can indeed provide
good response properties [17,18] but they cannot easily be
written as the functional derivative of some accurate functional
for the xc energy. As a result, their implementations have
been limited. Further improvements to the energy functional
are also sought by adding the kinetic-energy density to the
functional arguments [19,20] and including parts from many-
body perturbation theory [21–25].

In this paper we would like to consider an alternative
approach by looking directly at electron correlations in real
space. In a correlated system we can consider the conditional
probability of finding an electron at some point in space,
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when the position of another reference electron is given.
The difference between this function and the unconditional
probability (which is simply the density) is defined to be the
xc hole and the knowledge of this function [26] is sufficient to
calculate the xc energy.

The effect of exchange and correlation is to dig a hole in
the density around each electron, so as to remove one electron
in that region. We can say that the task of a good xc functional
is to provide an accurate description of the xc hole. The LDA
and GGA assume that this hole has a spherical shape and an
extent given by the Wigner–Seitz radius (4πr3

s n = 3, n being
the electron density) at the reference electron. Unfortunately
for the LDA, xc holes are definitely not spherical [27,28].
Although hybrid functionals lift this restriction, their blunt use
of “exact exchange” actually worsens the description of the
xc hole for stretched bonds compared to the LDA and GGA
functionals.

A more sophisticated class of functionals which aims to
build a nonspherical model of the xc hole is the so-called
weighted density approximations (WDA) [29–32]. These
functionals avoid the spherical xc hole by digging a hole out
of the real density rather than in the density at the position
of the reference electron. A nice feature of the WDA is that
the asymptotic behavior of its xc potential has a Coulombic
asymptotic decay instead of an exponential behavior as in
the LDA and the GGA. An important symmetry of the pair-
density [�(r′,r) = �(r,r′)] is, however, broken. This causes
an additional factor 1/2 in the asymptotic decay of the xc
potential, so that it decays too fast [as −1/(2r)] [33].

Here, we will advocate an approach in a similar spirit as
the weighted density approximation [34]. However, we will
take care not to destroy the symmetry of the pair density
and therefore, the xc potential will automatically have the
correct asymptotic −1/r behavior. Furthermore, important
information on the physics of the xc hole is provided by the
dissociation of molecules. In particular, a proper localization
of the xc hole around the reference electron for a dissociated
molecule is a challenging task. The failure of current approxi-
mations to achieve this is reflected in their consistent inability
to properly describe the breaking of chemical bonds. The most
important aim of our functional will therefore be a bold one:
the functional has to be able to describe molecular dissociation.

The paper is outlined as follows. First (Sec. II) we will
give a more detailed discussion on the background to motivate
the construction of the screened exchange (SX) functional.
The actual construction of the SX functional is discussed in
Sec. III. In Sec. IV we show preliminary results and finally
conclude in Sec. V.

II. MOTIVATION

A. Symmetry and asymptotics

We will start from an exact expression [35–37] for the
exchange-correlation energy

Exc = 1

2

∫
dr

∫
dr′ n(r)

n(r′)[ḡ(r,r′) − 1]

|r − r′| , (1)

where n(r) is the density. This expression gives the exact xc
contribution to the interaction energy of the system, if ḡ is the

exact pair-correlation function g of the system, defined as

g(r,r′) ≡ �(r,r′)
n(r)n(r′)

.

Here the diagonal of the two-body reduced density matrix is
defined as

�(r,r′) ≡
∑
σ,σ ′

�(rσ,r′σ ′)

≡
∑
σ,σ ′

〈�|ψ̂†(rσ )ψ̂†(r′σ ′)ψ̂ (r′σ ′)ψ̂ (rσ )|�〉,

where ψ̂†(rσ ) and ψ̂ (rσ ) are the usual field operators. The
xc energy, however, also contains a correlation contribution
to the kinetic energy which is most conveniently included by
integrating the interaction energy with respect to the strength
λ of the Coulomb interaction, while keeping the density fixed
at the fully interaction one (λ = 1) [34–37], i.e.,

ḡ(r,r′) ≡
∫ 1

0
dλ gλ(r,r′).

The physical picture of representing the xc energy in this
manner is that an electron does not interact with the full density,
but depending on its position, r, it sees an effective density
n(r′)ḡ(r,r′) with N − 1 electrons. Therefore, the part

ρ̄xc(r′|r) ≡ n(r′)[ḡ(r,r′) − 1] (2)

in the xc energy (1) exactly describes the density of minus one
electron, a hole, which is reflected in the sum rule of the xc
hole ∫

dr′ ρ̄xc(r′|r) =
∫

dr′ n(r′)[ḡ(r,r′) − 1] = −1. (3)

The local density approximation (LDA) proceeds by using
the xc hole from the homogeneous electron gas evaluated for
the density at the position of the reference electron, so the
pair-correlation function is approximated as ḡ(r,r′) ≈ ḡh(|r −
r′|; n(r)). Furthermore, if the distance |r − r′| is large the pair-
correlation function ḡ only differs slightly from one, so it is
quite reasonable to replace n(r′) by n(r) in the xc energy (1).
Combining both approximations, we obtain the expression for
the xc energy of the LDA

ELDA
xc = 1

2

∫
dr

∫
dr′ n(r)

n(r){ḡh[|r − r′|; n(r)] − 1}
|r − r′|

= 1

2

∫
dr

∫
dr′ n(r)

n(r){ḡh[|r′|; n(r)] − 1}
|r′|

=
∫

dr n(r)εxc(n(r)), (4)

where the function εxc(n) is just the exchange-correlation
energy per electron of the homogeneous electron gas. This
expression for the xc energy of the LDA shows explicitly
that its hole is approximated by a spherical one. As mentioned
above xc holes are not spherical [27,28]. The original weighted
density approximation (WDA) [29,30] improves on the shape
of the xc hole by not replacing n(r′) by n(r) in the xc energy
(1). Since the sum rule (3) for the xc hole is no longer trivially
satisfied, an effective density, n̄(r), is used as input into the
pair-correlation function instead of the density at the reference
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position. The xc energy in the WDA is therefore

EWDA
xc = 1

2

∫
dr

∫
dr′ n(r)

n(r′){ḡh[|r − r′|; n̄(r)] − 1}
|r − r′| ,

(5)

where the effective density n̄(r) should be found by satisfying
the sum rule for the xc hole (3) at every point r∫

dr′ n(r′){ḡh[|r − r′|; n̄(r)] − 1} = −1.

Unfortunately, it was found that the pair-correlation functional
of the homogeneous electron gas is not a good approximation
to the pair-correlation function of inhomogeneous systems as
molecules and surfaces. Using a more localized function for
ḡ − 1, the results were significantly improved [31,32,38].

From the expression for the WDA xc energy (5) we
immediately notice that the integral kernel is still asymmetric
in the coordinates r and r′ and therefore breaks the important
symmetry ḡ(r,r′) = ḡ(r′,r). This is not so important for the
value of the xc energy. But for the corresponding xc potential,
we obtain

vWDA
xc (r) = 1

2

∫
dr′ n(r′){ḡh[|r − r′|; n̄(r)] − 1}

|r − r′|
+ 1

2

∫
dr′ n(r′){ḡh[|r − r′|; n̄(r′)] − 1}

|r − r′|
+ 1

2

∫
dr′

∫
dr′′ n(r′)

n(r′′)
|r′ − r′′|

× δḡh(|r′ − r′′|; n̄)

δn̄(r′′)
δn̄(r′′)
δn(r)

.

The first term actually decays as −1/(2r) as is obvious from
the sum rule. The long-range behavior of the other two terms
is not so obvious, but in practice they turn out to decay
exponentially [31,32]. Therefore, the xc potential decays too
slowly [as −1/(2r)] compared to the proper −1/r decay [30].
The incorrect long-range behavior of the potential is expected
to have a significant effect on properties which depend strongly
on a proper xc potential such as the ionization energy and
Rydberg excitations [9,18,39]. This failure can be attributed
to the broken symmetry of the pair-correlation function.
Consequently, one of the requirements of our functional
will be that it should satisfy the proper symmetry of the
pair-correlation function, i.e., ḡ(r,r′) = ḡ(r′,r).

B. Step structure from exchange

As mentioned in the introduction, the steps in the KS
potential are important for a proper description of the atomic
shell structure [9,10] and also the neutral dissociation of
hetero-nuclear molecules [11,12]. It has been shown that the
necessary steps for the atomic shell structure are already
featured by the exchange energy [9]. However, the necessary
step in the dissociation of hetero diatomic molecules is a less
clear case, since the spin symmetry has to be broken to provide
the necessary localization [40,41].

Closely related, the exchange energy also has the necessary
features for the integer discontinuity [9,12], since the exchange
term often changes radically when crossing an integer number
of electrons due to the usual idempotency of the KS density

matrix. The corresponding hole, the exchange hole, can be
expressed in spin-integrated quantities as

ρ̄x(r|rref) ≡ −1

2

|γs(r,rref)|2
n(rref)

, (6)

where the spin-integrated KS density matrix is defined as

γs(r,r′) ≡
∑

σ

γ (rσ,r′σ )

≡
∑

σ

〈�s |ψ̂†(r′σ )ψ̂ (rσ )|�s〉,

with �s as the KS wave function. The KS density matrix can
alternatively be expressed directly in terms of the KS orbitals
φk(r) as

γs(r,r′) =
∑

k

nkφk(r)φ∗
k (r′), (7)

where nk are the occupation numbers, being simply 0 or 2 in
the nondegenerate case. The exchange hole has the convenient
property that it already satisfies the hole xc hole sum rule (3).

Since exchange already satisfies a number of important
properties, it is often used as a starting point to model the
full exchange-correlation effects. Traditionally, one adds a
correction term, correlation, defined as the difference between
the exact exchange-correlation quantities and the ones with
one exchange taken into account. For example the correlation
hole is simply defined as

ρ̄c(r|rref) ≡ ρ̄xc(r|rref) − ρ̄x(r|rref).

Although this approach has some appeal, it is inconvenient in
practice, especially in bond-breaking situations. We show that
explicitly in the next section.

C. Bond breaking

In Fig. 1 we have plotted the different holes, ρ̄x(r|rref),
ρc(r|rref) and ρxc(r|rref) for the H2 molecule at equilibrium
distance RH-H = Re = 1.4 bohr. Note that the quantities with
correlation are at full coupling strength (λ = 1) and not the
integrated ones. Ideally we would like to have shown the
integrated ones, but obtaining them is a rather difficult task.
Since the effect of the kinetic energy is not very large on the
total energy [42], we expect that the holes do not differ too
much as well. The reference electron is fixed at 0.3 bohr to
the left from the right nucleus. The holes were calculated from
full configurations interaction (CI) results using the 1s, 2s, 3s,
2p, and 3d hydrogen wave functions on each atom as a basis
set [43]. The exchange hole (x hole) can be worked out to be

ρ̄x(r|rref) = −2
|σg(r)|2|σg(rref)|2

n(rref)
= −|σg(r)|2,

thus the exchange hole is actually independent of the position
of the reference electron. However, the real hole is deeper
around the reference electron and therefore, depending on the
position of the reference electron, the correlation hole (c hole)
has to add and remove an equal amount of the hole to deepen
it around the reference electron. Although the xc hole is more
localized around the reference position, it still shows the two-
peak structure of the x hole.
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FIG. 1. (Color online) The different holes of the H2 molecule at RH-H = 1.4 bohrs in atomic units and the reference electron at 0.3 bohr
to the left of the right nucleus along the bond axis [rref = (0,0,0.4) bohr]. The positions of the nuclei are indicated by the blue lines and the
position of the reference electron is indicated by the red line. The left panel shows the exchange hole, ρ̄x(r|rref) = −|σg(r)|2, the middle panel
shows the correlation hole, ρc(r|rref), which provides a small correction to have the more localized real hole, ρxc(r|rref).

The localization effect becomes more prominent if we
consider the hydrogen molecule at an elongated bond distance
of RH-H = 5.0 bohrs (Fig. 2). Again, the x hole is independent
of the position of the reference electron and is completely
delocalized over the molecule. However, the real hole is
completely localized around the reference electron, which is
again located at 0.3 bohr to the left from the right nucleus.
Therefore, the c hole has to completely remove the hole from
the left side of the molecule and put it back at the right side
such that it integrates still to −1 electron. The c hole can not
be regarded as a “small” correction to the x hole anymore,
since it is actually equal in magnitude. The lack of the “small”
c hole in the Hartree-Fock (HF) description correcting the x
hole is the main reason for the bad performance of HF for the
dissociation of molecules.

It is instructive to consider the LDA holes, since they
explain why DFT and its predecessor, Xα [44], are so
successful. The LDA holes are actually the λ-integrated ones,
so a direct comparison is strictly not correct. Luckily, however,
in the dissociation limit the λ-integrated and the exact hole at
λ = 1 are identical [10,45]. The reason is that at long bond
distances the interaction term λ/r12 for λ > 0 will favor wave
function configurations in which the electrons are residing on
different atoms, i.e., the Heitler-London wave function. The
density corresponding to this ground state wave function �λ

will be exactly equal to the wave function �1 at full coupling

strength. It thus follows that �λ = � for λ > 0 at infinite bond
distance. At λ = 0 the wave function simply remains a KS
determinant with a doubly occupied σg orbital. However, the
λ = 0 region becomes unimportant [46] in the λ-integration
for the pair-correlation function and hence g = ḡ. Therefore
at the longer bond distance of RH-H = 5.0 bohrs the exact xc
hole should be close to its λ-integrated counterpart.

In Fig. 3 we show the LDA holes for the hydrogen molecule
at RH-H = 5.0 bohrs. From our discussion in Sec. II A it is
clear what the definition of the xc hole of the LDA should be.
The following expression [30,47] is consistent with the LDA
energy expression (4)

ρ̄LDA
xc (r|rref) = n(rref){ḡh[n(rref),|r − rref|] − 1}. (8)

Gori-Giorgi and Perdew made an accurate model for the pair-
correlation function of the homogeneous electron gas [48],
which we used to calculate ρ̄LDA

xc . The x hole can be calculated
by using the exchange part of the electron gas pair-correlation
function in this expression and the c hole is simply defined
as the difference between the other two. The most striking
feature of the LDA holes in Fig. 3 is that the x hole is localized
instead of delocalized over the two atoms, just as is the case for
the exact x hole. Although the LDA x hole does not resemble
the exact x hole at all, the full xc hole (the one of interest)
is actually modeled quite well. Especially, if we consider the
exact x hole which is the hole employed in HF theory, the

FIG. 2. (Color online) Similar to the previous plots, but now for RH-H = 5.0 bohrs. The reference electron is still at 0.3 bohr to the left of
the right nucleus along the bond axis [rref = (0,0,2.2) bohr now]. The exchange hole, ρ̄x(r|rref), remains completely delocalized, so requires
an equally large correction from the correlation hole, ρc(r|rref), to obtain the real hole, ρxc(r|rref), localized around the reference electron. All
values are in atomic units.

022514-4



TOWARDS NONLOCAL DENSITY FUNCTIONALS BY . . . PHYSICAL REVIEW A 87, 022514 (2013)

FIG. 3. (Color online) LDA holes for the H2 molecule at RH-H = 5.0 bohrs in atomic units. The reference electron is again at 0.3 bohr to
the left of the right nucleus along the bond axis [rref = (0,0,2.2)]. Both the LDA x hole and c hole are localized, so do not resemble the exact
ones. However, their sum, ρxc(r|rref), has much better resemblance to the full xc hole.

LDA xc hole provides a large improvement. We also see that
the LDA c hole only provides a small correction to the x hole:
it removes the outward oscillations and localizes the LDA
hole a bit further. Since the correction from the c hole is so
small, we can understand why the old Xα method already
outperformed HF so much. In particular, the deepening of
the hole was empirically taken into account by scaling the
exchange prefactor, α, from its theoretical value, 2/3, to 0.7.
These observations concerning the LDA holes also make it
clear that it does not make sense at all to add “exact exchange”
to LDA correlation. The same holds for GGA holes, since they
are quite similar to LDA holes, only having slightly more wild
oscillations and a discontinuity due to their cut-off to satisfy
the sum rule (3) as additional features [49,50].

III. THE SCREENED EXCHANGE MODEL

Considering these facts about the x hole in dissociating
H2, it seems to be unwise to add a correlation hole to an
exact exchange hole. It will be hard to build a model for the
correlation hole with the proper strongly varying features. But
we also know that exchange effects often dominate and that
correlation effects only provide a modification of the former.
This observation suggests that we should not add correlation
to exchange but rather modify the shape of the x hole by some
correlation factor. From the holes for the hydrogen molecule
(Figs. 1 and 2) we observe that the main effect of correlation is
to localize the x hole. This is not special for the H2 molecule,
but is the main feature of correlation in any system, even in
the electron gas where the correlation reduces the long range
behavior of the x hole from r−4 to r−8 [51,52]. A further
example was provided long ago by Slater when he pointed out
that atomic term energies were often accurately described by
term dependent Hartree–Fock theory (“exact exchange”) by
simply reducing Slater’s Fk and Gk integrals by ∼25% [53].

Following the discussion above it seems rather natural
to use the following Ansatz for the xc energy Exc of an
inhomogeneous system:

Exc = −1

4

∫
dr

∫
dr′ |γs(r,r′)|2

|r − r′| F (r,r′). (9)

Here γs(r,r′) is the spin-integrated noninteracting density
matrix of the KS orbitals (7) and the “screening” factor F

is intended to provide the necessary modification of exact

exchange which will take care of the effects of correlations.
The exact expression for F is

F (r,r′) ≡ ρ̄xc(r|r′)
ρ̄x(r|r′)

and by multiplying the numerator and denominator by n(r)
we immediately see that the screening function F (r,r′) is
symmetric in its arguments r and r′; cf. Eqs. (2) and (6).

Our task is thus to find a reasonable model for F and we
stress again the importance of keeping the symmetry of F (r,r′)
in order to have an ensuing xc potential with the correct −1/r

tail outside finite systems. We also believe it to be essential to
have a model which satisfies the sum rule for the xc hole and
in terms of F , our model should thus obey∫

dr′ |γs(r,r′)|2F (r,r′) = 2n(r),

If we, like the founding fathers (KS), first turn to the electron
gas, we realize that F , and also γs for that matter, must
be spherical functions of only |r − r′|. In the spirit of the
older WDAs we could thus attempt such an Ansatz for our
F function. It is, however, important here to stress that in the
original WDAs it is almost the entire xc hole which is modeled
in this way, whereas in our case we just model a modification
of the full, in general nonspherical x hole. As mentioned
previously, we would also like to model the F function in
the case of the dissociation of H2. In the dissociation limit of
the hydrogen molecule the F function actually takes the form

FHL(r,r′) ≈ fa(r)fa(r′) + fb(r)fb(r′)

in terms of two one-point functions fa and fb located on the
different hydrogen atoms. This follows from the fact that in
the limit of large separation between the nuclei, the Heitler-
London wave function becomes exact, but we will not present
the details here. But it means that in this limit, the F function
is very far from spherical.

When the two electrons are on different nuclei, the F

factor should vanish, because we are then dealing with two
noninteracting subsystems and there is neither exchange nor
correlation. When both electrons are on the same atom, the
F function should actually be 2 to make the xc hole equal to
the negative of the local density. In this way the xc hole will
precisely remove the full self-interaction on each atom, not just
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half the self-interaction as Hartree-Fock does, and we recover
the correct limit of two separate and noninteracting atoms.

As suggested by the above observations, the following
Ansatz for the screening function F (r,r′) might stand a chance
of carrying us from the limit of a homogeneous system to that
of the complete breaking up of the H2 bond:

F SX(r,r′) ≡ A(r)A(r′) h(|r − r′|,n̄(r,r′)). (10)

Here the spherical function h has an effective screening radius
r̄s given by 4πr̄3

s = 3/n̄. This form was also inspired by the
success of a wave function for the helium atom by Hylleraas
[54] having precisely this form.

We are then left with the choice of satisfying the hole sum
rule either by adjusting the one-point function A(r), the hole-
depth function, or by varying the effective density n̄(r,r′). We
stress that the latter must be a symmetric two-point function
in order not to jeopardize the asymptotics of the potential. In
terms of the Ansatz (10) the sum rule reads

A(r)
∫

dr′ |γs(r,r′)|2A(r′) h(|r − r′|,n̄(r,r′)) = 2n(r). (11)

The effective density is expected to vary in a similar way as the
density itself (from very small to very large values) and it is
a two-point function. The hole-depth function A on the other
hand is a one-point function of limited variation, typically
between zero and two depending on the normalization of
the function h. Consequently, it appears to be numerically
more stable to use the A function for the purpose of satisfying
the sum rule. Indeed, we have encountered no difficulties in
solving (11) in our applications. A further argument in favor
of this choice is a lack of guidance from the electron gas when
determining the A factor, should we have chosen to satisfy
the sum rule by varying the effective density n̄. Most WDA
models have used the latter procedure, but again, they have not
considered an A factor.

In our case we are thus free to choose the effective density.
Typical choices are n̄(r,r′) = 1

2 [n(r) + n(r′)] or n̄(r,r′) =
n[(r + r′)/2]. In previous attempts to construct a symmetric
version of an WDA-like model we have found that the first of
these suggestions gave rise to numerical difficulties, whereas
Gunnarsson et al. [30] encountered difficulties with the second
choice. A choice which seems to work in our previous attempts
is

n̄(r,r′) ≡
√

n(r)n(r′), (12)

which is the definition of the effective density n̄ which we
will use here. We stress, however, that there is no compelling
reason for this choice. As a matter of fact, this is one part of
our model which we might have to revise in future attempts to
improve the accuracy of the model.

It is not clear what properties and shape the screening
function h should have. However, since its main task is to
screen the x hole, we will use the very simple form inspired
by the screened Coulomb (Yukawa) interaction

hHEG(r12,n̄) ≡ e−D(n̄)r12 . (13)

The function D(n) is fitted to the homogeneous electron gas
such that it yields the exact xc energies for all homogeneous
densities. In this way also the kinetic energy contribution to the
xc energy is included. More details on the fit can be found in

Appendix B. This form for the screening function is definitely
too simplistic. More knowledge is required to build more
accurate SX models. This will be the subject of future research.

IV. ILLUSTRATIVE RESULTS

One of the most severe tests for our SX functional will be
if it performs well for dissociating molecules. To keep matters
simple, we have limited ourselves to the hydrogen molecule.
The most natural grid for calculations on a diatomic molecule
is based on a prolate spheroidal coordinate system. A planar
elliptical grid with foci at the two nuclei and z axis joining
those foci is rotated about that axis to generate the full grid.
More details on the grid used are in Appendix C. As a further
simplification we used the density from a full CI calculation
in the same basis as used before (1s, 2s, 3s, 2p, and 3d

hydrogen wave functions). This CI expansion is not very good
for obtaining an accurate total energy. However, we believe
that the density will be accurate enough for the SX model.

The first step in evaluating the SX model is to solve for
the hole-depth function, A(r), by solving the integral equation
(11) on the grid. Once the hole-depth function is obtained, we
performed the double integral (9) with F SX (10) to obtain the xc
energy according to our simple SX model. To calculate the total
energy, we note that the noninteracting kinetic energy can be
directly obtained from the density for the two-electron system,
Ts = 1

2

∫
(∇√

n)2, and the Hartree and nuclear contributions
are already known from the full CI calculation. In Fig. 4
we compare the total energies from the SX model with the
ones from a full CI calculation as a function of the distance,
RH-H, between the hydrogen atoms. As mentioned before the
Slater basis is too poor to obtain a good total energy, so we
performed a full CI calculation with the DALTON package [55]
in an aug-cc-pVQZ basis [56] as a reference and additionally

full CI

HF

LDA

h2

hHEG

h1

E
to

t [a
.u

.]

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

RH-H [a.u.]
1 2 3 4 5 6 7 8 9 10

FIG. 4. (Color online) Comparison of the total energy from the
simple SX model with the ones from the full CI calculation for varying
bond length.
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FIG. 5. (Color online) The different model holes of the H2 molecule at RH-H = 1.4 bohrs in atomic units and the reference electron at 0.3
bohr to the left of the right nucleus along the bond axis [rref = (0,0,0.4) bohr]. The positions of the nuclei are indicated by the blue lines and
the position of the reference electron is indicated by the red line. The right most panel shows the exact (not integrated) xc hole for comparison.
From left to right, the panels show the xc holes from the SX model with the hHEG screening function (13), the SX model with the h1 screening
function (14a), the SX model with the h2 screening function (14b) and the LDA hole evaluated as in (8) with the pair distribution from Ref. [48].

the corresponding HF result is shown as well. Unfortunately
our SX model with the simplistic screening function is not
performing much better than the HF method. It follows the
HF curve rather closely and only around RH-H ≈ 6 bohrs does
the curve start to bend downwards to the correct total energy.
The most important feature of the SX model is that it directly
models the xc hole and therefore we can look at it what is going
wrong. In Fig. 5 in the left panel, we show the hole at RH-H =
1.4 bohrs. If we compare with the exact holes in Fig. 1, we see
immediately that our current SX model is not localizing the x
hole sufficiently. Actually, the SX hole is almost identical to the
x hole ρ̄x . In the left panel of Fig. 6 we show the hole the elon-
gated distance RH-H = 5.0 bohrs. Comparing with the exact
holes in Fig. 2 we see that the SX model actually does localize
the x hole, but not sufficiently. The lack of localization of the
hole explains exactly why the total energy in the SX model is
consistently too high (Fig. 4). Due to the 1/|r − r′| term in the
expression for the xc energy (1), a too delocalized hole does not
stabilize the energy enough, which results in a too high energy.

In retrospect we should not be surprised that parametrizing
the screening function by the homogeneous electron gas did
not work out. The main task of the screening function is to
localize the hole which is most important in inhomogeneous
systems like the hydrogen molecule. Therefore, its actual form
and localization strength should be modeled by these systems
and not the homogeneous electron gas. A detailed study and
parametrization are beyond the aims of this article, but to
reinforce our arguments for this statement, we also like to
show some results for the following two heuristic screening
functions

h1(r12,n̄) = exp

[
−c1

(
r12

r̄s

)]
, (14a)

h2(r12,n̄) = exp

[
−c2

(
r12

r̄s

)2]
. (14b)

The first one, h1, keeps the Slater-like form, but replaces the
parametrization by the electron gas by a simple division by
r̄s to make the total dimensionless and a constant c1 that we
can choose to our liking. We found that c1 = 2.0 gave a nice
dissociation behavior for the energy. The second one is mainly
included to emphasize that the required shape of the screening
function is also unclear at the moment. Choosing the constant
in the same manner as before, we found c2 = 0.5 to be
sufficient for our purposes. Note that both screening functions
are not fitted to the electron gas anymore and are therefore not
expected to give the correct xc energy density, εxc(rs), for the
gas.

The results for the energy from these screening functions
are shown also in Fig. 4. The situation is now rather different.
The total energy is consistently underestimated. However, the
shape of the curve is definitely an improvement. The total
energy at elongated distances RH-H > 5 bohrs remains rather
constant as we choose the constants ci to do so. From the figure
it is not immediately clear if the shape is also an improvement
over the simple LDA functional. However, shifting the curves
such that their minima coincide with the full CI minimum
(Fig. 7), we see that the energy from the SX models follow
the full CI energy much closer. In particular the Gaussian, h2

seems to reduce the overbinding most. Even at equilibrium
distance the position and shape of the minimum seems to be
somewhat improved.

Again, since we have built a direct model for the hole
we can explain both features. Considering the holes from the
heuristic h1 and h2 screening functions in Figs. 5 and 6, we
see that both screening function are too powerful: they screen
the x hole too much. This explains why the total energy is
consistently lower than the full CI result: the hole becomes
too compact. Since the hole is even more compact for h1

screening function than the h2 screening function, the energy
of the h1 screening function is even lower than the energy of

FIG. 6. (Color online) Similar to the previous plots, but now for RH-H = 5.0 bohrs. The reference electron is still at 0.3 bohr to the left of
the right nucleus along the bond axis [rref = (0,0,2.2) bohr now].
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FIG. 7. (Color online) Comparison of the total energy of the LDA
functional [48] and the SX model with the Slater, h1, and with the
Gaussian, h2, as its screening function with the full CI results. The
total energy of the LDA and SX model are shifted such that the
minima coincide with the full CI value.

the h2 screening function. However, if we consider the shapes
of the holes, then they are definitely an improvement over the
previous screening function. Especially at the elongated bond
distance RH-H = 5.0 bohrs, we see that both heuristic screening
functions nicely localize the hole completely at the correct side,
which explains their improved energy in the dissociation limit
over the erroneous 1/RH-H of HF.

The LDA hole is also shown in Figs. 5 and 6. Compared
to the HF hole (cf. ρ̄x in Figs. 1 and 2), the LDA hole is a big
improvement since it localizes around the reference electron.
This improvement is also visible in the total energy where
the LDA does not exhibit the erroneous 1/RH-H behavior as
HF does (Fig. 4). However, the shape of the LDA hole is
ridiculous. It is spherical by construction and it does not have
the peaked features at the nuclei. Instead, the LDA hole attains
its minimum at the position of the reference electron. The
SX holes, especially with the h2 screening function, are an
improvement over both the HF hole and the LDA hole. It
correctly localizes the hole around the reference electron and
still retains the distinct peaked features of the hole. Hence, the
binding curve is much improved over HF and LDA (see Fig. 7).

V. CONCLUSION

The aim of the present work is to construct a functional for
the exchange-correlation (xc) energy of DFT which applies to
such diverse systems as the electron gas and the dissociation
of the hydrogen molecule (H2). To this end we try to find a
model for the xc hole of these and intermediate systems in real
space. It has been known for long that the exchange (x) hole
captures many important features of the full one. For instance,
in atoms term energies are often well described by reducing the
exchange effects by 25% and in the electron gas correlations
have the effect of reducing the range of the pure x hole from

a r−4 decay to a r−8 decay [51,52], r being the distance from
the the center of the hole. Thus unlike previous models that
have sought to model the xc hole in real space, our present
model aims at modifying the full x hole. Our investigations
have shown that in the case of the dissociation of H2 the xc
hole is qualitatively different from the x hole. Therefore, it
is an unwise strategy to add a correlation (c) hole to a full x
hole. The former would have to replace the latter with a full xc
hole with appropriate features. We show here that this can be
achieved in a more natural manner by multiplying the x hole
by an appropriate correlation factor. Judging from the electron
gas, the correlation factor might be chosen as a function of the
distance |r − rref| between an electron and a reference electron.
(We here again remind the reader that the xc hole describes the
depletion of negative charge around an electron known to be at
the reference position rref.) Unfortunately, our investigations
have shown that such a simple correlation factor will have
difficulties in moving half an x hole from one atom to the other,
which is the appropriate effect of correlation in H2 at large
nuclear separation. Instead, we have chosen to include in our
correlation factor an additional factor A(r) depending on only
one coordinate, a modulation of the depth of the xc hole. Such
a factor is by symmetry just a constant in the electron gas and
irrelevant to the shape of the hole in that case. Consequently,
we have no guidance from the gas in choosing the A factor.
Instead, we have decided to determine this factor at every point
in space from the sum rule for the xc hole. This sum rule is of
course of utmost importance for obtaining an xc potential with
the correct asymptotics outside finite systems (−1/r) from our
model. This important property also requires the full symmetry
in r and r′ in the density multiplied xc hole, n(r)ρ̄xc(r′|r),
something that we have emphasized throughout the paper.

The decision to use the A factor for satisfying the sum rule
leaves us with great freedom in choosing a screening factor
depending only on |r − r′|. Thinking about the electron gas
it is natural to let this screening function have a screening
length r̄s determined by an effective density n̄ according to
4πn̄r̄3

s = 3. In the present work we have made the somewhat
arbitrary choice n̄(r,r′) = √

n(r)n(r′). We are, however, aware
of that we might be forced to abandon this simple choice in
future refinements of our model.

For the actual shape of the screening function we have
simply made a couple of reasonable choices for illustration
purposes. They are rapidly decaying, analytic functions with a
few parameters with density dependence. One of the screening
functions had its parameters specifically chosen such to
reproduce the “exact” xc energies of the electron gas in the
homogeneous limit, whereas two other screening functions
had more ad hoc parameters to illustrate the effect of selecting
different forms of the screening function.

We could, however, also have attempted to find a screening
function with a shape that would have allowed us to obtain
accurate results for one- and two-electron systems. We would
then have had an approximation which is able to properly
dissociate H2, which would be exact for the electron gas and
quite accurate for the one- and two-electron cases. Such a
functional is likely to give good total energies in a large number
of systems.

In the present work we have, however, refrained from going
down this road. Instead, our aim here was to present the basic
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ideas and to leave further refinements to future investigations.
In order to just illustrate our approach, we thus chose to present
results obtained from two simple, but rather arbitrary screening
functions given by the equations (14a) and (14b). We have
seen that the shorter ranged choice (h2) gives better results,
but they are still not very good. It is however, seen from both
Figs. 4 and 7 that the errors are mainly associated with an
inadequate description of a simple one-electron system. (At
a bond distance of 10 bohrs we basically have two separate
hydrogen atoms.)

The most important result of the present work is that we
managed to design a model which is able to describe the proper
behavior of the xc hole of a hydrogen molecule as it dissociates.
The details are not overly accurate, but we nurture real hope
that they may fall in place by a better choice of the screening
function. For now, however, we have left the search for such a
function to future work.
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APPENDIX A: THE XC POTENTIAL

The xc potential is obtained by straightforward differentia-
tion of ESX

xc with respect to the density

vSX
xc (r) = −1

4

∫
dr1

∫
dr2

1

|r1 − r2|
×

[
δ|γs(r1,r2)|2

δn(r)
A(r1)A(r2)h(r12,n̄)

+ 2|γs(r1,r2)|2 δA(r1)

δn(r)
A(r2)h(r12,n̄)

+ |γs(r1,r2)|2A(r1)A(r2)
δh(r12,n̄)

δn(r)

]
. (A1)

The functional derivative of the hole-depth function can be
obtained by differentiating its hole sum rule (11) with respect
to the density. Its derivative can be worked out as

δA(r1)

δn(r)
+ A2(r1)

2n(r1)

∫
dr2 |γs(r1,r2)|2h(r12,n̄)

δA(r2)

δn(r)

= A(r)

n(r)
δ(r − r1) − A2(r1)

2n(r1)

∫
dr2 A(r2)

×
[
δ|γs(r1,r2)|2

δn(r)
h(r12,n̄) + |γs(r1,r2)|2 δh(r12,n̄)

δn(r)

]
.

Unfortunately this equation does not give a closed expression
for the functional derivative of A(r), but just like its original
counterpart (11) has to be solved iteratively to self-consistency.

Since the hole correctly integrates to −1 electron (11), the
potential has the correct asymptotic behavior −1/r . However,
due to all the functional derivatives this is not directly visible in
the expression for the xc potential (A1). The main complication
arises from the functional derivative of the KS density matrix
whose evaluation requires the application of the chain-rule
multiple times. Fortunately, in the case of a two-electron

system, the Kohn-Sham density matrix can be expressed
directly in the density as γs(r1,r2) = √

n(r1)n(r2) allowing for
direct differentiation. Working out the first part of the potential
gives

vSX
xc (r) = −A(r)

2

∫
dr′ n(r′)A(r′)h(|r − r′|,n̄)

|r − r′| + · · · , (A2)

so we find the correct Coulombic 1/r behavior. We only have
to check the charge. Using γs(r1,r2) = √

n(r1)n(r2) in the sum
rule for the hole-depth function (11), we find

A(r)

2

∫
dr′ n(r′)A(r′)h(|r − r′|,n̄) = 1, (A3)

so indeed, the Coulombic part of the potential also has the
correct charge of −1.

APPENDIX B: THE ELECTRON GAS
SCREENING FUNCTION

One of the requirements of the functional is that it should
work form a broad class of systems. Not only for molecules, but
also for extended systems and in particular the homogeneous
electron gas. Since the homogeneous electron gas is well
studied and much of its properties are known, it provides the
ideal system to fit the screening function (13) such that the SX
functional will be exact for the homogeneous electron gas, in
particular, it should give the exact xc energy for the electron
gas. Before we can start fitting the screening function, we have
to solve for the hole depth, A. For the KS density matrix of the
homogeneous electron gas one can straightforwardly calculate
that

γs(r12,kF ) = k3
F

π2

sin(kF r12) − kF r12 cos(kF r12)

(kF r12)3
,

where the Fermi wave vector k3
F ≡ 3π2n. Using this expres-

sion for the KS density matrix in the sum rule for the hole-depth
function (11) and the Ansatz for the screening function (13),
we find

1 = 6

π
A2F4(D̃), (B1)

where we defined D̃ ≡ D/kF and the integrals

Fn(β) ≡
∫ ∞

0
dy[sin(y) − y cos(y)]2y−ne−βy.

More details about these functions and explicit expressions are
given in Appendix D. Now we have an explicit relation how
to calculate the hole-depth function A for the homogeneous
electron gas (B1), we will fix D by requiring our functional to
produce the exact xc energy for the electron gas. In terms of
our model, the xc energy density becomes

εxc = −3kF

π
A2F5(D̃). (B2)

Since the equations (B1) and (B2) are linear in A2, the
hole-depth function can simply be eliminated by dividing the
equations, which gives

F5(D̃)

F4(D̃)
= 3

2π

εxc(rs)

εx(rs)
, (B3)
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where we used the Seitz radius r3
s ≡ 3/(4πn) and that εx =

−3kF /(4π ) for the homogeneous electron gas. To find D̃(rs),
we need an explicit expression for εxc(rs) for which we used
an accurate fit to the random-phase approximation (RPA) and
Green’s function Monte Carlo data by Perdew and Wang [57].
Unfortunately, the expression for D̃(rs) cannot be inverted
analytically. However, one can show that F5(β)/F4(β) is a
monotonic increasing function over β � 0, so at least the
solution to (B3) is unique. Further, in the low density limit
we have

lim
rs→∞

3

2π

εxc(rs)

εx(rs)
= 3

2π

(
1 + 4π

3
3

√
4

9π

α1

β4

)
= 0.929 25,

where the parameters α1 = 0.213 70 and β4 = 0.492 94 are
from the low density fit of Perdew and Wang [57]. Inverting
(B3) numerically, we find that in the low density limit

D(rs) ≈ D∞

rs

,

where D∞ = 2.275 91. For the asymptotic behavior in the
high density limit, rs → 0, we find for the ratio of the xc and
x energies

3

2π

εxc(rs)

εx(rs)
= 3

2π
− 2 3

√
4

9π
c0 rs ln(rs) + · · · ,

where c0 = cRPA
0 = (1 − ln(2))/π2 is a constant from the high

density fit by Perdew and Wang to the RPA [57]. Similarly for
small arguments of F5/F4 we have

F5(D̃)

F4(D̃)
= 3

2π
− 9

2π2
3

√
4

9π
D(rs) rs ln(rs) + · · · .

Comparing these two high density limits, we find that for high
density to lowest order

D(rs) ≈ D0 ≡ 4
9 [1 − ln(2)].

To obtain a workable expression for D(rs), we simply solved
(B3) numerically for several rs and made a least square fit
using the following the following Padé approximant

D(rs) = a0 + a1rs + b3D
∞r2

s

1 + b1rs + b2r2
s + b3r3

s

,

for which we found the coefficients a0 = 0.149 056,
a1 = 0.180 374, b1 = 1.164 35, b2 = 0.128 538, and b3 =
0.000 703 698. Note that we did not enforce the proper limit
for rs → 0, since the low density region is more important and
relaxing this constraint significantly increased the accuracy
for rs > 0.1 bohr, which are more relevant densities in
nonrelativistic molecules and solids.

APPENDIX C: THE PROLATE SPHEROIDAL GRID

In this Appendix we very briefly introduce the prolate
spheroidal grid and give details on the exact parameters used
for the grid in the calculations. The prolate spheroidal grid
is created from an elliptic grid by rotating it around the axis
connecting the two foci, the z axis. The elliptic coordinates are

defined as

ξ ≡ r1 + r2

2ρ
and η ≡ r1 − r2

2ρ
,

where ri is the distance to nucleus i, which are placed at ±ρ

from the origin on the z axis. One readily sees that the ranges of
the elliptic coordinates are 1 � ξ and −1 � η � 1. The curves
ξ = constant describe ellipses and the η = constant curves
describe hyperbolae. The intersection points of the ellipses and
hyperbolae for different constants will be used as grid points.
Also taking the revolution around the z axis into account one
can derive expressions for the Cartesian coordinates in terms
of the prolate spheroidal ones

x = ρ
√

(ξ 2 − 1)(1 − η2) cos(φ),

y = ρ
√

(ξ 2 − 1)(1 − η2) sin(φ), z = ρξη.

The main advantage in using ellipses and hyperbolae is that
they are orthogonal to each other. Therefore, the metric
g is simply diagonal, gξη = gηφ = gφξ = 0, with diagonal
elements

gξξ =
〈
∂r
∂ξ

∣∣∣∣ ∂r
∂ξ

〉
= ρ2 ξ 2 − η2

ξ 2 − 1
,

gηη =
〈
∂r
∂η

∣∣∣∣ ∂r
∂η

〉
= ρ2 ξ 2 − η2

1 − η2
,

gφφ =
〈
∂r
∂φ

∣∣∣∣ ∂r
∂φ

〉
= ρ2(ξ 2 − 1)(1 − η2).

The scaling factors are defined as λi ≡ √
gii , from which we

immediately find the volume element

� = λξληλφ = ρ3(ξ 2 − η2)

and the gradient

∇ =

⎛
⎜⎝

1
λξ

∂
∂ξ

1
λη

∂
∂η

1
λφ

∂
∂φ

⎞
⎟⎠ = 1

ρ

⎛
⎜⎜⎜⎝

√
ξ 2−1
ξ 2−η2

∂
∂ξ√

1−η2

ξ 2−η2
∂
∂η

1√
(ξ 2−1)(1−η2)

∂
∂φ

⎞
⎟⎟⎟⎠.

We could also write down an explicit expression for the Lapla-
cian, but we do not need it. The disadvantage of discretizing
the Laplacian directly is that it is not symmetric anymore.
Instead we use that for functions vanishing sufficiently fast at
the boundary [58]

−
∫

dr f (r)∇2g(r) =
∫

dr ∇f (r) · ∇g(r),

so formally we can write

−�(r)∇2 = ↼∇
√

�(r) ·
√

�(r)
⇀∇,

which is inherently symmetric and its discretization can
directly be constructed from the discretized gradient.

The ξ -grid points are generated by starting from an
equidistant grid, u ∈ [0,1), and using a simplified version of
the transformation used by Becke [58] to generate grid points
and weights for the ξ grid

ξ (u) = 1

(1 − u2)pξ
.
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The parameter pξ can be used to affect the distribution of the
grid points between the inner and outer region. For a given
maximum value of ξ , ξmax, pξ is easily determined as

pξ = − ln(ξmax)

ln[�u(2 − �u)]
,

where �u is the distance between the points in the u grid.
An important aspect is the u2 which has the benefit that the
cusps at the nuclei are transformed into smooth Gaussians in u

grid. The disadvantage is that the weight becomes zero at the
line between the nuclei [w(ξ = 1) = ξ ′(u = 0) = 0], so the
solution cannot be calculated directly at these points and has
to be extrapolated.

For the η grid we started from an equidistant grid, v ∈ [0,π ],
and use the following transformation to generate the η grid
points

η(v) = − cos[v + pη sin(2v)],

where the parameter pη can be used to modify the point
distribution between the intermediate region and the nuclei.
Becke found pη = −0.25 to be optimal [58]. Also this
transformation has the property that the cusps at the nuclei are
transformed into Gaussians in the v grid. As one might already
expect, the disadvantage of this feature is that the weights at
the boundaries vanish [w(η = −1) = w(η = 1) = 0], so the
results will have to be extrapolated also to these points. The
η = ±1 points correspond along the bond axis outside the
molecule.

We found that 80, 81, and 40 points in the ξ , η, and φ

directions respectively gave numerically sufficient converged
results. For the self-consistent solution of the hole-depth
equation from its sum rule (11) it was important that the density
did not become too small. Hence the grid should not have
points far in the asymptotic region. Using ξmax = 1 + 10/ρ

was sufficient to prevent points with numerically vanishing
density, though still including a sufficient part of the relevant
space.

In the equidistant grids it is straightforward to define
numerical derivatives. For example one can use cubic B
splines [58] or simple central finite differences [59] which we
used in our calculations. In practical calculations, fourth-order
derivatives already gave sufficient accuracy.

APPENDIX D: THE FUNCTIONS Fn

In this Appendix we show how the integrals defining the
functions Fn can be evaluated. The functions Fn(β) satisfy

dFn+1(β)

dβ
= −Fn(β). (D1)

Using the boundary condition Fn(+∞) = 0, we find

Fn+1(β) =
∫ ∞

β

duFn(u), (D2)

which can be used to obtain successively higher order
functions. The integral most suitable for direct evaluation is
F0, albeit the evaluation is still rather tedious. The final result
is

F0(β) = 16
5β2 + 4

β3(β2 + 4)3
. (D3)

By applying successively the integral formula (D2) we can
obtain the higher order integrals required for our model. Their
evaluation is straightforward, but takes the necessary amount
of time. The final results are

F1(β) = ln(1 + 4/β2)

4
+ 1

2β2
− 4

(β2 + 4)2
− 3/2

β2 + 4
,

F2(β) = 1

4
arctan(β/2) + 1

2

β

β2 + 4
,

F3(β) = (β2 + 2) ln(1 + 4/β2)

8
− 1

2
,

F4(β) = arctan(2/β)

3
− (β3 + 6β) ln(1 + 4/β2)

24
+ β

6
,

F5(β) = 1

4
+ β2(β2 + 12) ln(1 + 4/β2)

96
− β2

24

− β arctan(2/β)

3
,

F6(β) = (5β2 + 4) arctan(2/β)

30
− β3(β2 + 20) ln(1 + 4/β2)

480

+ β3

120
− 11β

60
.

The integrals for n > 6 do not converge anymore, so F6(β) is
actually the last function in this series.
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