
PHYSICAL REVIEW A 87, 022513 (2013)

Spectroscopy of alkali-metal atoms in dense supercritical 4He at low temperatures
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We present an experimental study of laser-induced fluorescence spectra of Cs atoms embedded in superfluid
and solid 4He, as well as in dense supercritical fluid He. The studied temperature range is increased with
respect to earlier studies by the use of intense laser pulses for the transient local heating of the helium sample.
The analysis of the experimental spectra is based on two different approaches: the atomic-bubble model and
quasistatic line-broadening theory in the limit of high perturber density. Our results indicate that the temperature
dependence of the experimentally observed spectra can be traced back to temperature-dependent correlations in
the motion of He atoms in the sample.
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I. INTRODUCTION

The perturbation of the resonance lines of alkali-metal
atoms interacting with rare-gas atoms represents a model sys-
tem for atomic collisions that has been studied experimentally
and theoretically for many decades. Two limiting cases for
describing the effect of collisions on line parameters (shift
and width) are well known: (1) perturbation due to binary or
many-body atomic collisions in the gas phase (reviewed in [1]),
and (2) description in terms of the so-called atomic-bubble
model which applies to metal atoms embedded in superfluid
and solid helium cryomatrices (reviewed in [2]). In the gas
phase, the motion of rare-gas atoms is totally uncorrelated even
at elevated densities and their interactions with alkali-metal
atoms can be treated as independent processes. In an atomic
bubble, on the other hand, the motion of the He atoms
surrounding the impurity atom is strongly correlated and has to
be described in terms of collective modes, such as phonons or
bubble interface oscillations. Here we address the crossover
between these two extreme regimes that has neither been
studied experimentally nor theoretically so far.

In a dilute high-temperature gas, the spectral line shape
is described by the well-known impact-broadening theory
that predicts a Lorentzian profile, centered at the unperturbed
transition frequency ω0, with a width

γ = ρ0

∫ ∞

0
σ (v)f (v)vdv (1)

given by the rate at which binary atomic collisions occur. Here
ρ0 is the atomic density of the buffer gas, v is the collision
velocity, σ (v) is the collision cross section, and f (v) is the
Maxwellian velocity distribution.

This model accounts only for absorption or emission
processes that occur during the time intervals between the
collisions, when the atom can be considered as free. The
absorption or emission during the collision can be modeled
using a quasistatic approach. Normally, this contribution leads
to a correction in the far wings of the line profile. For
high collision rates (high densities) and in particular for
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slow collisions (low temperatures), the quasistatic contribution
becomes significant and leads to an asymmetric line shape.

At even higher densities, one has to take many-body
atomic collisions into account. The line shape becomes non-
Lorentzian and shifts with respect to ω0. When the density of
atoms is so high that the absorber or emitter at any moment
interacts with a large number of perturbers, the motion of the
perturbers becomes unimportant and the broadening results
from fluctuations of the number of perturbers located in the
interaction volume that can be described by a Poissonian
distribution. In that case, the line shape approaches a Gaussian
profile with a spectral width γ that is proportional to

√
ρ0 and

a shift � that is a linear function of ρ0 [1,3].
The transition from the impact regime to the many-body

quasistatic regime was theoretically analyzed in [4–6] for some
model interatomic potentials. It was shown that it yields a
strong asymmetry of the line profile and nonlinear dependen-
cies of γ and � on ρ0. It thus provided a qualitative explanation
for the experimental γ (ρ0) and �(ρ0) dependencies for Cs–
rare-gas mixtures reported in [7–9]. This series of experiments
from the 1960s has explored a broad range of atomic densities,
i.e., ρ0 below 5 × 1021 cm−3 at rather high temperatures,
T = 400–500 K. More recently, the topic has received renewed
attention because of astrophysical applications [10–12] in the
temperature range of T = 500–3000 K and in connection with
experiments on collisional redistribution laser cooling [13,14]
at T ≈ 500 K, ρ0 = (1–6) × 1021 cm−3.

The absorption and fluorescence line profiles and the
corresponding γ (ρ0) and �(ρ0) curves for the resonance
lines of Cs and Rb atoms interacting with cryogenic helium
matrices were reported and reviewed in [2]. The experiments
were performed at T = 1.5 K, with atomic He densities
in the range of (2–3) × 1022 cm−3. Under these conditions,
helium is in the condensed (either liquid or solid) phase.
The He atoms therefore do not move freely as in the gas
phase, but undergo (quantum) vibrations around some fixed
positions. The alkali-metal atom is located in a small spherical
cavity, called atomic bubble, that is formed by repulsive
alkali-metal–He forces. From a hydrodynamic model, one
infers an atomic-bubble radius, Rb, of 5–7 Å [15,16]. The line
shapes of the atomic absorption and emission lines calculated
in the frame of such an atomic-bubble model are in good
agreement with experimental spectra observed in superfluid
and solid He cryomatrices. The trapping site structures and the
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corresponding line shift and broadening for Cs and Rb atoms
in liquid He were also modeled in the framework of density
functional theory applied to He clusters [17,18].

The present work was motivated by observations made in
our recent experiments on the photodissociation of alkali-metal
dimer molecules isolated in solid He [19,20]. In that study,
we found that the spectra of the fluorescence emitted by
the photodissociation products are similar, but not identical,
to the laser-induced fluorescence of Cs and Rb atoms in
solid He. The differences in the observed line shapes were
originally attributed to the fact that the two atoms produced
by photodissociation remain close to each other due to the
spatial confinement imposed by the matrix, and we have
speculated [19,21] about the formation of a diatomic bubble.
However, later experiments have revealed that the laser pulses
used for the photodissociation produce a local heating of the
doped solid He sample, which may lead to a softening or even
a local melting of the He matrix.

Here we present a systematic study of the effect of laser
heating on the spectra of Cs atoms in liquid He. Our analysis
demonstrates that the local temperature of the sample can in-
crease significantly and that the resulting fluorescence spectra
are better described by quasistatic line-broadening theory than
by the atomic-bubble model. The paper is organized as follows:
In Sec. II, we present the experimental spectra obtained under
low-power and high-power laser excitation. In Secs. III B and
III C, we discuss the well-known models of line broadening
and apply them to the resonance transitions of Cs that are
perturbed by collisions with He. In Sec. III D, we give a short
review of the atomic-bubble model and discuss its relationship
with quasistatic line-broadening theory. Finally, in Sec. IV,
we compare the experimental spectra with the predictions of
different line-broadening models. The study of laser melting
of doped solid He will be the object of a separate paper.

II. EXPERIMENT

A. Experimental setup

We have studied the laser-induced fluorescence spectra of
Cs atoms embedded in liquid 4He cryomatrices. A doped liquid
4He matrix was produced by the technique described in the
review paper [2] by Moroshkin et al. The sample is contained
in a helium pressure cell immersed in superfluid helium, and
cooled by pumping on the helium bath. The helium host matrix
is doped with Cs atoms, Cs2 molecules, and larger clusters by
means of laser ablation with the second harmonic of a pulsed
Nd:YAG laser focused onto a solid Cs target. The temperature
is measured by means of a ruthenium oxide resistor mounted
inside the pressure cell and the helium pressure is measured by
a gauge installed at the warm end of the high-pressure helium
filling line. Spectroscopic measurements were performed in
the pressure range of 10–40 bar, and at temperatures between
1.5 and 3.5 K (experimental conditions marked in the 4He
phase diagram of Fig. 1). Since the implanted species quickly
diffuse out of the observation region, the laser ablation is
continued during the measurements.

In a first series of experiments, the 6S1/2 - 6P1/2 (D1) and
6S1/2 - 6P3/2 (D2) lines of Cs isolated in the He matrices
were excited by near-infrared radiation of a mode-locked
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FIG. 1. (Color online) Phase diagram of 4He. He I and He II denote
the normal fluid and superfluid phases, respectively. The experimental
conditions, under which the laser-induced fluorescence spectra were
taken, are represented by solid dots.

Ti:Sapphire laser delivering a train of 100 fs ultrashort pulses at
a repetition rate of 80 MHz. The laser beam enters the cryostat
and the sample cell from above, via the same window that
is used for laser ablation. The average laser power was kept
below 10 mW (low-power excitation), thus avoiding the global
heating of the sample. The laser-induced fluorescence was
collected and analyzed by a grating spectrograph (0.2 nm reso-
lution) equipped with a charge-coupled device (CCD) camera.

In a second series of experiments, we have excited Cs2

dimer molecules that are also produced during the laser abla-
tion process. As we have shown earlier [19,20], laser radiation
can easily photodissociate these molecules into one excited and
one ground-state atom, and the fluorescence of the dissociation
products shows similar spectral features as laser-excited atoms.
In the present experiment, we used either a pulsed (frequency-
doubled) Nd:YAG laser beam (λ = 532 nm) or the radiation
from a tunable optical parametric oscillator (OPO) pumped
by another pulsed (frequency-tripled) Nd:YAG laser. The
photodissociation-induced fluorescence spectra were recorded
with the setup described above. Both laser systems work at
repetition rates of 1–10 Hz and deliver pulses with typical
widths of 5 ns. The mean laser power was varied in the range
of 5 to 800 mW. In normal-fluid He, the heat deposited by
the laser also leads to a slight increase of the steady-state
temperature of the cell, while the cell filled with superfluid He
is not affected and stays at the He bath temperature because of
the large heat conductivity of He II. However, our temperature
sensor is not sensitive to the fast rise of the local sample
temperature immediately after the laser pulse. We will come
back to this point below.

B. Fluorescence spectra under low-power excitation

Fluorescence spectra of Cs atoms in condensed He excited
by low-power cw or pulsed laser radiation have been reported
earlier: the Kyoto group studied Cs in superfluid He at T =
1.6 K [15,22], while our group presented results for Cs in
bcc and hexagonal close packed (hcp) solid He at 1.6 and
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FIG. 2. (Color online) Pressure dependence of the shift of the
D1 line of Cs atoms in liquid and solid He. Filled red circles: low-
power excitation at T = 1.5 K; empty circles: low-power excitation at
T = 2.2 K; empty squares: low-power excitation at T = 3.5 K; filled
squares: high-power excitation at T = 3.5 K; filled black circles:
high-power excitation at T = 1.7 K.

1.5 K [16,23]. Here we report on an extension of those earlier
studies to normal-fluid He at T = 2.2 and 3.5 K.

As discussed in [22,24,25], the Cs 6P3/2 state is strongly
quenched by the formation of Cs∗Hen quasimolecules (exci-
plexes). The 6P1/2 state of Cs resides in a spherical atomic
bubble and is therefore much less perturbed by the interaction
with He atoms. Depending on He pressure, the D1 spectral
line is blueshifted by 50–230 cm−1 with respect to the
free-atomic transition and broadened by 30–80 cm−1. The
line shape is nearly Gaussian with a slightly extended red
wing. In Figs. 2 and 3, we show the observed pressure
dependence of the line shift and the (FWHM) linewidth for
three different temperatures. The low-power data in liquid He
are not affected by temperature changes of the He matrix.
The pressure dependencies of the line shifts in superfluid
and normal fluid have the same linear dependence, with a
slope of 2.95 cm−1/bar. The line shift in solid He is larger
due to the higher density and anisotropic compressibility of
the solid matrix [23]. However, the linewidth data are less
accurate. Above 17 bar, all data obtained in liquid He follow the
same pressure dependence. At lower pressures, the linewidths
measured at 3.5 K seem to be significantly larger than those at
1.5 and 2.2 K.

C. Fluorescence spectra under high-power excitation

A typical fluorescence spectrum obtained in Cs-doped
liquid He under high-power pulsed Nd:YAG laser excitation
is shown in Fig. 4(a). The main difference with respect to the
low-power spectra is the presence of the D2 emission line.
The D1 line is blueshifted with respect to the free-atomic
transition and has a Gaussian-like line shape. The D2 line is
much weaker than the D1 line. It is practically not shifted
and has a Lorentzian-like contour with extended asymmetric

Helium pressure (bar)

10 15 20 25 30 35 40

Li
ne

w
id

th
(c

m
)

-1

40

60

80

100

120

hcp

bcc

liquid, low power

liquid, high power

FIG. 3. (Color online) Pressure dependence of the spectral width
of the D1 line of Cs atoms in liquid and solid He. Filled red
circles: low-power excitation at T = 1.5 K; empty circles: low-power
excitation at T = 2.2 K; empty squares: low-power excitation at
T = 3.5 K; filled squares: high-power excitation at T = 3.5 K; filled
black circles: high-power excitation at T = 1.7 K.

wings. In Fig. 5, we show the individual line shapes of both
transitions together with the corresponding Lorentzian and
Gaussian fits. When increasing the He pressure, both lines
broaden and the D1 line shifts further to the blue. At the same
time, the intensity of the Cs∗He2 exciplex emission at 950 nm
(not shown in the figure) increases.

In Figs. 2 and 3, we compare the shifts and widths obtained
under low-power and high-power excitation. All data points
represent the results of Gaussian fits to the experimental
line shapes. The statistical error bars depend on the signal
magnitude, but do not exceed the size (≈2 cm−1) of the
symbols in the figure. The D1 line shifts obtained under
high-power excitation are much smaller than the low-power
line shifts in the whole investigated range of pressures and
temperatures. On the other hand, the high-power linewidths
are significantly larger than the low-power linewidths under
the same conditions, and are even larger than the linewidths
measured in solid He.

III. LINE-BROADENING THEORY

A. Interaction potentials

We model the Cs-He interaction using the ab initio pair
potentials calculated by Pascale [26] (Fig. 6). These potentials
depend on the orientation of the Cs valence electron’s orbital
momentum with respect to the internuclear axis, but do not
account for the fine structure of the excited P states of the
Cs atoms. We introduce the spin-orbit coupling by a standard
method [24] and write the total Hamiltonian of the collision
pair, Htot, as the sum of a spin-orbit term, HSO , and the
interaction Hamiltonian, Hint(r), that is diagonal in the |L,ML〉
basis.
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FIG. 4. (Color online) (a) Experimental laser-induced fluores-
cence spectrum of Cs atoms in liquid He at T = 1.7 K and p = 25 bar.
Excitation by pulsed frequency-doubled Nd:YAG laser radiation
(50 mW at 532 nm). (b) Calculated quasistatic line shapes of Cs
resonance lines perturbed by He gas at T = 50 K for p = 15 bar
(curve 1), 25 bar (curve 2), 35 bar (curve 3), and 45 bar (curve 4). The
intensities of the two transitions in each spectrum are normalized to
fit the corresponding ratio of the experimental peak intensities. The
vertical lines mark the D1 and D2 transitions of the free Cs atom.

The adiabatic potential curves are obtained by a numerical
diagonalization of Htot (Fig. 6). The resulting eigenstates are
r-dependent linear combinations of the |L,ML〉 states. At
large internuclear separations, they correspond to the |J,MJ 〉
eigenstates of the free Cs atom. At small r , the interatomic
interaction leads to a spin-orbit uncoupling and the eigenstates
can be written as |L,ML〉. Here, L and J denote the orbital and
total angular momenta of the valence electron of the Cs atom,
respectively, while ML and MJ are their projections onto the
internuclear axis.

The resulting potential UA(r) for the J = 1/2 fine-structure
component of the 6P state is spherically symmetric. It has a
potential well at r ≈ 3.5 Å and a barrier at r ≈ 5 Å. The state
J = 3/2, on the other hand, is split into two substates, B and
C, that correspond to |MJ | = 3/2 and 1/2, respectively. UC(r)
is repulsive at all internuclear separations, whereas UB(r) is
attractive at large r with a minimum at r ≈ 3.5 Å. All states
are strongly repulsive for r < 3 Å. The potential UP3/2 for the
J = 3/2 state is thus anisotropic and depends on the angle ϑ

between the electronic angular momentum and the internuclear
axis according to

UP3/2 (r,ϑ) = UA(r) cos2 ϑ + UB(r) sin2 ϑ. (2)
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FIG. 5. (Color online) Close-up view of the experimental laser-
induced fluorescence spectra of the (a) D2 and (b) D1 transitions of Cs
in liquid He at 1.7 K and 25 bar. Dots: experimental data; solid lines:
(a) Lorentzian and (b) Gaussian fits. Curve 1: high-power excitation;
curve 2: low-power excitation. The D2 line is observed only with
high-power excitation. The vertical dashed lines mark the D1 and D2

transitions of the free Cs atom.

B. Impact-broadening calculations

In the impact regime, the broadening is due to elastic binary
collisions which perturb the phase of the oscillating transition
dipole moment. We have calculated the effective cross section
σ (v) for such collisions between the electronically excited
Cs and He ground-state atoms using the following approach.
First, we derive the classical collision trajectory r(t) from a
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FIG. 6. Cs-He interaction potentials used in the present work.
Dashed lines: ab initio potential curves from [26]; solid lines:
potential curves including spin-orbit coupling.
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numerical solution of the equation of motion,

ṙ(t) =
√

2

M
[E0 − UP (r(t))] − v2b2

r(t)2
. (3)

Here, M is the reduced mass of the Cs-He pair. v and E0 are the
initial collision velocity and the corresponding kinetic energy,
respectively, b is the impact parameter, and UP (r) is the Cs-He
interaction potential (Sec. III A).

In a second step, we calculate the time-dependent transition
frequency ω(t) and the phase

φ =
∫

[ω(t) − ω0]dt = 1

h̄

∫
�U (r(t))dt (4)

acquired by the transition dipole during the collision. Here,
�U (r) = UP (r) − US(r), where US(r) is the ground-state
Cs-He potential from [26]. We have calculated the collision
phase φ for the relevant range of initial velocities v and impact
parameters b. Only those collisions for which φ(b,v) � 1 rad
contribute to the line broadening [1]. The condition φ(b,v) = 1
defines the largest impact parameter bm(v) that we took into
account. The effective cross section σ (v) is then given by
σ (v) = πbm(v)2.

The calculations were carried out for the D1 and D2 lines
of Cs. Due to the splitting of the 6P3/2 state (Sec. III A), there
are two contributions to the D2 cross section which we denote
by σ� and σ� . We neglect all nonadiabatic transitions between
the substates and between the fine-structure components. The
calculated cross sections are shown in Fig. 7.

Experiments at elevated temperatures probe mostly high-
collision velocities that correspond to the relatively flat part of
the σ (v) dependence. In that case, Eq. (1) can be rewritten as
γ = ρ0σv, with a mean velocity v. The corresponding mean
cross section is σ ≈ 150 Å2 for both resonance transitions
of Cs. In Fig. 8, we show the values of γ /ρ0 obtained from
Eq. (1) as a function of the absolute temperature and compare
them with high-temperature experimental data available in the
literature [8,27–31].

The cross sections change abruptly at low velocities. For
v < 100 m/s, the scattering from the potential barrier of the
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FIG. 7. (Color online) Calculated effective cross sections σD1(v)
and σD2(v) = σ� + σ� for elastic collisions of Cs(6P1/2) and
Cs(6P3/2) atoms with He.
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FIG. 8. Cs-He elastic collision rate γ normalized to the He atomic
density ρ0 as a function of gas temperature. Solid lines: impact-
broadening calculation; symbols: experimental data for (a) D1 and (b)
D2 transitions, respectively. Open circles: data from [8]; filled circles:
data from [27]; empty squares: data from [28,29]; filled squares: data
from [30]; filled triangle: data from [31].

state A, or from the repulsive state C, leaves the phase of
the atomic dipole practically unchanged and therefore does
not contribute to the line broadening. On the other hand, a
slow collision in the state B leads to orbiting and a very large
collision phase φ. At low temperatures, one thus expects a
much larger broadening of the D2 line.

This model also allows us to calculate the duration τ

of a single collision as a function of the collision velocity
and impact parameter. At low temperatures, this collision
time is on the order of 1 ps, comparable to the mean time
interval γ −1 between collisions that can be inferred from the
measured Lorentzian linewidths γ . Under those conditions,
the quasistatic broadening mechanism is expected to dominate
the observed line shapes.

C. Quasistatic broadening calculations

In quasistatic line-broadening theory [1,32], the spectrum
of the absorption (fluorescence) line is given by the Fourier
transform of the atomic dipole’s autocorrelation function �(s).
When the absorber (emitter) interacts simultaneously with N

perturbers, the autocorrelation function is given by

�(s) =
〈

exp

[
− i

h̄

N∑
k=1

∫ t+s

t

�U (rk(t ′))dt ′
]〉

t

. (5)

Here the sum is taken over all perturbers located at positions
rk(t ′). The angle brackets denote an average over initial
collision times t that can be replaced by the average over all
possible initial collision geometries. With the assumption that
each perturber’s position is independent of all other perturbers’
positions, this average can be expressed in terms of the average
over positions of a single perturber:

�(s) =
{〈

exp

[
− i

h̄

∫ s

0
�U (r(t ′))dt ′

]〉
collisions

}N

. (6)

In the analysis of slow many-body collisions, the motion of
individual He atoms around the alkali-metal atom can be
neglected. In the static limit, v = 0, one has r(t ′) = r, and
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(6) simplifies to

�(s) =
{〈

exp

[
− i

h̄
�U (r)s

]〉
collisions

}N

=
{

1

N

∫
exp

[
− i

h̄
�U (r)s

]
ρ(r)dr

}N

. (7)

The perturber density ρ(r) describes the distribution of He
atoms around the alkali-metal atom with

∫
ρ(r)dr = N . When

the number of perturbers is large and the frequency shift due
to a single perturber is small, one can rewrite (7) using (1 −
α)N � exp(−Nα) as [1]

�(s) � exp

[
−

∫ {
1 − exp

[
− i

h̄
�U (r)s

]}
ρ(r)dr

]
. (8)

In order to find ρ(r), we consider the canonical distribution

1

N
d6N = gp

h3Qf

exp

[
−UP (r) + p2/2M

kBT

]
drdp. (9)

Here, T is the absolute temperature, kB is the Boltzmann
constant, p is the momentum of the colliding particle, gp

is the electronic degeneracy of the P state, and Qf is the
partition function of free (unbound) He atoms defined by the
normalization in the six-dimensional phase space,∫

p

∫
r
d6N = N. (10)

Following [33], we assume that the partition function is
dominated by unbound states of He atoms far away from the
alkali-metal atom, for which UP (r) ≈ 0, so that

Qf =
∫ ∫

gp

h3
exp

[
−UP (r) + p2/2M

kBT

]
drdp

≈ gpV (2πMkBT )3/2

h3
exp

[
Umin

kBT

]
, (11)

where Umin denotes the minimum of the potential curve UP (r)
and V is the interaction volume. The density ρ(r) is found by
integrating (9) over p, in the range of momenta accessible to a
free particle, pmin < |p| < ∞.

For an attractive potential, UP (r) < 0, the minimum value
of the momentum is pmin(r) = √−2MUP (r), whereas for a
repulsive interaction, pmin = 0, so that

ρ(r) = ρ0
2

π

∫ ∞

ymin(r)
e−y√ydy exp

[
− UP (r)

kBT

]
, (12)

where ymin(r) = UP (r)/kBT for the attractive potential and
ymin(r) = 0 for the repulsive potential curve.

For each excited state of the Cs atom, we introduce ρ(r)
defined by Eq. (12) with the corresponding cesium-helium
potential UP (r). It is spherically symmetric for the 6P1/2 state
and strongly anisotropic for the 6P3/2 state. In Fig. 9, we show
typical He density profiles obtained in this way for the 6P1/2

state of Cs at T = 20 and 50 K. Note the local maximum of the
He density at r ≈ 3.5 Å arising from He atoms in the potential
well of the A state behind the potential barrier at r ≈ 5 Å.

We apply (8) to calculate the autocorrelation functions for
the Cs-He system and obtain the corresponding fluorescence
spectra by computing the Fourier transforms.
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FIG. 9. (Color online) Calculated He density profiles ρ(r) in the
vicinity of an excited Cs (6P1/2) atom in He gas at 50 K (curve 1), He
gas at 20 K (curve 2), following Eq. (12), and superfluid He at 1.5 K,
20 bar, following Eq. (15) (curve 3).

Typical calculated fluorescence spectra of the Cs resonance
doublet obtained in the static approximation at T = 50 K are
shown in Fig. 4(b). In the experiment, the initial populations of
the 6P1/2 and 6P3/2 states and the corresponding intensities of
the D1 and D2 lines are determined by the unknown branching
ratio of the photodissociation process. We therefore normalize
the calculated spectra of the D1 and D2 lines in order to fit
the characteristic ratio of their experimental peak intensities.
When increasing the He pressure, the D1 line shape approaches
a Gaussian and shifts towards shorter wavelengths. Both the
shift and the broadening increase with the He atomic density,
as shown in Fig. 10. The abrupt increase of the linewidth
and the line shift at ρ0 ≈ 1021 cm−3 marks the transition
from the single-perturber to a multiperturber regime. Below
this point, the shift and broadening are well described by the
impact model [shown in Fig. 10(b) as dashed lines]. At larger
densities, we recover the well-known γ ∝ √

ρ0 and � ∝ ρ0

dependencies.
The D2 line shows a much stronger perturbation than the D1

line. The core of the line has a Lorentzian-like profile centered
very close to the wavelength of the unperturbed D2 line. On the
red side of the main peak, there is an extremely broad shoulder
or satellite that extends up to 950 nm. This shoulder arises from
perturbers located in the potential well of the state B, close
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FIG. 10. (Color online) Calculated density dependence of the (a)
shift and (b) (FWHM) width of the Cs D1 line perturbed by He gas
at T = 10 K (curve 1), 20 K (curve 2), 30 K (curve 3), 50 K (curve
4), and 100 K (curve 5). Solid lines: quasistatic model of Sec. III C;
dashed lines: impact model of Sec. III B.

022513-6



SPECTROSCOPY OF ALKALI-METAL ATOMS IN DENSE . . . PHYSICAL REVIEW A 87, 022513 (2013)
R

el
at

iv
e

am
pl

itu
de

Li
ne

w
id

th
(c

m
)

-1

He pressure (bar) He pressure (bar)
0

5

10

15

20

0
10 20 30 40 0 10 20 30 40

(a) (b)

1
2 3

4

5

1 2 3 4 5

30

25

20

40

60

80

0

100

FIG. 11. (Color online) Calculated pressure dependence of the (a)
relative amplitude and (b) (FWHM) width of the Cs D2 line perturbed
by He gas at T = 10 K (curve 1), 20 K (curve 2), 30 K (curve 3),
50 K (curve 4), and 100 K (curve 5). The relative amplitude is defined
as the ratio of the D2 peak height to the height of the saddle point at
870 nm, halfway between the D1 and D2 lines. Solid lines: quasistatic
model of Sec. III C; dashed lines: impact model of Sec. III B.

to the Cs core. As the He density increases, the probability
to find a He atom in this potential well approaches unity
and the main peak disappears. As a consequence, the line
shape transforms into a broad continuous spectrum similar to
that of the bound-free emission from Cs∗He2 exciplexes. In
the multiperturber regime, most of the intensity of the D2

transition is concentrated in this red shoulder. However, a
small Lorentzian-like peak at λ ≈ 852 nm persists even in
this regime up to ρ0 ≈ 7 × 1021 cm−3. We believe that this
shape is due to the stochastic motion of a small number (1
or 2) of He atoms in and out of the potential well of UB(r)
near r = 3–5 Å. The D2 line shape therefore differs from the
D1 shape that is determined by the interaction with a larger
number of perturbers at r > 6 Å, i.e., outside the potential
barrier in UA(r) of Fig. 6.

In Fig. 11(a), we show the pressure dependence of the
peak amplitude of the D2 line normalized to the height of
the saddle point that is located halfway between the D1

and D2 lines. At low temperatures, this quantity abruptly
decreases with increasing He pressure, corresponding to the
disappearance of the Lorentzian-like peak discussed above. At
higher temperatures, the peak is much more pronounced and
persists up to higher pressures.

Figure 11(b) shows the pressure dependence of the D2

linewidth at different temperatures. The strong temperature
dependence and pressure dependence originate from the red
satellite that becomes more pronounced at higher densities.
In Fig. 11(b), we also show the D2 linewidth calculated in
the impact approximation. At high temperatures and moderate
pressures—when the satellite is not pronounced—the impact
linewidth is larger than the quasistatic width under the same
conditions. The actual line shape is thus dominated by impact
broadening.

D. Quasistatic line broadening in atomic bubbles

As discussed in [2,15,16], the excited 6P1/2 state of Cs
resides in a spherical atomic bubble and interacts with the
≈30 He atoms that form the first solvation shell (bubble
interface). The absorption and fluorescence line shapes of
the Cs D1 transition can thus be treated using the quasistatic

line-broadening approximation in the large perturber density
limit.

The atomic bubble is similar to the distribution ρ(r) of He
atoms around the Cs(6P1/2) atom, introduced in Sec. III C.
However, due to the confinement, i.e., the restricted motion
of the densely packed He atoms at the bubble interface,
the corresponding autocorrelation function �(s) should be
calculated in a different way. In (5), we replace the average
over initial collision times t by an average over atomic-bubble
configurations and neglect the motion of individual He atoms,
by setting v = 0:

�(s) =
〈

exp

[
− i

h̄

N∑
k=1

�U (rk)s

]〉
bubble

. (13)

The summation over all perturbers can be replaced by an
integration over the interaction volume, which, in this case,
corresponds to the He layer adjacent to the bubble boundary.
Because of the spherical symmetry of the bubble, �(s) can be
written as

�(s) =
〈

exp

[
− i

4πs

h̄

∫
�U (R)ρ(R)R2dR

]〉
bubble

. (14)

In the previously published atomic-bubble calculations
[15,16], the fluctuating distribution of He atoms around the
alkali-metal atom was introduced in the following way. The
helium density at the bubble interface is described by a function
ρ(R) that raises smoothly from ρ(R) = 0 inside the bubble to
the bulk density ρ(R) = ρ0 outside the bubble:

ρ(R) = 0, R < R0,
(15)

= ρ0{1 − [1 + α(R − R0)]e−α(R−R0)}, R � R0.

The transition region has a width of ≈1 Å, comparable to the
characteristic delocalization distance of the He atoms in the
quantum liquid (solid). This density profile is shown in Fig. 9,
where it is compared to the typical density distributions in the
gas phase. The bubble radius Rb is determined as the center of
gravity of this interface profile.

The parameters R0 and α are determined by the minimiza-
tion of the total (i.e., atom plus bubble) energy Etot:

Etot(Rb) = Eint(Rb) + p
4

3
πR3

b + κ4πR2
b + h̄2

8m

∫ ∇ρ2

ρ
dr.

(16)

Here, Eint is the energy of the Cs-He interaction, p is the
hydrostatic He pressure, κ is the surface tension parameter,
and m is the He atomic mass. The last term in (16) represents
the volume kinetic energy arising from the localization of He
atoms at the bubble interface.

The interaction energy Eint was derived in [15,16] from
numerical solutions of the Schrödinger equation for the alkali-
metal valence electron interacting with the alkali-metal core
and the surrounding He atoms. In the present work, Eint is
derived from the pair potentials between the 6P1/2 state and
the He atom,

Eint(Rb) = 4π

∫
UP (R)ρ(R)R2dR. (17)
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This approach allows us to compare the line shapes obtained
from the atomic-bubble model to those obtained by the
quasistatic calculations presented in Sec. III C.

We assume that the He atoms surrounding the atomic
bubble participate in a collective motion that is represented
as a superposition of breathing, quadrupole, and higher order
vibration modes. In the lowest order, only the breathing
vibration affects the number of perturbers in the interaction
volume and therefore gives the main contribution to the line
broadening. The characteristic bubble vibration frequencies
ωb obtained in the hydrodynamic model are on the order
of 0.1 THz. At the temperature of 1.5 K, only the lowest
vibration state of the bubble is populated and its wave function
�(Rb) characterizes the delocalization of the bubble interface.
Following [15,16], we find ωb and �(Rb) by solving the
one-dimensional Schrödinger equation,[

− h̄2

2Mb

d2

dR2
b

+ Etot(Rb)

]
�(Rb) = Evib�(Rb), (18)

with Mb = 4πR3
bρ0m.

The average in (14) can then be calculated as

�(s) =
∫

|�(Rb)|2

×
{

exp

[
− i

4πs

h̄

∫
�U (R)ρ(R)R2dR

]}
dRb. (19)

The resulting line shape closely reproduces the one reported
earlier [16]. As expected, the line shift predicted by the atomic-
bubble model is very close to the one predicted by the model
of independent perturbers at the same He density. At the same
time, the linewidth is ≈50% smaller than the one obtained
from independent perturbers of the same density.

IV. DISCUSSION

We interpret the experimentally observed fluorescence
spectra by comparing them with the line shapes calculated
in the impact, quasistatic, and atomic-bubble approximations.
In the low-temperature limit, i.e., at low laser power, the line
shape of the D1 line is close to a Gaussian and is best described
by the atomic-bubble model. Under the same conditions, the
D2 line is strongly quenched and is well described by the
exciplex model [25].

When raising the laser power, the D1 line shape remains
Gaussian, while the quenching of the D2 line gradually
disappears, and a line shows up with a Lorentzian-like core that
is accompanied by a strong red satellite. All of these features
can be described by a quasistatic line-broadening model with
independent perturbers.

A drawback of the experimental technique applied in
the present work is the lack of information about the local
temperature in the active part of the sample. We try to estimate
the local temperature using the following considerations. As
discussed in Sec. III C, the line shape of the D1 line remains
close to a Gaussian only in the multiperturber regime, i.e.,
at helium densities above ρc ≈ 1021 cm−3. For temperatures
above 50 K, the critical density ρc is reached only for p >

10 bar. In that case, a variation of the helium pressure
(Fig. 2) would reveal a transition from the single-perturber to
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FIG. 12. (Color online) Calculated pressure dependencies of
(a) the line shift and (b) the FWHM line width of the Cs D1 line
perturbed by He gas at T = 10 K (curve 1), 20 K (curve 2), 30 K
(curve 3), 50 K (curve 4), and 100 K (curve 5).

a multiperturber regime that is accompanied by a pronounced
change in the D1 line shape. In our experiments, we could not
observe such a transition, which leads us to conclude that the
local temperature does not exceed 50 K. By comparing the
observed amplitudes of the D2 line with the calculated relative
amplitudes of Fig. 11(a), we can estimate a lower limit of the
local temperature of ≈20 K.

In Fig. 12, we plot the calculated quasistatic shifts and
widths of the D1 line as a function of helium pressure (same
data as in Fig. 10 versus He density). In the relevant range of
T and p, the D1 line’s shift and width depend only weakly on
temperature at a given He pressure.

In Fig. 13, we compare the calculated widths and shifts
of the D1 line with experimental results. At low laser power,
i.e., for a low local temperature, the atomic-bubble prediction
yields a good agreement with experiment, while the high-
power data are better described by quasistatic line broadening
in a multiperturber regime with independent perturbers. The
best fit to the experimental pressure dependencies is obtained
by assuming a local temperature of ≈40 K. Our data thus
suggest that the transition from the atomic bubble to the
regime of independent perturbers must occur between T = 3.5
and T ≈ 40 K. As discussed in Sec. III D, this transition
corresponds to the crossover from the highly correlated motion
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FIG. 13. (Color online) Pressure dependencies of the (a) shift
and (b) (FWHM) width of the Cs D1 fluorescence in liquid He
at T = 1.5 K. Red circles: data from low-power excitation; black
circles: data from high-power excitation; red lines: calculations based
on the atomic-bubble model; black lines: calculations based on the
independent perturber model, assuming a local temperature of 40 K.
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FIG. 14. (Color online) Temperature dependence of the mean
kinetic energy 〈Ekin〉 of He atoms at p = 10 bar (curve 1), 20 bar
(curve 2), 30 bar (curve 3), and 40 bar (curve 4). Experimental data
from [34] and [35] (see the text). The dashed line represents the ideal
gas law 〈Ekin〉 = 3/2kBT .

of He atoms in the liquid (superfluid) phase to the uncorrelated
motion of atoms in the gas phase.

There exists a vast literature (see, e.g., [36]) devoted to
atomic correlations in quantum fluids, in particular in liquid
4He. However, we are not aware of any treatment of the
temperature dependence of correlations in a nanometer-sized
system, such as an atomic bubble. In order to get an estimation
of the crossover temperature, we assume a mean kinetic energy
〈Ekin〉 of the He atoms. It is well known that in low-temperature
fluid He, 〈Ekin〉 is significantly larger than 3/2kBT due to a
large contribution from the quantum mechanical zero-point
energy ε that arises from the localization of He atoms in
the condensed phase, and which therefore increases with
helium density (pressure). 〈Ekin〉 is typically measured in
deep-inelastic neutron-scattering experiments [35,37]. In the
range of densities relevant for the present study, the density
dependence of ε can be approximated by a linear function.
Using neutron-scattering data at T = 4.25 K [35] to infer
ε(ρ0), we obtain the total mean kinetic energy 〈Ekin〉 as
the sum of ε(ρ0) and the internal energy u(p,T ), reported
in [34] for a broad range of p and T values. The resulting
〈Ekin〉(p,T ) is plotted in Fig. 14. 〈Ekin〉 approaches the
ideal gas value at temperatures above T = 20 K. Below
this temperature, individual He atoms cannot be treated as
independent perturbers, which is a fact that agrees well with
the results of the present study.

The calculated line shapes overestimate the line shift of the
D1 line, with a discrepancy that increases with He pressure. We
also find a significant disagreement in the linewidths of the D2

line. The calculated widths are smaller than the measured ones.
We suggest that this disagreement arises from the questionable
assumption that the local He pressure in the active part of the
sample is equal to the pressure measured by the gauge at the
warm end of the filling line. It is reasonable to assume—but

difficult to model—that the strong local heating of the He
matrix by the laser pulses may lead to transient changes in the
local pressure and even to shock waves.

Our analysis includes only He atoms in the vicinity of,
but not bound to, the Cs atoms and neglects the bound and
quasibound Cs∗-He states that are formed in the potential
wells of the A�1/2 and B�3/2 states, which are known as
exciplexes. These quasimolecular structures arising from the
highly anisotropic alkali-metal–helium interaction have been
analyzed in detail in [25,38–41]. The dependence of the
exciplex populations on He temperature and density in the
range of ρ0 = 1018–1019 cm−3 was studied experimentally
in [38,42]. Neglecting the population of the exciplex states,
especially those in the B�3/2 electronic state, leads mainly
to a discrepancy between the experimental and calculated
spectra in the range of 930–980 nm (see Fig. 4). It may also
contribute to the discrepancies in the broadening and line shape
of the D2 line. Possible inaccuracies in the alkali-metal–helium
pair potentials represent yet another source of the observed
discrepancy with experiment.

V. SUMMARY

We have presented a theoretical analysis of the line shapes
of the first resonance doublet of Cs perturbed by He in
the impact, quasistatic, and atomic-bubble approximations.
Special attention was given to the limit of high perturber
densities and to the transition from a single- to a multiperturber
regime. The atomic-bubble model is not applicable to the
D2 transition. On the other hand, the D1 transition at large
helium densities can be described either by the quasistatic
line-broadening theory or by the atomic-bubble model. The
two approaches predict very similar Gaussian line shapes that
differ mostly by their spectral widths. At a fixed perturber
density, the assumption of independent perturbers used in the
quasistatic line-broadening theory leads to a larger broadening
than that obtained in the atomic-bubble model, in which the
motion of perturbers is strongly correlated.

We have carried out an experimental study of the crossover
between the regime of independent perturbers (gas phase)
and that of strongly correlated perturbers (condensed phase)
in supercritical fluid He at low temperature. We have
demonstrated that the atomic-bubble model provides a better
description of the experimental spectra in the temperature
range T � 3.5 K. The local heating of the doped He sample
by intense laser pulses leads to a transition towards the regime
of independent perturbers. Comparing the experimental and
calculated spectra, we estimate the local temperature of the
sample to be in the range of 20–50 K. The crossover between
the two regimes thus occurs in a temperature range of 3.5–50 K.
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