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Microwave spectroscopy of high-L, n = 9 Rydberg levels of nickel:
Polarizabilities and moments of the Ni+ ion
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The complete pattern of Rydberg binding energies of the 18 n = 9 levels of nickel with L = 6, 7, and 8
was measured using microwave plus resonant-excitation Stark-ionization spectroscopy. The measured pattern is
consistent with the form predicted with the effective potential model, showing significant structure proportional
to scalar products of tensor operators of order 0–4. The variation of the structure with L separates the various
contributing terms and provides determinations of several properties of the Ni+ core ion. These include the
quadrupole moment, Q = −0.469 78(9) a.u., the hexadecapole moment, � = 0.36(5) a.u., the scalar and
tensor dipole polarizabilities, αD,0 = 7.949(2) a.u., αD,2 = 0.905(12) a.u., the scalar quadrupole polarizability,
αQ,0 = 55(8) a.u., the g value, gJ = 1.257(14), and the vector hyperpolarizability, βD,1 = 0.454(24) a.u.
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I. INTRODUCTION

The pattern of binding energies of nonpenetrating, high-L
Rydberg electrons in atoms and ions can be related to the
properties of the core ion that control the ion’s long-range
interactions with the Rydberg electron, properties such as
polarizabilities and permanent moments. If these interactions
were absent, leaving only the dominant Coulomb force, these
high-L levels would be degenerate except for small relativistic
effects. The presence of permanent electric and magnetic
moments and electric polarizabilities in the core ion lead
to changes in the Rydberg electron’s binding energy that
produce characteristic binding-energy patterns. Measurement
of these patterns can be used to determine the core properties
responsible for them. In effect, the captive Rydberg electron
acts as a sensitive probe of properties of the positively charged
core ion that are difficult to measure for neutral atoms [1].

Understanding the long-range interactions of atoms and
ions is important in many applications. For example, two of
the most significant properties controlling these interactions
are the dipole polarizability and the quadrupole moment.
The dipole polarizability characterizes the deformability of
an atom or ion in response to electric fields and is thus
a very basic dynamic property of an atom. It figures in
many applications ranging from Van der Waals interactions
between cold atoms [2] to blackbody radiation frequency
shifts of optical clocks [3] to parameterization of chemical
interactions involving actinide and lanthanide ions [4], just to
name a few. The electric quadrupole moment of an atom is
the lowest nonzero electric moment of an atom other than
total charge. It characterizes the first deviation from pure
Coulomb interaction potential with other atoms or ions and
also describes the atom’s interaction with external electric-
field gradients. One recent application is the description of
frequency shifts of optical clocks based on monovalent ions
such as Ca+ due to electric-field gradients acting on the trapped
ions [5]. These and other atomic properties controlling these
interactions can, of course, be calculated, but the calculations
are challenging, and the opportunity to test them in specific
cases can provide valuable guidance and increased confidence.
The measurements provided by study of high-L Rydberg
systems are among the most precise tests yet achieved.

Spectroscopic studies of high-L Rydberg levels are rela-
tively rare because these levels are not normally observed with
standard absorption and emission spectroscopy. One special
technique that allows observation and measurement of these
states is the resonant excitation Stark ionization spectroscopy
(RESIS) method [1], in which these levels are observed
by upwards excitation, followed by Stark ionization of the
excited level. This method circumvents the restrictive angular
momentum selection rules that prevent observation of high-L
levels in excitation from low-lying, low-angular-momentum
levels since there are always excitation channels open even for
very high angular-momentum states.

One recent RESIS study explored the structure of n = 9
levels of the nickel atom with L � 5 [6]. Since the ground
state of the Ni+ ion is a 2D5/2 level, the pattern of high-L
Rydberg binding energies in nickel is very complex, with
six energy levels for each value of Rydberg orbital angular
momentum. A theoretical framework for interpreting the
observed structure and extracting values of the permanent
moments and polarizabilities of the Ni+ core was recently
derived by the method of adiabatic expansion [7,8]. This
motivated the present study, which improves the precision
of the spectroscopic observations by using the RESIS plus
microwave method, a double-resonance method in which
selective optical RESIS excitation is used to detect direct
microwave transitions between Rydberg levels of common n.

The high-L Rydberg levels bound to the 2D5/2 ground state
of Ni+ can be characterized by their principal and angular-
momentum quantum numbers, n and L, and by the vector sum
of L and the core angular momentum Jc, �K = �L + �Jc. We
denote them by nLK , with L given in spectroscopic notation,
I , K , L, for L = 6, 7, 8. The intermediate quantum number K

adequately describes the Rydberg fine structure pattern, which
is approximately the expectation value of an effective potential
given by

〈Veff〉 = A0 + A1( �L · �Jc) + A2

(
〈X[2] (Jc) · C[2] (r̂)〉(

Jc 2 Jc−Jc 0 Jc

)
)

+A3(〈X[3](Jc) · T [3](r̂)〉)

+A4

(
〈X[4] (Jc) · C[4] (r̂)〉(

Jc 4 Jc−Jc 0 Jc

)
)

, (1)
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where the coefficients of each tensor product order are ex-
pressed in terms of radial expectation values of the hydrogenic
Rydberg electron and properties of the Ni+ core [7]. The
second-, third-, and fourth-rank tensors in the space of the
ion core, X[2], X[3], and X[4], are unit tensors; i.e., they have
unit reduced matrix elements. The second- and fourth-rank
tensor operators in the space of the Rydberg electron, C[2] and
C[4], are standard spherical tensor operators, and

�

r denotes the
angular position of the Rydberg electron. The third-rank tensor
operator in the space of the Rydberg electron, T [3], is defined
by

T [3] ≡ [C[2] (r̂) ⊗ �L][3].

Each tensor order is associated with a unique pattern of level
energies within the nL manifold, and the coefficients Ai which
measure the contributions of each order can be extracted from
measurements and used to determine the properties of the core
responsible for the long-range interactions with the Rydberg
electron.

A much smaller structure due to the Rydberg electron spin
splits each nLK level into two levels with J = K ± 1/2. This
spin splitting is partially resolved in some of the microwave
resonances observed in this study. It is described by the spin
Hamiltonian

HSR
= 1

2
α2 1

r3
[ �L · �SR + gJ

�Jc · (1 − 3r̂ r̂) · �SR], (2)

where α is the fine structure constant and gJ is the g factor of
the 2D5/2 ground state.

II. EXPERIMENT

Figure 1 is a schematic diagram of the apparatus used for
this study. It differs from that used for the optical RESIS

FIG. 1. Experimental apparatus schematic for the microwave
RESIS technique of this experiment. A beam of Ni+ ions is produced
in the ion source at (1). The beam then enters the focusing/beam
selection region at (2), where a �v × �B filter selects the 58Ni+ beam
and an einzel lens focuses the beam. At (3) a fraction of the ions
capture an electron from the Rydberg target (RT), forming a beam of
neutral Ni Rydberg atoms. The Rydberg target consists of a thermal
beam of Rb stepwise excited by three cw diode lasers to the 9F

level. The initial stripper at (4) Stark ionizes all Rydberg levels with
n > 15 and reflects the resulting ions along with any remaining
un-neutralized ions. Both laser interaction regions (LIRs) at (6) and
(7) are tuned to excite the beam from a specific Rydberg level in a
lower n to a higher n′ (e.g., 9 → 19 or 10 → 30), while the rf region
between the LIRs drives a transition connecting the specific Rydberg
level excited by the lasers to another level of the same lower n. In the
detector, the final stripper at (8) Stark ionizes states with the upper n′

which are then deflected by the field at (9) into the channel electron
multiplier (CEM) at (10).

study [6] by the addition of a second laser interaction region
and a region where a microwave electric field can be applied
to the Rydberg beam. Another difference is a more efficient
source of Ni+ ions. In place of the Colutron ion source used in
reference [6] a radio-frequency (rf) ion source manufactured
by Beam Imaging Systems [9] is used. This source produces
Ni+ beams by sputtering from a nickel electrode within a
rf-excited argon plasma. Typical charged beam intensities,
extracted at 9.5 keV were about 30 nA. After extraction,
the beam is focused by an einzel lens and passed through
a �v × �B filter to select the 58Ni+ ion. The beam then passes
through a Rb 9F Rydberg target [10], where a small fraction
(∼1%) of the beam captures an electron to form a beam of
neutral Ni Rydberg atoms. Immediately afterwards, a strong
longitudinal electric field reflects any un-neutralized ions and
Stark ionizes any Rydberg levels formed in states with n >

15. The remaining Rydberg beam then passes through the
sequence of laser and microwave interaction regions. In both
laser regions, the atoms encounter a cw CO2 laser, Doppler
tuned by adjusting the angle of intersection with the Rydberg
beam so that it is resonant with a transition upwards from
n = 9 to n = 19 or 20. Typical transitions are listed in Table II
of Ref. [6]. The first laser region depletes the population of
a specific n = 9 Rydberg fine structure level, e.g., the 9K4.5

level, ensuring a population difference with another n = 9
level, e.g., the 9L5.5 level. The microwave field, encountered
next, is tuned to drive the transition between these two levels,
replenishing the population of the previously depleted level.
If this succeeds, the second laser interaction region, tuned to
excite the same transition as the first, will excite more atoms
to the n = 19 or 20 level. After passing through the second
laser interaction region, the Rydberg beam enters a strong
electric field that completely ionizes all n = 19 or 20 levels
and deflects the resulting ions into a channel electron multiplier
(CEM). The microwave resonance is revealed by measuring
the component of the CEM current synchronous with chopping
of the microwave field, with both lasers unchopped. A typical
resonance signal is shown in Fig. 2.
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FIG. 2. An example microwave resonance, the 9K5.5-9L6.5 tran-
sition. Data from both directions of microwave propagation relative to
the Rydberg beam velocity are shown. Each was fit to a superposition
of two signals offset from the spinless position by calculated Rydberg
spin splittings, and the fitted line centers from both directions were
averaged to remove the Doppler shift.
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FIG. 3. Radio-frequency region diagram giving its basic appear-
ance (top) and showing the dimensions (in cm) of the inner and outer
conductors (bottom). The length of the region is 12.7 cm.

The microwave interaction region is illustrated in Fig. 3.
It is an eccentric 50� TEM transmission line, in which
the microwave field propagates either parallel or antiparallel
to the Rydberg beam. Resonance signals are obtained with
both directions of propagation and the line centers averaged
to remove the associated Doppler shifts. The resonance
linewidths, controlled by the transit time through the 12.7-
cm-long microwave field region, were about 1.4 MHz. Since
this partially resolves some of the splittings due to Rydberg
electron spin, the lines were fit to a superposition of two
lines offset from the spinless interval by the calculated spin
splitting with relative weights given by the statistical weights
of the lower L levels. In the cases of largest spin splitting,
the calculated splittings matched the observations well. The
resulting measurements of “spinless” intervals are shown in
Table I.

TABLE I. Measured intervals separating high-Ln = 9 Rydberg
levels of Ni. The given intervals represent the intervals separating Ry-
dberg spin-averaged level positions. The measurement errors include
statistical errors from the data fits, as well as estimated uncertainties
due to stray electric-field corrections. Transitions marked by asterisks
are two-photon transitions. Column 3 shows the net Stark shift
correction, including both dc Stark shifts due to stray fields and,
in the case of two-photon transitions, the ac Stark shift. All values are
in MHz.

Interval No. Net Stark correction Result

I4.5-K5.5 2 0.000(4) 3295.471(31)
I5.5-K6.5 2 0.000(5) 1109.996(24)
I5.5-K5.5 2 0.000(1) 2718.039(50)
I6.5-K7.5 2 0.000(1) 118.556(30)
I7.5-K8.5 3 0.041(58) 517.278(61)
I7.5-K7.5 3 0.013(18) 2345.468(32)
I8.5-K9.5 2 0.002(2) 4136.91(10)
K4.5-L5.5 3 0.000(2) 2901.667(28)
K5.5-l6.5 2 0.000(1) 1424.529(22)
K5.5-L5.5 2 0.000(1) 2127.303(39)
K6.5-L7.5 2 0.000(3) 179.680(21)
K7.5-L8.5 3 0.000(19) 444.435(16)
K7.5-L7.5 3 0.000(10) 1416.489(34)
K9.5-L10.5 2 −0.004(5) 2121.23(6)
K9.5-L9.5 2 −0.15(5) 6656.69(15)
I3.5-L5.5(∗) 3 −0.010(2) 8598.584(28)
I7.5-L9.5(∗) 2 −0.230(66) 532.340(76)

The only appreciable systematic corrections in these mea-
surements involve the possibility of Stark shifts due to stray
dc electric fields within the microwave interaction region
and the ac Stark shifts of the two transitions observed by
two-photon resonance. Possible dc fields were monitored
with periodic observation of the 10H4.5-10I 5.5 transition
in argon whose Stark shift rate and zero-field position has
been established in previous work [11]. Since the ion source
producing Ni+ beams also contained an Ar discharge, it
was a simple matter to switch between ion beams for these
observations. Repeated observations over the course of the
nickel measurements indicated that any stray fields present
were very small, �0.1 V/cm. Corrections and uncertainties
associated with these shifts are shown in column 3 of Table I.
ac Stark shifts are inherent to the two transitions listed last in
Table I, which were observed using two-photon resonances.
The relative ac Stark shift rate of these two transitions is
easily calculated once the approximate level pattern is known.
The absolute shift rate of the most sensitive transition, the
9I7.5-9L9.5, was measured with 20% precision and used to
calculate corrections to both transitions. These corrections are
also included in column 3 of Table I.

The 17 measured intervals completely define the relative
positions of all 18 Rydberg levels in n = 9 with L = 6, 7,
and 8. The inferred positions are shown in column 2 of
Table II. The uncertainties shown are derived from propagating
the uncertainties in the interval measurements. Figure 4
illustrates the measured pattern of energy levels. Notice that
the full span of the pattern is about 16 GHz. By comparison,
the nearest other n level is about 8000 GHz away, indicating
that all of these high-L levels have quantum defects δ < 0.001.

III. CORE PROPERTIES

It is expected that this pattern is approximately the expecta-
tion value of an effective potential that describes the long-range
interactions between the core ion and the Rydberg electron [7].
The first few terms of this potential are given by

Veff ((Jc,L; K),r)

= −1

2

αD,0

r4
−

(
Q

r3
+ 1

2

αD,2

r4

)
X[2] (Jc) • C[2] (r̂)( Jc 2 Jc

−Jc 0 Jc

) + · · · .

(3)

Many additional terms of this potential are described in
Ref. [7], but these first terms suffice to illustrate the principle.
The term containing the core quadrupole moment Q is simply
the first-order Coulomb perturbation energy in a system
whose zeroth-order states are products of hydrogenic Rydberg
electrons and a separate free ion core. The terms proportional
to the scalar and tensor dipole polarizabilities, αD,0 and αD,2,
are typical of most of the terms in the effective potential, which
come from the second-order perturbation energy, manipulated
by use of the so-called “adiabatic expansion” of the energy
denominators that occur The expectation value of this extended
effective potential, augmented by small relativistic corrections,
provides a good approximate description of the Rydberg
energy level pattern. One thing that is left out of this model,
however, is the portion of the second-order perturbation energy
that involves intermediate “Rydberg levels,” levels where the
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TABLE II. Positions of the n = 9, L = 6, 7, and 8 levels of nickel,
as determined by the measured intervals given in Table I. Column 1
identifies the specific level, and column 2 gives its position. Since
only relative positions can be determined in this way, the position of
the 9I5.5 level is arbitrarily defined as zero. The energy level pattern
is completely determined by the 17 measured intervals, but is not
overdetermined. The uncertainties in the positions are determined by
propagating the interval measurement errors. Columns 3 and 4 give
the calculated contributions to the level positions from relativistic and
second-order corrections. Column 5 shows the inferred position that
can be attributed to the expectation value of the effective potential.
Two uncertainties apply to the results in column 5. The first is
the statistical error from column 2. The second is the estimated
uncertainty in the calculated second-order polarization energy shown
in column 4. These two sources of uncertainty are treated differently
in the subsequent analysis, as discussed in the text. All values are in
MHz.

Level Position Erel E[2] E[1]

9I3.5 −13 443.926(69) −16.945 −7.869(333) −13 419.112
9I4.5 −6013.510(59) −16.945 8.082(693) −6004.647
9I5.5 0.000(50)∗ −16.945 10.690(224) 6.255
9I6.5 2824.721(55) −16.945 2.567(219) 2839.099
9I7.5 360.697(57) −16.945 −10.138(126) 387.780
9I8.5 −9900.563(204) −16.945 −16.531(106) −9867.087

9K4.5 −7747.009(69) −12.016 4.998(11) −7739.991
9K5.5 −2718.039(50) −12.016 10.619(88) −2716.642
9K6.5 1109.996(24) −12.016 7.761(116) 1114.251
9K7.5 2706.165(47) −12.016 0.859(7) 2717.322
9K8.5 877.975(83) −12.016 −2.803(14) 892.794
9K9.5 −5763.653(177) −12.016 −4.719(20) −5746.918

9L5.5 −4845.342(63) −8.246 −1.811(4) −4835.285
9L6.5 −1293.510(55) −8.246 0.104(5) −1285.368
9L7.5 1289.676(32) −8.246 1.003(4) 1296.919
9L8.5 2261.730(49) −8.246 0.571(2) 2269.405
9L9.5 893.037(95) −8.246 −0.562(3) 901.845
9L10.5 −3642.423(187) −8.246 −1.336(5) −3632.841

core ion is in its electronic ground state. In the case of Ni+, this
includes both the true ground state, the 2D5/2, and an excited
fine structure level, the 2D3/2, at 1506.94 cm−1. The Coulomb
perturbations coupling different Rydberg levels bound to these
two core states results in energy-level shifts that are not
included in the expectation value of Veff . These shifts can
be very important for low-L levels, but they decrease rapidly
with L, and if they are not too large can be described through
the action of Veff taken in second-order [7]. These shifts can be
calculated once the core properties, such as Q and αD,0, that
occur in Veff are known, but since these properties are deduced
here after the application of the E[2] corrections, it is necessary
to iterate this process until stable results are obtained. Table II
reports these calculated energy shifts, E[2], for the 18 Rydberg
levels of this study. Notice that the largest calculated shifts are
a few MHz, much smaller than the scale of the measured fine
structure patterns. In view of the importance of the calculated
E[2]’s in the analysis, more details of these calculations are
given in the Appendix.

In order to use the measured fine structure pattern to extract
measurements of the Ni+ ion’s properties, it is necessary
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FIG. 4. Energy level diagram showing relative positions of the 18
n = 9 Rydberg levels of nickel with L = 6, 7, and 8, as determined
from the measurements reported here. The spectroscopic notation for
L = 6, 7, 8 (I , K , L) is indicated at the bottom of the graph. The values
of the quantum number K are indicated for each level. The solid
lines show transitions with �K = �L, the strongest transitions. The
dashed lines show �K = 0 transitions, and the dash-dotted lines show
two-photon transitions. The position of the 9I5.5 level is arbitrarily
assigned a zero value.

to remove the two effects that prevent the pattern from
representing the expectation value of Veff . These are the
second-order effects of Veff , denoted as E[2] and shown in
column 4 of Table II, and the p4 relativistic contributions,
shown in column 3 of Table II. Subtracting both from
the measured level positions leads to the corrected level
positions, labeled E[1] and shown in column 5 of Table II.
The uncertainties in the calculated E[2]’s are quite significant.
For some of the levels, especially L = 6 levels, they are larger
than the measurement uncertainties in the level positions. The
quoted uncertainties in E[2]’s are based on the convergence of
the calculated contributions. Contributions proportional to Q2,
Qα, and αα have been included, having total inverse powers
of 6, 7, and 8, respectively. The uncertainty is taken to be 1/2
the total calculated contribution from terms proportional to
r−8 [12], excluding the contribution proportional to (αD,0)2,
which was applied separately to the scalar structure coefficient,
A0, since it only affects this coefficient.

The first step towards extracting measurements of core
properties is to decompose the corrected level pattern for each
L state, column 5 of Table II, into the five tensor orders shown
in Eq. (1), essentially fitting the positions to extract values of
the coefficients Ai , for i = 0–4. These fits were carried out with
a weighted least-squares fit, using the statistical uncertainties
shown first in column 5 of Table II and expanding the parameter
errors based on the fit χ2. In addition, the fits were repeated
after each position was augmented by the uncertainty in the
calculated E[2] correction from column 4 of Table II, thus
assuming that these errors are completely correlated between
the several levels. The change in the best fit Ai’s that resulted
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TABLE III. Fitted values of the structure coefficients, Ai, for
n = 9, L = 6, 7, and 8 levels of nickel. The two errors shown for
each represent (1) the statistical error resulting from propagating
interval measurement errors, expanded to reflect the quality of the fit,
and (2) the error associated with the uncertainty in the E[2] correction,
calculated by incrementing each E[1] position by the uncertainty
in E[2] and refitting to note the change in each Ai . In most cases,
the statistical errors dominate. The scalar structure factor, A0, is the
exception.

L = 6 L = 7 L = 8

A0 −3833.06(18,135) −1664.34(9,22) −748.077(63,43)
A1 −0.502(22,15) −0.5915(85,13) −0.4682(55,1)
A2 15 063.29(51,3) 9888.30(24,1) 6828.32(17,3)
A3 −2.40(32,6) −0.210(14,10) 0.101(93,1)
A4 −9.22(11,10) −3.012(58,10) −1.200(44,1)

in these second fits was taken to be a systematic error in the
Ai’s. Table III reports the results of these fits and includes the
two uncertainties assigned to each structure factor. Except for
the scalar structure factors, A0, the statistical errors dominate.

The variation of the structure factors, Ai , with L is what
allows deduction of the various core properties. For example,
the effective potential model predicts that the A0 factor will be
given by [7]

A0 = − 1
2 [αD,0〈r−4〉nL + (αQ,0 − 6βD,0)〈r−6〉nL + · · ·], (4)

where αD,0 and αQ,0 are the scalar adiabatic dipole and
quadrupole polarizabilities of Ni+, and βD,0 is a coefficient
representing the first nonadiabatic correction to the dipole
polarization energy. The radial expectation values refer to
the hydrogenic zeroth-order Rydberg wave functions, so they
are given by well-known analytic expressions [13], suitably
corrected for the finite mass of the Ni+ core ion. Since this
experiment determines only the relative positions of the n = 9
levels, the inferred values of A0 shown in Table III reflect the
arbitrary choice of zero for the level positions. The difference
of scalar structure factors, however, could be expected to obey

�A0 = − 1
2 (αD,0�〈r−4〉 + (αQ,0 − 6βD,0)�〈r−6〉 + · · ·), (5)

which suggests forming a linear plot where the y axis is the
ratio of �A0 to �〈r−4〉 and the x axis is the ratio of �〈r−6〉
to �〈r−4〉. The coordinates for this plot are summarized in
Table IV, and the plot is shown in Fig. 5. A least-squares
fit finds the intercept of − 3.9747(12), corresponding to a
scalar polarizability of αD,0 = 7.949(2) a.u. The fitted slope
is − 0.7(1.4). In combination with an estimated value of βD,0

of 8.9(1.2) a.u. [14], this allows a deduction of the scalar
quadrupole polarizability,

αQ,0 = 2 × 0.7(1.4) + 6 × 8.9(1.2) = 55(8) a.u.
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FIG. 5. Scaled values of the difference of the scalar structure
factors, A0, between adjacent L levels within the n = 9 level of
nickel. The coordinates are given in Table IV. A linear least-squares
fit determines the intercept, marked by the open point, and the
slope. These can be related to the dipole and quadrupole scalar
polarizabilities of Ni+.

The vector structure factor A1, the coefficient of �L • �Jc in
Eq. (1), contains the effects of the magnetic moment of the
core ion, as well as a contribution from the nonadiabatic
dipole polarizability known as the “vector hyperpolarizability”
[7,15]. The dependence on L is expected to be described by [7]

A1 = −α2gJ

2
〈r−3〉nL + βD,1〈r−6〉nL + · · · . (6)

This suggests scaling the measured structure factors by the
expectation values of 〈r−3〉 and plotting the ratio vs the ratio
of 〈r−6〉 to 〈r−3〉. If higher order contributions are negligible,
this should yield a straight line and separate the effect of
the two terms. The coordinates of such a plot are shown
in Table V, and the plot itself is shown in Fig. 6. Its fitted
intercept and slope lead to the conclusions

gJ = 1.257(14), βD,1 = 0.454(24) a.u.

The second-order tensor structure factor, A2, is primarily
controlled by the permanent electric quadrupole moment of
the Ni+ ion, with smaller contributions from the tensor dipole
polarizability, αD,2. Higher order contributions are expected
from quadrupole and dipole-octupole polarizabilities and
from nonadiabatic dipole polarizability. The form expected
for this structure factor is [7]

A2 = −Q〈r−3〉nL − αD,2

2
〈r−4〉nL

− (αQ,2 − 6βD,2 + αDO,2)

2
〈r−6〉nL + · · · . (7)

TABLE IV. Scaled values of the scalar structure factors, A0, and the corresponding scaled differences of radial expectation values. Columns
5 and 6 represent the y and x coordinates of Fig. 5, respectively.

Interval �A0 (a.u.) �〈r−4〉 (a.u.) �〈r−6〉 (a.u.) �A0/�〈r−4〉 �〈r−6〉/�〈r−4〉
6-7 −3.29609(47) × 10−7 8.289 591 × 10−8 1.6244 × 10−10 −3.9762(6) 0.001 959 6
7-8 −1.39256(18) × 10−7 3.502 925 × 10−8 0.3276 × 10−10 −3.9754(5) 0.000 935 2
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TABLE V. Scaled values of the vector structure factors, A1, and the corresponding scaled radial expectation values.

L A1 (a.u.) 〈r−3〉 (a.u.) 〈r−6〉 (a.u.) A1/〈r−3〉 〈r−6〉/〈r−3〉
6 −7.63(41) × 10−11 5.02455 × 10−6 2.04213 × 10−10 −1.518(82) × 10−5 4.0643 × 10−5

7 −8.99(13) × 10−11 3.26596 × 10−6 4.1771 × 10−11 −2.753(40) × 10−5 1.2790 × 10−5

8 − 7.12(8) × 10−11 2.24135 × 10−6 9.009 × 10−12 −3.175(37) × 10−5 4.0197 × 10−6

This suggests scaling the measured structure factors by the
expectation value of 〈r−3〉 and plotting vs the ratio of 〈r−4〉
to 〈r−3〉. If only the first two terms in Eq. (7) are significant,
this should be a linear plot. Figure 7 shows such a plot,
using coordinates reported in Table VI. It is very close to
linear. The slight curvature in the plot can be accounted
for by including a term proportional to the ratio of 〈r−6〉 to
〈r−3〉. This results in a perfect fit of the three data points and
determines the coefficients of the three inverse powers to be
0.469 78(9), −0.453(6), and −13.1(2.5). This implies values
of the quadrupole moment and tensor polarizability,

Q = −0.46978(9) a.u., αD,2 = 0.905(12) a.u.

The coefficient of 〈r−6〉 is related to a combination of core
properties, as indicated in Eq. (7).

The third-order tensor structure factor A3 has contributions
that are analogous to the vector structure factor A1. The lowest
order contribution is expected to be due to the permanent
magnetic octupole moment of Ni+. This term is likely to
be quite small, as was the magnetic contribution to A1. Its
signature would be a coefficient of the third-order tensor
product proportional to the inverse fifth power of the Rydberg
radial coordinate. In the absence of specific theoretical predic-
tions of this coefficient, we simply parameterize its possible
contribution by a single constant, CM3. As was the case for
the vector structure, there are no adiabatic contributions to
the third-order structure. However, nonadiabatic contributions
to the quadrupole and dipole-octupole polarizabilities can
contribute to the third-order structure. The form of the A3

<r-6>/<r-3> x 105 (a.u.)

A
1/

<r
- 3

> 
x 

10
5  

(a
.u

.)

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

0 1 2 3 4 5

FIG. 6. Scaled values of the vector structure factor, A1, from
n = 9, L = 6, 7, 8 levels of nickel. The coordinates are taken from
Table V. The intercept [ − 3.348(38) × 10−5] indicates the g value of
Ni+. The slope determines its vector hyperpolarizability. The open
point marks the fitted intercept.

factor is expected to be [7]

A3 = CM3〈r−5〉nL + (βQ,3 + βDO,3)〈r−8〉nL + · · · . (8)

This suggests scaling the measured A3 coefficients by the
expectation value of 〈r−5〉 and plotting the ratio vs the ratio
between the expectation value of 〈r−8〉 and 〈r−5〉. These ratios
are shown in Table VII and are plotted in Fig. 8. The data
certainly conform to the expected pattern and fit well to a
straight line. The fitted intercept gives

CM3 = 0.014(18) a.u.,

which is consistent with zero. This is probably to be expected
since the magnetic octupole contribution to the structure is
likely to be very small. It would still be interesting to have
a theoretical prediction of the expected magnetic octupole
contribution, since it might be possible to measure it with
this method. The fitted slope of the plot in Fig. 8 represents
a quantity that is analogous to the vector hyperpolarizability,
βD,1, for the vector structure. It is a purely electric contribution
to third-order tensor structure that is produced by the nonadi-
abatic response of the core to the electric field of the Rydberg
electron. It could be called the “octupole hyperpolarizability,”

(βQ,3 + βDO,3) = −1.1(3) × 103a.u.

The fourth-order tensor structure is due to the combined
effects of the permanent hexadecapole moment of the Ni+
core and fourth-order tensor quadrupole and dipole-octupole
polarizabilities. The expected form of the fourth-order

<r-4>/<r-3> (a.u.)

0.00 0.01 0.02 0.03

A
2/

<r
- 3

> 
(a

.u
.)

0.450

0.455

0.460

0.465

0.470

FIG. 7. Scaled values of the second-rank tensor structure factor,
A2, obtained from n = 9, L = 6, 7, 8 levels of nickel. The coordinates
are taken from Table VI. The intercept, marked by the open point, and
initial slope are related to the quadrupole moment and tensor dipole
polarizability of Ni+.
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TABLE VI. Scaled values of the second-order tensor structure factors and the corresponding scaled radial expectation values. Expectation
values of 〈r−3〉 and 〈r−6〉 are reported in Table V.

L A2 (a.u.) 〈r−4〉 (a.u.) A2/〈r−3〉 〈r−4〉/〈r−3〉 〈r−6〉/〈r−3〉
6 2.289 364(78) × 10−6 1.511 300 × 10−7 0.455 635(15) 0.030 0783 4.0642 × 10−5

7 1.502 853(36) × 10−6 6.823 405 × 10−8 0.460 156(11) 0.020 8925 1.2790 × 10−5

8 1.037 788(26) × 10−6 3.320 480 × 10−8 0.463 021(12) 0.014 8147 4.0197 × 10−6

structure is

A4 = −�〈r−5〉nL − (αQ,4 + αDO,4)

2
〈r−6〉nL + · · · , (9)

where � is the hexadecapole moment. To separate the two
contributions, A4 is scaled by the expectation value of 〈r−5〉
and plotted vs the ratio of 〈r−6〉 to 〈r−5〉. The relevant quantities
are collected in Table VIII and plotted in Fig. 9. In this case,
the data are a rather poor fit to a straight line. However, when
the parameter errors are expanded to reflect the poor fit, the
intercept is found to be − 0.36(5), as shown in Fig. 9. This
corresponds to a hexadecapole moment of

� = 0.36(5) a.u.

The result is in agreement with the estimate obtained from the
optical RESIS study [6]. Unfortunately, a sign error in Eq. (4)
of that paper led to a corresponding sign error in the value of
� reported there.

The core ion properties deduced from these measurements
are summarized in Table IX and compared with the values
reported earlier in Ref. [6]. The quadrupole moment, Q, is
determined with 0.02% precision and agrees well with the less
precise value obtained in the optical RESIS study [6]. The
hexadecapole moment, �, is determined with 15% precision
and also agrees well with the preliminary measurement after
correcting the sign error in reference [6]. Both scalar and
tensor dipole polarizabilities are determined more precisely
than in reference [6], 0.03% and 1.3%, respectively, and are
in satisfactory agreement with the earlier report. The scalar
quadrupole polarizability, determined to 15% with partial
reliance on theoretical calculations [14], is reported here. The
vector hyperpolarizability, βD,1, is reported, and its precision,
5%, is considerably better than that of the measurements
of this quantity in Ar+ and Ne+ reported in Ref. [11]. The
magnetic dipole moment, or g value, is determined to 1.1%. It
differs from the Lande value (6/5) by 4.5(1.1)%. This result is
somewhat surprising since the ground state is thought to be a
nearly pure 2D5/2 level, but the data are insistent that g �= 6/5
since that would require an intercept of 3.195 × 10−5 in Fig. 6.
No evidence for a permanent magnetic octupole moment is

found, although the method appears capable of resolving such
a term if measurement precision could be improved.

Also shown in Table IX, when available, are theoretical
calculations of the Ni+ properties. Since the ground state of
Ni+ is a 3d9 2D5/2 level, excited levels involve two holes in the
3d shell and a valence electron, making theoretical calculations
of transition probabilities difficult. Calculations by Beck and
collaborators are in fair agreement for Q and � [16] and
for αD,0, and αD,2 [17]. Because of the agreement between
these calculations and the measured dipole polarizabilities,
the calculations of Beck et al. were used to estimate the value
of βD,0 that is needed to extract a value of the quadrupole
polarizability from the measurements [14] and to estimate the
value of the off-diagonal tensor polarizability, αD,2(�J = 1),
Eq. (70) in Ref. [7], that enters into the calculation of the E[2]’s
shown in the Appendix [18]. We know of no calculations of
the other Ni+ properties listed in Table IX, but they now
could serve as interesting tests of calculation methods. A
calculation of the g value for the Ni+ ground level would
be particularly interesting. If it does, indeed, differ from the
Lande value significantly, this could indicate the need for
more careful calculations of the ground-state wave function.
If careful calculations do not find deviations from the Lande
value, it may be that this discrepancy indicates a limitation of
our model for including the magnetic interactions. It may be
worth noting that the 1.3% measurement of the g value of Ar+
in Ref. [11] showed no deviation from the Lande value.

IV. DISCUSSION

The nickel Rydberg levels reported here display a far more
complex structure than has been seen in previous studies using
the microwave/RESIS technique. Studies of Rydberg levels
bound to positive ions with Jc = 0, Si2+ [19] and Th4+ [20]
and Jc = 1/2, Ba+ [21], Mg+ [22], and Si3+ [23], display
only scalar structure. Studies of Rydberg levels bound to
positive ions with Jc = 3/2, Ne+ [24] and Ar+ [11], show
scalar, vector, and second-rank tensor structure. This study
of nickel Rydberg levels, where the core ion Ni+ has Jc =
5/2, displays all of these plus third- and fourth-rank tensor

TABLE VII. Scaled values of the third-order tensor structure factors and the corresponding scaled radial expectation values.

L A3 (a.u.) 〈r−5〉 (a.u.) 〈r−8〉 (a.u.) A3/〈r−5〉 〈r−8〉/〈r−5〉
6 −3.65(50) × 10−10 5.2632 × 10−9 4.2018 × 10−13 −0.069(10) 7.9835 × 10−5

7 −3.2(26) × 10−11 1.6081 × 10−9 3.6926 × 10−14 −0.020(16) 2.2962 × 10−5

8 1.5(14) × 10−11 5.271 × 10−10 3.3705 × 10−15 0.029(27) 6.3948 × 10−6
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FIG. 8. Scaled values of the third-rank tensor structure factor,
A3, measured in the n = 9, L = 6, 7, 8 levels of the nickel atom.
The coordinates are taken from Table VII. A nonzero intercept of
this plot could indicate the value of the permanent magnetic octupole
moment of the Ni+ ion. The slope is related to a quantity called here
the “octupole hyperpolarizability.”

structure. As a result of this richer structure, more information
about core properties can be deduced from the structure.
All of these properties can, in principle, be calculated, but
as Table IX illustrates, existing calculations are incomplete
and only partially successful. Only one of the properties
listed in Table IX is routinely measured for neutral atoms,
the scalar polarizability αD,0, and even in that case, it is
seldom measured to high precision. There are virtually no
measurements of quadrupole moments of neutral atoms. One
exception is the 6% measurement of the quadrupole moment of
the ground state of Al by atomic beam methods [25]. Because
of the importance of quadrupole interactions in atomic clocks
based on trapped ions [5,26], there have been some recent
measurements of ion quadrupole moments in excited states
of clock ions motivated by this application [27–29]. Because
both permanent and induced moments are important in many
applications and because they are among the most direct
descriptions of atomic behavior that depend on calculated wave
functions, it is unfortunate that experimental measurements are
so few and imprecise.

The fact that the measured structure in nickel conforms so
well to the form expected from the effective potential model
[7] is a confirmation of the assumptions of that model. The
underlying physical assumptions are that the Rydberg system
deviates only slightly from a zeroth-order picture consisting
of a free core ion and a hydrogenic Rydberg electron and that
the deviations that exist result exclusively from long-range
interactions between the two. For sufficiently high-L Rydberg
levels, the interactions between different Rydberg series are

<r-6>/<r-5> (a.u.)
0.00 0.01 0.02 0.03 0.04

A
4/

<r
- 5

> 
(a

.u
.)

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

FIG. 9. Scaled values of the fourth-rank tensor structure factors
describing the n = 9, L = 6, 7, 8 levels of nickel. The coordinates
are taken from Table VIII. The extrapolated intercept is a measure of
the permanent hexadecapole moment of the Ni+ ion. Although the
linear fit is poor, the intercept, marked by the open point, is clearly
nonzero.

weak enough that the iterative scheme used here is practical.
The energy shifts due to series interactions, E[2], are treated as
corrections and applied before the remainder of the structure is
fit to extract core parameters. Then, if necessary, the shifts E[2]

are recalculated using the new values of the core parameters
derived from the fits and the process iterated. An alternative
approach, sharing the same physical assumptions, has been
advanced by Greene and collaborators [15]. This approach,
which is more appropriate if the interactions between Rydberg
series are strong, includes these interactions from the outset
and calculates a perturbed channel potential for every nLK

channel and then numerically calculates the binding energies
of each Rydberg level within that channel. Both approaches
have been used to analyze the structure of n = 10 Rydberg
levels of Ne [15] and give comparable results for the inferred
core properties. The approach used here is much simpler to
apply, but it would be interesting to see the results of an
alternative analysis. The level positions, reported in column
2 of Table II could be analyzed with the either method.

One advantage of the effective potential method [7] is
that its relatively transparent derivation makes it easier to
modify in situations where it is not directly applicable. A
key assumption of the method is that excited levels of the core
are well separated in energy from the ground state, allowing
the adiabatic expansion to converge. If this is not the case the
influence of low-lying core excited states, which contribute
strongly nonadiabatic effects, must be dealt with separately.
This is the case for another Jc = 5/2 ion studied with the
optical RESIS method, the Fr-like Th3+ ion [30].

TABLE VIII. Scaled values of the fourth-order tensor structure factors and the corresponding scaled radial expectation values.

L A4 (a.u.) 〈r−5〉 (a.u.) 〈r−6〉 (a.u.) A4/〈r−5〉 〈r−6〉/〈r−5〉
6 −1.401(23) × 10−9 5.2632 × 10−9 2.0421 × 10−10 −0.2662(43) 0.038 800
7 −4.578(90) × 10−10 1.6081 × 10−9 4.1771 × 10−11 −0.2847(56) 0.025 975
8 −1.823(67) × 10−10 5.271 × 10−10 9.010 × 10−12 −0.346(13) 0.017 093
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TABLE IX. Summary of Ni+ properties deduced from the
measurements reported here. All quantities are either dimensionless
or in atomic units.

Property This report Reference [6] Theory

Q −0.469 78(9) −0.474(2) −0.493b

� +0.36(5) 0.33(21)a 0.204b

αD,0 7.949(2) 7.92(6) 7.9473c, 7.7782d

αD,2 0.905(12) 1.15(14) 0.728c, 0.962d

αQ,0 55(8)
βD,1 0.454(24)
gJ 1.257(14)
CM3 0.014(18)

aDue to a sign error in the last term of Eq. (4) in Ref. [6], the value
of � was reported there with the incorrect sign.
bReference [16].
cReference [17], method 1.
dReference [17], method 2.
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APPENDIX

The energy shifts caused by mixing between different
Rydberg series due to long-range interactions can be described
as the action of Veff in second order. The first few terms of Veff

are given by

Veff = −αD,0

2r4
−

(
Q

r3
+ αD,2

2r4

)
X[2] (Jc) • C[2](

�

r)(
Jc

−Jc

2
0

Jc

Jc

)

− �

r5

X[4] (Jc) • C[4](
�

r)(
Jc

−Jc

2
0

Jc

Jc

) + · · · . (A1)

The energy shift of a given Rydberg level (2D5/2)nLK due to its
coupling to other Rydberg states bound to either fine structure
level of the ground electronic state, 2D5/2, or 2D3/2, can be
written as

E[2] (nLK ) = −
∑

Jc,n′L′

〈(
2D5/2

)
nLK

∣∣Veff

∣∣(2DJc

)
n′L′

K

〉〈(
2DJc

)
n′L′

K

∣∣Veff

∣∣(2D5/2

)
nLK

〉
�EJc

+ E(n′) − E(n)
, (A2)

where the sum runs over all possible n′ and L′ and both
values of Jc, 5/2 and 3/2, except that the initial state is
excluded. The term �EJc in the denominator is zero if Jc =
5/2 and 1506.94 cm−1 if Jc = 3/2. E(n) is the hydrogenic
binding energies of Rydberg levels with principal quantum
number n.

In general, the importance of different terms in the matrix
element of Veff decreases with inverse power of the Rydberg
radial coordinate. Truncating Veff after Eq. (A1) leads to terms
in Eq. (A2) proportional to Q2, with total power − 6, Qα, with
total power − 7, and either α2 or Q� with total power − 8.
These are all shown separately in the table below. All the terms
in Eq. (A1) are scalars and so satisfy the selection rule �K =
0. The first term also satisfies �L = �Jc = 0. The second
term satisfies �L = �Jc = 0, ± 2, and the third term satisfies
�L = �Jc = 0, ±2, ±4, although since it occurs only in
combination with the second term in terms included, the �L =
± 4 matrix elements do not enter into the calculation. The core
properties, Q, αD,2, and � that can couple the two core fine
structure levels have different values when they are diagonal
and off-diagonal in Jc. In the case of Q and �, these are
inferred assuming LS coupling for the ground state. In the case
of αD,2, the diagonal and off-diagonal tensor polarizabilities
are different linear combinations of dipole matrix elements [7].

All of the relevant terms in Eq. (A2) can be reduced, after
some angular momentum algebra to a linear combination of

sums over Rydberg radial matrix elements,

f (nL; Jc,s,q) ≡
∑
n′

[nL|r−s |n′L′][n′L′|r−q |nL]

�EJc
+ E (n′) − E (n)

, (A3)

where the square brackets represent radial integrals and the n′
summation implicitly includes both discrete and continuum
radial functions. These sums can be carried out using the
Dalgarno-Lewis method [31].

The values of the core properties used to compute the E[2]

energy shifts of all 18 levels of this study are shown below.
With the exception of αD,2(Jc = 3/2), which was estimated
from calculations, and did not produce significant shifts, all of
these properties were the result of an iterative procedure that
converged to stable results:

αD,0 = 7.949,

Q = −0.46978, Q(�Jc = 1) = −0.23489,

αD,2 = 0.905, αD,2 (�Jc = 1) = −0.04,

� = 0.36, � (�Jc = 1) = 0.51.

The partial contributions from each combination of terms in
Eq. (A2) for each level are shown in Tables X–XII. The
contribution labeled �n = 0 represents the shift due to mixing
with other n = 9 Rydberg levels with �L = ±2. These are
due only to the (αD,2)2 terms since the Q2 terms are identically
zero due to a property of hydrogenic radial functions.
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TABLE X. Calculated values of the second-order energies in Veff for the n = 9 Rydberg levels of nickel with L = 6. Each column
corresponds to a specific combination of terms from Eq. (A2), as indicated. The total calculated energy shift, shown in the next-to-last column,
also appears in Table II of the text. The uncertainty shown in the last column is estimated as half the total contribution from the columns
αD,0αD,2, αD,2αD,2, Q�, and �n = 0. An additional uncertainty equal to half of the αD,0αD,0 contribution is later added to the scalar structure
factor A0. All values are in MHz.

K Jc QQ QαD,0 αD,0αD,0 QαD,2 αD,0αD,2 αD,2αD,2 Q� �n = 0 Total σconv

3.5 2.5 −5.077 −8.809 −2.658 0.454 0.384 −0.010 0.000 0.214
1.5 7.493 0 0 0.062 0 0.001 0.077 0

2.416 −8.809 −2.658 0.516 0.384 −0.009 0.077 0.214 −7.869 0.333
4.5 2.5 6.348 −2.013 −2.658 −0.482 0.089 0.012 0.005 1.408

1.5 5.449 0 0 0.053 0 0.000 −0.129 0
11.797 −2.013 −2.658 −0.429 0.089 0.012 −0.124 1.408 8.082 0.693

5.5 2.5 6.803 3.524 −2.658 −0.530 −0.154 0.015 −0.036 0.563
1.5 3.073 0 0 0.030 0 0.000 0.060 0

9.876 3.524 −2.658 −0.500 −0.154 0.015 0.024 0.563 10.690 0.224
6.5 2.5 −0.554 6.142 −2.658 0.025 −0.268 0.003 .031 0.139

1.5 −0.288 0 0 −0.002 0 0.000 −0.003 0
−0.842 6.142 −2.658 0.023 −0.268 0.003 0.028 0.139 2.567 0.219

7.5 2.5 −7.854 3.877 −2.658 0.546 −0.170 −0.011 0.005 −0.077
1.5 −3.773 0 0 −0.024 0 0.000 0.001 0

−11.627 3.877 −2.658 0.522 −0.170 −0.011 0.006 −0.077 −10.138 0.126
8.5 2.5 −7.570 −5.537 −2.658 0.557 0.241 −0.011 −0.010 −0.005

1.5 −1.526 0 0 −0.009 0 0.000 −0.003 0
−9.096 −5.537 −2.658 0.548 0.241 −0.011 −0.013 −0.005 −16.531 0.106

TABLE XI. Calculated values of E[2] for nickel levels with n = 9, L = 7. All values in MHz.

K Jc′ QQ QαD,0 αD,0αD,0 QαD,2 αD,0αD,2 αD,2αD,2 Q� �n = 0 Total σconv

4.5 2.5 −1.537 −2.122 −0.448 0.096 0.063 −0.002 0.000 −0.065
1.5 8.948 0 0 0.038 0 0 0.027 0

7.411 −2.122 −0.448 0.134 0.063 −0.002 0.027 −0.065 4.998 0.011
5.5 2.5 2.590 −0.372 −0.448 −0.130 0.011 0.002 0.000 −0.146

1.5 9.116 0 0 0.039 0 0 −0.043 0
11.706 −0.372 −0.448 −0.091 0.011 0.002 −0.043 −0.146 10.619 0.088

6.5 2.5 2.493 0.967 −0.448 −0.122 −.029 0.002 −0.005 .245
1.5 4.621 0 0 .019 0 0 0.018 0

7.114 0.967 −0.448 −0.103 −0.029 0.002 0.013 0.245 7.761 0.116
7.5 2.5 −0.124 1.529 −0.448 0.015 −0.046 0 0.005 0.027

1.5 −0.101 0 0 0.000 0 0 0.000 0
−0.223 1.529 −0.448 0.015 −0.046 0 0.005 0.027 0.859 0.007

8.5 2.5 −2.443 0.893 −0.448 0.124 −0.026 −0.002 0.001 0.000
1.5 −0.898 0 0 −0.004 0 0 0.000 0

−3.341 0.893 −0.448 0.120 −0.026 −0.002 0.001 0.000 −2.803 0.014
9.5 2.5 −2.541 −1.419 −0.448 0.135 0.042 −0.002 −0.001 0.000

1.5 −0.483 0 0 −0.002 0 0 0.000 0
−3.024 −1.419 −0.448 0.133 0.042 −0.002 −0.001 0.000 −4.719 0.020
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TABLE XII. Calculated values of E[2] for nickel levels with n = 9, L = 8. All values in MHz.

K Jc
′ QQ QαD,0 αD,0αD,0 QαD,2 αD,0αD,2 αD,2αD,2 Q� �n = 0 Total σconv

5.5 2.5 −0.554 −0.589 −0.086 0.025 0.012 0 0.000 −0.005
1.5 −0.612 0 0 −0.002 0 0 0.000 0

−1.166 −0.589 −0.086 0.023 0.012 0 0.000 −0.005 −1.811 0.004
6.5 2.5 1.115 −0.078 −0.086 −0.037 0.002 0 0.000 −0.013

1.5 −0.797 0 0 −0.003 0 0 0.001 0
0.318 −0.078 −0.086 −0.040 0.002 0 0.001 −0.013 0.104 0.005

7.5 2.5 1.129 0.293 −0.086 −0.035 −0.006 0 −0.001 0.079
1.5 −0.369 0 0 −0.001 0 0 0.000 0

0.760 0.293 −0.086 −0.036 −0.006 0 −0.001 0.079 1.003 0.004
8.5 2.5 0.264 0.434 −0.086 −0.004 −0.009 0 0.001 0.005

1.5 −0.034 0 0 0 0 0 0.000 0
0.230 0.434 −0.086 −0.004 −0.009 0 0.001 0.005 0.571 0.002

9.5 2.5 −0.490 0.237 −0.086 0.019 −0.005 0 0.000 0.000
1.5 −0.236 0 0 −0.001 00 0 0.000 0.000

−0.726 0.237 −0.086 0.018 −0.005 0 0.000 0.000 −0.562 0.003
10.5 2.5 −0.723 −0.413 −0.086 0.029 0.009 0 0.000 0.000

1.5 −0.152 0 0 0 0 0 0.000 0.000
−0.875 −0.413 −0.086 0.029 0.009 0 0.000 0.000 −1.336 0.005
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