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Bethe-logarithm calculation using the B-spline method
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A method based on the B-spline basis set is developed that significantly simplifies the Bethe-logarithm
calculations for the atomic hydrogen. Without any auxiliary optimization and extrapolation, this method not only
can calculate the Bethe logarithms of low-lying states to high precision using relatively small basis sets, but can
also calculate high-lying Rydberg states efficiently. For the ground state, the Bethe logarithm is calculated to 24
significant figures using 450 B-spline functions. For high-lying Rydberg states, we can reproduce all the results
of Jentschura and Mohr [Phys. Rev. A 72, 012110 (2005)].
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I. INTRODUCTION

In 1947, Lamb and Retherford [1] discovered that there was
a small difference in energy between the 2s1/2 and 2p1/2 states
of atomic hydrogen using a microwave method, which was in
disagreement with the prediction of Dirac theory stating that
the 2s1/2 and 2p1/2 states are degenerate. In the same year,
a satisfactory explanation for this shift was given by Bethe
using a radiation field theory [2]. In general, the lowest-order
quantum electrodynamic (QED) correction for a hydrogen
energy level can be written as [3] (in atomic units throughout
unless otherwise stated)
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where ln [k0(nl)/R∞] is called the Bethe logarithm and is
labeled β(nl). The Bethe logarithm is an essential part of
the Lamb shift and is the most difficult to calculate as well.
For the atomic hydrogen, the Bethe logarithms of the ground
state and low-lying states have been calculated by many
researchers [4–10], including the group theoretical method
of Lieber and Huff [4,5], the iteration-variation method of
Goldman [6], the discrete technique with a higher-order
Neville-Richardon extrapolation method of Haywood and
Morgan [7], the momentum-space finite basis-set approach
of Mallampalli and Sapirstein [8], and the finite basis-set
method of Drake and Goldman involving a large range of
nonlinear parameters [9,10]. The most noteworthy is that the
Drake-Goldman method has been also successfully applied to
the calculations of the Bethe logarithms for helium [10,11] and
lithium [12,13].

In recent years, attention has been drawn to Rydberg states
of one-electron systems. One reason is that the theory of
Rydberg states with a long natural lifetime can be formulated
more precisely than for low-lying states. Combining precision
frequency measurements with QED calculations for Rydberg
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states of hydrogenlike ions, one can search for information on
physical constants of nature [14]. Jentschura et al. proposed
the application of this idea to investigate the Rydberg constant
[15] and nuclear masses [16]. Experiments are underway on
Rydberg states in hydrogenlike systems. For example, Tan
et al. developed an experimental method for one-electron
ions in circular Rydberg states at the National Institute of
Standards and Technology (NIST) [17]. Thus the investigation
of hydrogenic Bethe logarithms of Rydberg states is of
great importance. Jentschura and Mohr recently calculated
the Bethe logarithms for states with high n and l (n � 200,
l � 199) using an integral representation method and a spectral
representation method [18]. Both methods are adapted to
different ranges of principal and angular momentum quantum
numbers. They noted that their methods are relatively complex
and rely partly on multiprecision arithmetic libraries due to
the numerical difficulties. To our knowledge, there are no
other methods that have been applied to the calculations
of hydrogenic Bethe logarithms for such Rydberg states.
It is necessary and important to perform an independent
verification of Jentschura and Mohr’s calculations using an
independent, alternative method [18].

With this motivation, we present here a simple and efficient
method for calculating the hydrogen Bethe logarithm. The
method is based on the B-spline basis set with an exponential
distribution of knots. It can be applied not only to calculate
low-lying states with high precision using relatively small
basis sets, but also to calculate highly-excited Rydberg states
with the principal quantum number n > 200. This paper is
organized as follows. An outline of the Bethe logarithm is
given in Sec. II, together with the details of our computational
method. Some selected results are presented in Sec. III. Finally,
a summary is given in Sec. IV.

II. COMPUTATIONAL METHOD

A. Bethe logarithm

In the acceleration gauge, the Bethe logarithm of the
hydrogen atom can be represented in the form [9]

β(nl) = B

C
, (2)
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Here, En is the energy of the state of interest |ψnl〉, En
′ is one of

the intermediate states with the corresponding eigenfunction
|ψn

′
l
′ 〉, and the summation-integration symbol represents a

summation over all bound states and an integration over the
continuum. The wave function of hydrogen can be written as

ψnlm(�r) = fn(r)Ylm(r̂), (5)

where Ylm(r̂) is the spherical harmonics, and fn(r) is the radial
wave function normalized according to∫ ∞

0
|fn(r)|2r2dr = 1. (6)
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B. Structure of basis set

When calculating the Bethe logarithm using a finite basis
set, the structure of the basis set is essential. One has to consider
carefully two special requirements for constructing a basis
set [10]. First, the basis functions used in the intermediate
states should include the initial state, which can improve
the rate of convergence. Second, the basis set can generate
intermediate states of high-enough energies, which is critical
in the calculation of the Bethe logarithm; in other words, the
major contribution to the β(nl) lies in the continuum states of

FIG. 1. (Color online) Twenty B splines of order k = 5 with an
exponential distributing knot sequence. (a) The B splines in the range
of 0 to 1×10−5. (b) The B splines in the range of 1×10−5 to 1000.
T1 represents the first internal knot point, i.e., T1 = tk+1, and the knot
parameter α = 0.021.

high energy. More detailed information on the calculation of
the Bethe logarithm can be found in [10].

In this work, the radial wave function of the initial and
intermediate states are constructed by the same finite B-spline
basis set,

fn(r) =
N∑

i=1

Cn
i Bi(r), (8)

where N is the number of B splines [19]. It is obvious that
this type of basis set satisfies the first requirement mentioned
above. A B-spline function is a set of piecewise polynomials
of certain order defined in a finite region [0,R]. This finite
region is designed as a set of monotonically increasing points
called the knot sequence {ti}. We denote Bi,1 to be a B-spline
function of order one, defined by

Bi,1(r) =
{

1, ti � r < ti+1

0, others. (9)

TABLE I. Convergence study of the Bethe logarithm for the 1s state of hydrogen using k = 15th-order B-spline basis set, confined in a
box of size 100 a.u. Here, N is the number of kth-order B splines, β(1s) is the 1s-state Bethe logarithm, and C is the denominator defined in
Eq. (4).

N β(1s) C(1s)

50 2.290 980 4 1.999 999 87
100 2.290 981 372 6 1.999 999 999 999 977
200 2.290 981 375 205 552 09 2.000 000 000 000 000 02
300 2.290 981 375 205 552 301 336 2.000 000 000 000 000 000 006 3
400 2.290 981 375 205 552 301 341 2 1.999 999 999 999 999 999 999 98
450 2.290 981 375 205 552 301 342 529 8 1.999 999 999 999 999 999 999 999 76
Huff [5] 2.290 981 375 205 552 301 342 544 96
Drake and Goldman [10] 2.290 981 375 205 552 301 33
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TABLE II. Values of the Bethe logarithm for the ground state of hydrogen at different knot sequences. Here, α is the parameter in Eq. (11),
T1 is the first interior knot point, Emax is the highest energy, and δβ(1s) is the difference from the exact value. All calculations are carried out
using the same set of parameters: N = 300, k = 15, and R = 200. Digits in italics are not converged.

α T1 Emax β(1s) δβ(1s)

0.005 4.10 × 10−1 5.76 × 103 2.258 3.30 × 10−2

0.025 2.41 × 10−2 1.59 × 106 2.289 0 1.98 × 10−3

0.035 4.59 × 10−3 4.32 × 107 2.290 61 3.71 × 10−4

0.045 8.06 × 10−4 1.38 × 109 2.290 915 6.64 × 10−5

0.065 2.17 × 10−5 1.83 × 1012 2.290 979 6 1.83 × 10−6

0.075 3.43 × 10−6 7.23 × 1013 2.290 981 09 2.90 × 10−7

0.085 5.32 × 10−7 2.96 × 1015 2.290 981 330 4.53 × 10−8

0.105 1.23 × 10−8 5.38 × 1018 2.290 981 374 1 1.07 × 10−9

0.115 1.84 × 10−9 2.36 × 1020 2.290 981 375 05 1.61 × 10−10

0.125 2.74 × 10−10 1.05 × 1022 2.290 981 375 18 2.56 × 10−11

0.135 4.04 × 10−11 4.75 × 1023 2.290 981 375 202 0 3.57 × 10−12

0.145 5.94 × 10−12 2.16 × 1025 2.290 981 375 205 02 5.28 × 10−13

0.165 1.26 × 10−13 4.65 × 1028 2.290 981 375 205 54 1 1.14 × 10−14

0.175 1.83 × 10−14 2.17 × 1030 2.290 981 375 205 550 6 1.67 × 10−15

0.185 2.65 × 10−15 1.03 × 1032 2.290 981 375 205 552 06 2.42 × 10−16

0.195 3.82 × 10−16 4.86 × 1033 2.290 981 375 205 552 27 3.53 × 10−17

0.205 5.49 × 10−17 2.32 × 1035 2.290 981 375 205 552 296 5.08 × 10−18

0.225 1.13 × 10−18 5.35 × 1038 2.290 981 375 205 552 301 24 1.05 × 10−19

0.235 1.60 × 10−19 6.31 × 1039 2.290 981 375 205 552 301 335 5 7.04 × 10−21

Huff [5] 2.290 981 375 205 552 301 342 544 96

The B-spline functions of order k are built up from Bi,1 using
the recursion relation

Bi,k(r) = r − ti

ti + k − 1 − ti
Bi,k − 1(r) + ti + k − r

ti + k − ti + 1
Bi + 1,k − 1(r).

(10)

To obtain precise bound states, as well as continuum states of
high-enough energies, we employ a knot sequence according to

ti = 0, i = 1,2, . . . ,k,

ti = R
e(λ i−1

n−1 ) − 1

eλ − 1
, i = k + 1,k + 2, . . . ,N, (11)

ti = R, i = N + 1,N + 2, . . . ,N + k − 1,

log

lo
g

1s

FIG. 2. (Color online) A relation between the first interior knot
T1 and the precision δβ(1s).

where λ = αR, with α being an adjustable parameter. The knot
sequence consists of knots of multiplicity k at r = 0, knots of
multiplicity k − 1 at r = R, and simple knots at interior points.
In Fig. 1, 20 B splines of order 5 are given. These B splines are
defined in the finite region [0, 1000] with the knot sequence as
defined above. Figure 1(a) shows the B splines in the range of
0 to 1 × 10−5, and Fig. 1(b) shows the B splines in the range
of 1 × 10−5 to 1000. Also in the figure, T1 is the first internal
knot point. This choice makes the last B splines to be zero at
r = R, so that the basis set satisfies the boundary condition
of the wave function at r = R. There are different asymptotic
behaviors between s and non-s states at origin r = 0. The wave

lo
g

FIG. 3. (Color online) The difference between our calculated
results and the exact energy levels for Rydberg states with the prin-
cipal quantum number n � 220 and the orbital angular momentum
quantum number l � 2.
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TABLE III. Bethe logarithms for s, p, and d states using 3000 B spline with k = 11. All decimal digits shown are significant.

n β(ns) β(np) × 102 β(nd) × 103 β(nf ) × 103

2 2.811 769 894 (1) − 3.001 670 863 (1)
3 2.767 663 612 (1) − 3.819 022 939 (1) − 5.232 148 141 (1)
4 2.749 811 840(1) − 4.195 489 460 (1) − 6.740 938 877 (1) − 1.733 661 482 (1)
5 2.740 823 728 (1) − 4.403 469 559 (1) − 7.600 751 258 (1) − 2.202 168 381 (1)
6 2.735 664 207 (1) − 4.531 219 769 (1) − 8.147 203 962 (1) − 2.502 179 760 (1)
7 2.732 429 129 (1) − 4.615 517 726 (1) − 8.519 223 294 (1) − 2.709 095 727 (1)
8 2.730 267 261 (1) − 4.674 135 200 (1) − 8.785 042 984 (1) − 2.859 114 559 (1)
9 2.728 751 166 (1) − 4.716 569 995 (1) − 8.982 032 294 (1) − 2.971 901 488 (1)
10 2.727 646 939 (1) − 4.748 289 336 (1) − 9.132 272 249 (1) − 3.059 094 279 (1)
20 2.723 967 084 (1) − 4.860 818 451 (1) − 9.694 501 704 (1) − 3.399 111 574 (1)
30 2.723 247 984 (1) − 4.884 701 661 (1) − 9.823 005 803 (1) − 3.481 789 018 (1)
40 2.722 991 205 (1) − 4.893 508 814 (1) − 9.871 887 451 (1) − 3.514 138 599 (1)
50 2.722 871 077 (1) − 4.897 701 457 (1) − 9.895 562 973 (1) − 3.530 062 203 (1)
60 2.722 805 384 (1) − 4.900 019 544 (1) − 9.908 798 484 (1) − 3.539 058 061 (1)
70 2.722 765 592 (1) − 4.901 434 390 (1) − 9.916 939 183 (1) − 3.544 632 085 (1)
80 2.722 739 679 (1) − 4.902 360 892 (1) − 9.922 300 373 (1) − 3.548 323 104 (1)
90 2.722 721 868 (1) − 4.903 000 433 (1) − 9.926 017 221 (1) − 3.550 892 879 (1)
100 2.722 709 102 (1) − 4.903 460 354 (1) − 9.928 699 409 (1) − 3.552 753 548 (1)
110 2.722 699 641 (1) − 4.903 802 125 (1) − 9.930 698 160 (1) − 3.554 143 907 (1)
120 2.722 692 436 (1) − 4.904 063 005 (1) − 9.932 227 386 (1) − 3.555 210 080 (1)
130 2.722 686 822 (1) − 4.904 266 644 (1) − 9.933 423 414 (1) − 3.556 045 548 (1)
140 2.722 682 363 (1) − 4.904 428 641 (1) − 9.934 376 457 (1) − 3.556 712 376 (1)
150 2.722 678 763 (1) − 4.904 559 621 (1) − 9.935 148 141 (1) − 3.557 253 075 (1)
160 2.722 675 815 (1) − 4.904 667 027 (1) − 9.935 781 725 (1) − 3.557 697 561 (1)
170 2.722 673 370 (1) − 4.904 756 193 (1) − 9.936 308 298 (1) − 3.558 067 379 (1)
180 2.722 671 320 (1) − 4.904 831 027 (1) − 9.936 750 669 (1) − 3.558 378 362 (1)
190 2.722 669 583 (1) − 4.904 894 445 (1) − 9.937 125 879 (1) − 3.558 642 359 (1)
200 2.722 668 101 (1) − 4.904 948 655 (1) − 9.937 446 866 (1) − 3.558 868 381 (1)
210 2.722 666 824 (1) − 4.904 999 668 (1) − 9.937 774 347 (1) − 3.559 063 377 (1)

function of s symmetry at r = 0 has a finite value, whereas
it is zero for other states of non-s symmetry. In general, one
removes the first B spline to satisfy the bound condition of
non-s states. In order to keep the completeness of a basis set,
all B splines are included in our calculations. In the present
work, all matrix elements are evaluated to near machine
precision using Gaussian-Legendre quadratures. Since the
Hamiltonian and overlap matrices, obtained using the B-spline
basis, are banded, a banded diagonalization subroutine DSBGV

from LAPACK [20] is employed. Then the infinite summation
and integration over intermediate states in Eqs. (3) and (4) are
transformed into a summation over the finite B-spline states.

III. NUMERICAL RESULTS AND DISCUSSION

Table I is a convergence study of the Bethe logarithm for
the 1s state of hydrogen. We used the B-spline basis set of
order k = 15 confined in a box with the size of 100 a.u.
In Table I, N represents the number of kth-order B splines,
i.e., the dimension of the basis set, and C is the denominator
in the Bethe-logarithm expression given by Eq. (4), which has
the exact value of 2. We also list the result of Huff [5] who
used the group theoretical method, and the extrapolated value
of Drake and Goldman [10] who used their finite basis-set
method with the size of basis set up to N = 210. It is shown
in Table I that the convergence of β(1s) has reached to

23 significant digits using relatively small basis sets. As N

increases progressively, β(1s) converges very rapidly until
N > 300, where the rate of convergence starts to drop. When
we change k and R to be 14 and 300, respectively, one more
significant digit can be obtained for β(1s).

The ability of our method to obtain highly accurate results
is due to the use of the exponential distribution of the knot
sequence, which allows higher-energy states to exist in the
energy spectra. To determine a relation among the knot
distribution, the energy spectrum, and the precision, we list
in Table II the values of the Bethe logarithm for the ground
state of hydrogen calculated for 19 different sets of knot
distributions. We keep the number of B-spline basis functions
to be 300 and fix the size of the box to be 200. In Table II, T1

represents the first internal knot and Emax is the highest energy
in the spectrum, i.e., the last energy eigenvalue obtained by
the diagonalization of the Hamiltonian.

One may see from Table II that as the knot distribution
becomes closer to the nucleus, higher-energy states appear,
resulting in more precise values of β(1s). The first internal
knot point T1 can directly reflect the final precision in the
Bethe logarithm, as demonstrated by the linear line in Fig. 2.
The fitting of the curve gives rise to the following equation:

log[δβ(1s)] = −1.06001 + 1.00146 × log(T1) , (12)

which provides a useful estimation for higher-lying s states.
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TABLE IV. Bethe logarithms for circular states (l + 1,l) with 4 � l � 43.

l β(l + 1,l) × 105 l β(l + 1,l) × 106 l β(l + 1,l) × 106 l β(l + 1,l) × 106

4 − 77.209 890 154 (1) 14 − 20.014 384 872 (1) 24 − 4.033 528 104(1) 34 − 1.427 140 814 (1)
5 − 40.792 616 829 (1) 15 − 16.313 053 763 (1) 25 − 3.571 536 037 (1) 35 − 1.308 801 170 (1)
6 − 24.090 825 872 (1) 16 − 13.470 635 449 (1) 26 − 3.177 478 119 (1) 36 − 1.203 190 769 (1)
7 − 15.386 450 096 (1) 17 − 11.251 829 398 (1) 27 − 2.839 314 416 (1) 37 − 1.108 643 220 (1)
8 − 10.414 809 250 (1) 18 − 9.494 620 181 (1) 28 − 2.547 477 155 (1) 38 − 1.023 747 182 (1)
9 − 7.372 497 858 (1) 19 − 8.084 977 837 (1) 29 − 2.294 298 277 (1) 39 − 0.947 301 967 (1)
10 − 5.407 926 523 (1) 20 − 6.941 065 661 (1) 30 − 2.073 583 590 (1) 40 − 0.878 281 749 (1)
11 − 4.083 367 938 (1) 21 − 6.003 118 199 (1) 31 − 1.880 292 605 (1) 41 − 0.815 806 568 (1)
12 − 3.158 151 892 (1) 22 − 5.226 798 437 (1) 32 − 1.710 295 447 (1) 42 − 0.759 118 688 (1)
13 − 2.492 497 382 (1) 23 − 4.578 744 771 (1) 33 − 1.560 186 576 (1) 43 − 0.707 563 249 (1)

It would be interesting to compare the present method
with the method of Drake and Goldman [9,10]. The B-spline
method is based on a relatively high-order B-spline basis
set with exponential distribution knots, and the parameter
α is determined by a simple linear relation, as shown in
Table II. In this respect, our method is similar to the Drake
and Goldman’s finite basis-set method using a huge range
of nonlinear parameters. In their work and in other finite
basis-set methods [6–8], one can find that only the ground
state and low-lying states have been calculated, but rarely
for Rydberg states of n > 10. This is because the use of a
large number of basis functions with nonlinear parameters may
suffer from the problem of near linear dependence. However,
a significant advantage of using B splines as basis functions
is that they are not only complete, but also are numerically
stable, highly localized, flexible to construct, and capable of
properly describing highly-excited Rydberg states [21]. The
Bethe logarithms of states with the principal quantum number
n � 220 and the orbital angular momentum quantum number
l � 200 were calculated using the present B-spline method.
The selected results of some Rydberg states are shown in
Fig. 3 and Tables III and IV.

The differences between our present values and the exact
energy levels of the Rydberg states with the principal quantum
number n � 220 and the orbital angular momentum quantum
number l � 2 are plotted in Fig. 3. In our calculations, we
use 3000 B-spline basis functions, together with the radial
parameter R = 110 000. From Fig. 3, one can see that our
calculated results agree with the exact energy values within
10−17. Note that the exact energy level of hydrogen is
−1/(2n2). The same parameters are used to calculate the Bethe
logarithm of these Rydberg states. In Table III, we list the
results of the Bethe logarithm for s, p, d, and f states with
principal quantum number n up to 210. All digits displayed
are significant ones. We have reproduced Jentschura and
Mohr’s results [18], which are among the most comprehensive
calculations of the Bethe logarithm recorded so far in literature.
Jentschura and Mohr gave the following asymptotic expression
for the s states that was obtained from the data listed in [22]:

β(n,l = 0) ∼= 2.72265434(5) + 0.000000(5)

n
+ 0.55365(5)

n2

− 0.5993(5)

n3
+ 0.613(5)

n4
− 0.60(5)

n5
. (13)

According to this expression, β(210,0) = 2.722666824. Our
result is in good agreement with this value. Compared with
their method, our method seems to be computationally easier.
For a given angular momentum, we can obtain the Bethe
logarithm for all needed states with almost the same accuracy
in a single run. More importantly, we do not have any numerical
difficulties for Rydberg states, even when the difference
n − l is large. Our calculations were carried out in quadruple
precision arithmetics.

It is also interesting to calculate the Bethe logarithm of a
circular Rydberg state of hydrogen where the principal quan-
tum is n = l + 1. Circular Rydberg states play a crucial role in
understanding the correspondence limit between classical and
quantum physics. Experiments are underway on one-electron
systems in circular Rydberg states [17]. The Bethe logarithm
of a circular state is quite easy to calculate using our method.
In Table IV, we list some circular Rydberg states in the range
4 � l � 43. All decimal digits shown are significant.

IV. SUMMARY

In this paper, a simple and efficient method for calculating
the Bethe logarithm of hydrogen has been presented. This
method is based on the B-spline basis set with an exponential
distribution of knot sequence. We have demonstrated that if
we choose the knot distribution close enough to the nucleus,
we can calculate the Bethe logarithm to high precision. We
have also found a relation between the knot distribution and
the energy spectrum, which can be used to predict the accuracy
we can achieve for the Bethe logarithm. For the ground state,
the Bethe logarithm has been evaluated to 24 significant digits.
For high-lying Rydberg states, we have calculated the Bethe
logarithm for these states with the principal quantum number
n � 220 and the orbital angular momentum quantum number
l � 200, which has reproduced all the results of Jentschura
and Mohr.
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