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The largest contributions to the n = 2 Lamb shift, fine structure interval and 2s hyperfine structure of muonic
hydrogen are calculated by accurate numerical evaluations of the Dirac equation rather than by a perturbation
expansion in powers of 1/c, in the framework of nonrelativistic quantum electrodynamics. Previous calculations
and the validity of the perturbation expansion for light elements are confirmed. The dependence of the various
effects on the nuclear size and model are studied.
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I. INTRODUCTION

Despite many years of study, the proton charge radius
has remained relatively poorly known. It has been derived
from measurements in electron-proton collisions [1,2] or
from the high-precision spectroscopy of hydrogen [3–10]
as described in the CODATA report in Ref. [11]. Tests of
fundamental physics based on the progress in the accuracy
of the spectroscopy of hydrogen and deuterium have been
limited by the lack of an accurate value for the proton radius.
Moreover, the values for the proton radius obtained by different
methods or different analyses of the existing experiments are
spread over a range larger than the uncertainty quoted for
the individual results. Two recent measurements have resulted
in a puzzle. The accurate determination of the 2S Lamb
shift by laser spectroscopy in muonic hydrogen provides a
proton size with a ten times smaller uncertainty than any
previous value and it differs by five standard deviations from
the 2006 CODATA value [12]. At the same time, a new,
improved determination of the charge radius by electron
scattering, performed at Mainz with the Mainz Microtron
(MAMI), provides a value in good agreement with the value
from hydrogen and deuterium spectroscopy [13,14]. Taking
into account improved theory in hydrogen and deuterium
and the MAMI measurement lead the recently released 2010
adjustment [15,16] to differ by 6.9 standard deviations between
the proton radius obtained from muonic hydrogen.

Many papers have been published in the last year, trying
to solve this puzzle. A few dealt with the calculation of the
n = 2 level energies in muonic hydrogen. Several others are
concerned with the effect of the internal structure of the proton
on these energies [17–28]. Others look at exotic phenomenon
beyond the standard model [29–35].

Many contributions to the Lamb shift, fine, and hyperfine
structures of muonic hydrogen have been evaluated over the
years; the results are summarized in Refs. [36–41] and in a
recent book by Eides et al. [42]. Most of these calculations
were done in the framework of nonrelativistic QED. The wave
function and operators were expanded in powers of the fine
structure constant, and the contributions were obtained by
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perturbation theory. Hylton [43] showed that the perturbation
calculation of the finite size correction to the vacuum polariza-
tion in heavy elements gives incorrect results. Since a bound
muon is closer to the nucleus than a bound electron by a factor
of mμ/me ≈ 207, its Bohr radius is slightly smaller than the
Compton wavelength of the electron λC = h̄/mec by a factor
of me/α mμ ≈ 137/207 (α ≈ 1/137.036 is the fine structure
constant, me and mμ the electron and muon mass, respectively).
The Compton wavelength is the scale of QED corrections, and
for the 2S level, the muon wave-function mean radius is only
2.6 times larger than the electron Compton wavelength.

It is thus worthwhile to reconsider the largest corrections
that contribute to the 2S Lamb shift in muonic hydrogen using
nonperturbative methods. In the present work, we use the latest
version of the MCDF code of Desclaux and Indelicato [44],
which is designed to calculate the properties of exotic atoms
[45], to evaluate the exact contribution of the electron Uehling
potential with Dirac wave functions including the finite nuclear
size. In the same way, we calculate the Källén and Sabry
contribution.

Throughout this paper we will use QED units, h̄ = 1, c = 1.
The electric charge is given by e2 = 4πα.

II. NUMERICAL EVALUATION OF THE DIRAC
EQUATION WITH REALISTIC NUCLEAR CHARGE

DISTRIBUTION MODELS

A. Evaluation by the numerical solution of the Dirac equation

We calculate higher-order finite size correction, starting
from the Dirac equation with reduced mass, as techniques
for the accurate numerical solution of the Dirac equation in a
Coulomb potential have been developed over a period of many
years within the framework of the multiconfiguration Dirac-
Fock (MCDF) method for the atomic many-body problem
[46–49].

The Dirac equation is written as

[α · p + βμr + VN (r)]�nκμ(r) = Enκμ�nκμ(r), (1)

where α and β are the Dirac 4 × 4 matrices, VN (r) is the
Coulomb potential of the nucleus, Enκμ is the atom total energy,
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and � is a one-electron Dirac four-component spinor

�nκμ(r) = 1

r

[
Pnκ (r) χκμ(θ,φ)

i Qnκ (r) χ−κμ(θ,φ)

]
, (2)

in which χκμ(θ,φ) is the two-component Pauli spherical spinor
[47], n is the principal quantum number, κ is the Dirac quantum
number, and μ is the eigenvalue of Jz. This reduces, for a
spherically symmetric potential, to the differential equation[

VN (r) − d
dr

+ κ
r

d
dr

+ κ
r

VN (r) − 2μr

] [
Pnκ (r)

Qnκ (r)

]
= ED

nκμ

[
Pnκ (r)

Qnκ (r)

]
,

(3)

where Pnκ (r) and Qnκ (r) are the large and small radial
components of the wave function, respectively, κ is the Dirac
quantum number, ED

nκμ is the binding energy, μr is the muon
reduced mass, μr = mμMp/(mμ + Mp) (mμ and Mp are the
muon and proton masses).

The numerical solution of this equation has been imple-
mented for many years in the multiconfiguration Dirac-Fock
general matrix elements (MDFGME) code developed from the
original MCDF code of Desclaux [49] to work with exotic
atoms [45] and several different nuclear models, with improved
accuracy and QED corrections [50–53]. Here I used the 2012
version of the MDFGME code.

In this version, a five-point predictor-corrector method
(order h7) is used to solve Eq. (3) numerically, on a linear
mesh [49,53] defined as

tn = ln

(
rn

r0

)
+ arn, (4)

with tn = t0 + nh, and r0 > 0 is the first point of the mesh,
corresponding to n = 0. This immediately gives t0 = ar0.
Equation (4) can be inverted to yield

rn = W (ar0e
tn )

a
,

(5)
drn

dtn
= W (ar0e

tn )

a[1 + W (ar0e tn )]
,

where W is the Lambert (or product logarithm) function. The
wave function and differential equation between 0 and r0

are represented by a ten-term series expansion. For a point
nucleus, the first point is usually given by r0 = 10−2/Z and
h = 0.025. Here we use values down to r0 = 10−7/Z and
h = 0.002 to obtain the best possible accuracy. For a finite
charge distribution, the nuclear boundary is fixed at the value
rN , where N is large enough to obtain sufficient accuracy.
The mean value of an operator O that gives the first-order
contributions to the energy is calculated as

�EO =
∫ ∞

0
dr[P (r)2 + Q(r)2]O(r)

=
∫ r0

0
dr[P (r)2 + Q(r)2]O(r)

+
∫ ∞

r0

dt
dr

dt
[P (r)2 + Q(r)2]O(r) (6)

using 8- and 14-point integration formulas due to Roothaan.
The two integration formulas provide the same result within
nine decimal places.

B. Charge distribution models

For the proton charge distribution two models are ex-
tensively used. The first corresponds to a proton dipole
(charge) form factor, the second is a Gaussian model. Here
we also use uniform and Fermi charge distribution and fits to
the experimental data [54,55]. The analytic distributions are
parametrized so they provide the same mean-square radius R.
Moments of the charge distribution are defined by

〈rn〉 = 4π

∫ ∞

0
r2+nρ(r)dr, (7)

where the nuclear charge distribution ρ(r) = ρN (r)/(Ze) is
normalized by∫

ρ (�r) d�r = 4π

∫ ∞

0
ρ(r)r2dr = 1, (8)

for a spherically symmetric charge distribution. The mean-
square radius is R =

√
〈r2〉.

The potential can be deduced from the charge density using
the well-known expression

VN (r) = −4πe

r

∫ r

0
du u2ρN (u) − 4πe

∫ ∞

r

duuρN (u). (9)

The exponential charge distribution and corresponding
potential energy are written as

ρN (r) = Ze
e
− r

ξ

8πξ 3
,

VN (r) = −Ze2

(
1 − e

− r
ξ

r
− e− r

c

2ξ

)
, (10)

〈rn〉 = (n + 2)! ξn

2
,

which gives ξ = R

2
√

3
. The Gaussian charge distribution and

potential are given by

ρN (r) = Ze
e
−( r

ξ
)2

π3/2ξ 3
,

VN (r) = −Ze2
erf

(
r
ξ

)
r

, (11)

〈rn〉 = 2�
(

n+3
2

)
ξn

√
π

,

where erf is the error function and ξ =
√

2
3R. Other similar

expressions for the two above models can be found in Ref. [56].
The electric form factor, corresponding to the interaction

as depicted in Fig. 1, is related to the charge distribution by

GE( �Q2) =
∫

d re−iq·rρ(r). (12)
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FIG. 1. Electromagnetic interaction between a lepton (narrow
line) and a nucleon (bold line). The Feynman diagrams presented
in the figures are realized with JAXODRAW.

For the exponential model this leads to

GE( �Q2) = 1(
1 + R2q2

12

)2 ≈ 1 − R2

6
q2 + R4

48
q4 + · · · ,

(13)

while for the Gaussian model one has

GE( �Q2) = e− 1
6 R2q2 ≈ 1 − R2

6
q2 + R4

72
q4 + · · · . (14)

The two models have an identical slope R2/6 as functions of
q2 for q → 0 as expected (see, e.g, [57]).

In 1956, Zemach introduced an electromagnetic form
factor, useful for evaluating the hyperfine structure (HFS)
energy correction

ρem(r) =
∫

ρ(r − u)μ(u)du, (15)

where μ(u) is the magnetic moment density. Both μ(u) and
ρem are normalized to unity as in Eq. (8). The Zemach radius
is given by

RZ = 〈rZ〉 =
∫

rρem(r)d r. (16)

The Zemach’s radius can be written in momentum space as
[58,59]

RZ = −4

π

∫
dq

1

q2

(
GE( �Q2)

GM( �Q2)

1 + κp

− 1

)
, (17)

where κp is the proton anomalous magnetic moment, and GM

is normalized so that GM (0) = 1 + κp. The exponential and
Gaussian models enable us to obtain analytic results for RZ

as a function of the charge and magnetic moment radii R and
RM . Using Eqs. (13) or (14) for the exponential or Gaussian
model, and Eq. (17), we get, respectively,

R
Exp.

Z = 3R4 + 9R3RM + 11R2R2
M + 9RR3

M + 3R4
M

2
√

3(R + RM )3
(18)

RGauss
Z = 2

√
2

3π

√
R2 + R2

M. (19)

Another useful quantity, which appears in the estimation of
the finite size correction to vacuum polarization, is the third
Zemach’s moment

〈r3〉(2) =
∫

r3ρ(2)(r)d r, (20)

where the convolved charge distribution is

ρ(2)(r) =
∫

ρ(r − u)ρ(u)du. (21)

This can be rewritten in the more convenient form [18,36], in
the limit of large proton masses,

〈r3〉(2) = 48

π

∫
dq

1

q4

(
G2

E( �Q2) − 1 + q2

3
R2

)
. (22)

It can be easily seen from Eqs. (13) or (14) that the expression
is finite for q → 0.

We now turn to more realistic models, based on
the experiment. A recent analysis of the world’s data on
elastic electron-proton scattering and calculations of two-
photon exchange effects provides an analytic expression for
the electric form factors [55], given as

GE( �Q2) = 1 + ∑2
i=0 aiτ

i

1 + ∑4
j=0 bj τ j

, (23)

where τ = q2/(4Mp). The ai coefficients can be found in
Table I of Ref. [55]. A second work [54] used a combination
of several spectral functions, taking into account several
resonances and continua like the 2π , KK , and ρπ continua.
Here we use the fit resulting from the superconvergence
approach from this work. This corresponds to a sum of
12 dipole-like functions, which are able to represent the
experimental data with a reduced χ2 of 1.8. A comparison
of the electric form factor from both works is presented in
Fig. 2. It is clear that both the experimental form factors and
the dipole approximation with an identical radius are very
close. We can obtain the charge radius and the next correction
by performing an expansion in q of the experimental form
factors. We get for [55]

GE( �Q2) ≈ 1 − 0.85032

6
q2 + 0.85034

43.3909
q4 + · · · , (24)

and for [54]

GE( �Q2) ≈ 1 − 0.849952

6
q2 + 0.849954

38.793
q4 + · · · . (25)
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Belushkin et al.

FIG. 2. (Color online) Comparison of the electric form factor
from [54,55], with a dipole model with the same R = 0.850 fm as
deduced from the experimental function.
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FIG. 3. (Color online) Top: Charge densities ρ(r) (fm−3), bottom:
charge densities r2ρ(r) (fm−1) for the experimental fits in Ref. [55],
compared to Gaussian, Fermi, and exponential models distributions.
All models are calculated to have the same R = 0.850 fm RMS radius
as deduced from the experimental function.

These expansions are very close to the one for a dipole form
factor from Eq. (13).

To compare different charge density models, we have
performed an analytic evaluation of the charge densities corre-
sponding to [55], replacing Eq. (23) in Eq. (12) and performing
the inverse Fourier transforms, to obtain the corresponding
charge distribution, depending on the set of a coefficients. The
corresponding densities are plotted and compared to the Fermi,
Gaussian, and exponential models. Distances are converted
from GeV to fm using h̄c = 0.1973269631 GeVfm in the
density obtained from the experiment. The charge distributions
are compared in Fig. 3. We plotted both ρ(r) and ρ(r)r2

to reveal the differences at long and medium distances. The
experimental charge density is rather different from all three
analytic distributions, while, once multiplied by r2, it is closer
to the exponential distribution.

III. EVALUATION OF MAIN VACUUM POLARIZATION
AND FINITE SIZE CORRECTION

The Feynman diagram corresponding to the Uehling ap-
proximation to the vacuum polarization correction is presented
in Fig. 4(a). The evaluation of the vacuum polarization can
be performed using standard techniques of (perturbative)
nonrelativistic QED (NRQED) as described in Refs. [36,38].

(a) (b)

FIG. 4. Feynman diagrams corresponding to the full vacuum po-
larization contribution and expansion in Zα. Diagram (a) corresponds
to the Uehling potential [Eqs. (26) and (28)]. Diagram (b) corresponds
to the Wichmann and Kroll correction. The double line represents
a bound lepton wave function, the wavy line a Coulomb photon
propagator. The single line corresponds to a free electron-positron (or
muon-antimuon) pair. The gray circles correspond to the interaction
with the nucleus.

Here we use the analytic results of Klarsfeld [60] as described
in Ref. [61] and the numerical solution of the Dirac equation
from Sec. II. To obtain higher-order effects, we solve the
Dirac equation in a combined potential resulting from the finite
nuclear charge distribution and of the Uehling potential. The
logarithmic singularity of the Uehling potential at the origin
for a point charge cannot be easily incorporated in a numerical
Dirac solver. In the case of a finite charge distributions, the
singularity is milder, but great care must be exercised to obtain
results accurate enough for our purpose.

For a point charge, the Uehling potential, which represents
the leading contribution to the vacuum polarization, is ex-
pressed as [60,62,63]

V
pn

11 (r) = −α(Zα)

3π

∫ ∞

1
dz

√
z2 − 1

(
2

z2
+ 1

z4

)
e−2merz

r

= −2α(Zα2)

3π

1

r
χ1

(
2

λe

r

)
, (26)

where me is the electron mass, λe is the electron Compton
wavelength, and the function χ1 belongs to a family of
functions defined by

χn(x) =
∫ ∞

1
dze−xz 1

zn

(
1

z
+ 1

2z3

)√
z2 − 1. (27)

The Uehling potential for a spherically symmetric charge
distribution is expressed as [60]

V11(r) = −2α(Zα)

3

1

r

∫ ∞

0
dr ′ r ′ρ(r ′)

×
[
χ2

(
2

λe

|r − r ′|
)

− χ2

(
2

λe

|r + r ′|
)]

. (28)

The expression of the potential at the origin is given by

V11(0) = −8α(Zα)

3

∫ ∞

0
dr ′r ′ρ(r ′)χ1

(
2

λe

r ′
)

, (29)

022501-4



NONPERTURBATIVE EVALUATION OF SOME QED . . . PHYSICAL REVIEW A 87, 022501 (2013)

FIG. 5. Feynman diagrams included in the Källen and Sabry
V21(r) potential [Eq. (32)]. See Fig. 4 for explanation of symbols.

while it behaves at large distances as [64]

V11(r) = −2α(Zα)

3π

1

r

[
χ1

(
2

λe

r

)
+ 2

3
〈r2〉χ−1

(
2

λe

r

)

+ 2

15
〈r4〉χ−3

(
2

λe

r

)
+ · · ·

]
(30)

using the moments of the charge distribution (7). The energy
shift associated with the potential (26) or (28) in first-order
perturbation is calculated as

�E
11,pn

nlκ = 〈n,l,κ,μr |V11| n,l,κ,μr〉 (31)

where |n,l,κ,μr〉 is a wave-function solution of Eq. (1),
which depends on the reduced mass. It was shown recently
[65] that this method provides the correct inclusion of the
vacuum polarization recoil correction at the Barker and Glover
level [66]. Since we directly use relativistic functions, the
other corrections described in Ref. [65] are automatically
included.

IV. HIGHER-ORDER QED CORRECTIONS

A. Reevaluation of the Källèn and Sabry potential

The Källén and Sabry potential [67], is a fourth-order po-
tential, corresponding to the diagrams in Fig. 5. The expression
for this potential has also been derived in Refs. [68–71]. In the
previous version of the MDFGME code, the Källèn and Sabry
potential used was the one provided by the authors of [64],
which is only accurate to three digits. The expression of this
potential is for a point charge

V21(r) = α2(Zα)

π2r
L1

(
2

λe

r

)
, (32)

where

L1(r) =
∫ ∞

1
dte−rt

{(
2

3t5
− 8

3t

)
f (t)

+
(

2

3t4
+ 4

3t2

)√
t2 − 1 ln[8t(t2 − 1)]

+
√

t2 − 1

(
2

9t6
+ 7

108t4
+ 13

54t2

)

+
(

2

9t7
+ 5

4t5
+ 2

3t3
− 44

9t

)
ln(

√
t2 − 1 + t)

}
,

(33)

and

f (t) =
∫ ∞

t

dx

{
(3x2 − 1) ln(

√
x2 − 1 + x)

x(x2 − 1)

− ln[8x(x2 − 1)]√
x2 − 1

}
. (34)

The function f (t) can be calculated analytically in term of the
ln and dilogarithm functions. Blomqvist [72] has shown that
L1(r) can be expressed as

L1(r) = g2(r) ln2(r) + g1(r)ln(r) + g0(r), (35)

and provided a series expansion of this function for small
r . Fullerton and Rinker [64] provided polynomial approx-
imations to the functions gi(r). Here we have numerically
evaluated the function L1(r) to a very good accuracy, using
MATHEMATICA. We then fitted the coefficients of polynomials
for the function gi(r). The results are presented in Appendix A.
For x > 3, we have used the functional form

L1(r) = e−r (a + b
√

r + cr + dr3/2 + er2 + f r5/2)

r7/2
. (36)

The coefficients are also given in Appendix A.
To obtain the finite nuclear size correction, we use the

known expression for a spherically symmetric charge distri-
bution [64]

V21(r) = α2(Zα)

π2r

∫ ∞

0
dr ′r ′ρ(r ′)

[
L0

(
2

λe

|r − r ′|
)

−L0

(
2

λe

|r + r ′|
)]

, (37)

where

L0(x) = −
∫ x

duL1(u). (38)

Using our approximation to L1(x) in Eqs. (35) and (36), we
obtain the following approximate expressions for L0(x). For
x � 3, the expression is very similar to the one for L1(x). One
obtains

L0(r) = rh2(r) ln2(r) + rh1(r)ln(r) + h0(r), (39)

The expression for the functions hi are given in Appendix B.
For the asymptotic function, given for x > 3, we integrate
directly Eq. (36), which yields [fixing the integration constant
so that L0(r) is 0 at infinity]

L0(r) = 41.1352787432251923

− 5.1094977559522696[8.05074798111erf(
√

r)

− 1.028091975364Ei(−r)

+ e−r

r5/2
(−2.02809197536r3/2 + 4.54214815071r2

− 0.494718704003r + 0.98439728916
√

r

− 0.344009752879)] (40)

where Ei(r) is the exponential integral.
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V. NUMERICAL RESULTS

A. Finite size correction to the Coulomb contribution

Obtaining the accuracy required from the calculation on
ED

2κμ, which has a value of ≈632.1 eV, while the Lamb shift
is ≈0.22 eV with an aim at better than 0.001 meV, is a very
demanding task. For a point nucleus, we get exact degeneracy
for the 2s and 2p1/2 Dirac energies. The best numerical
accuracy was obtained generating the wave function on a grid
with r0 = 2 × 10−3 and h = 2 × 10−3. This corresponds to
≈8700 tabulation points for the wave function, with around
2800 points inside the proton. I checked that variations in r0

and h do not change the final value. The main finite nuclear
size effect on the 2p1/2–2s energy separation comes from the
sum of the Dirac energy splitting (the 2p1/2 and 2s levels are
exactly degenerate for a point nucleus).

I evaluated the different quantities on a grid of proton sizes
ranging from 0.3 to 1.2 fm, with steps of 0.025 fm (80 points). I
also evaluated the contribution for the muonic hydrogen proton
size and the CODATA 2010 proton size. The first few terms of
the dependence of the relativistic energy on the moments of the
charge distribution were given by Friar [56]. For a Gaussian
charge distribution he finds for an s state

�ECoul. = a〈r2〉 + b〈r3〉(2) + c〈r2〉2

+ d〈r2〉〈lnr〉 + e〈r2〉2〈lnr〉. (41)

I use this as a guide to fit my numerical results.
As a first example a three-parameter fits provides

�ECoul.
2p1/2−2s1/2

(R) = −5.19972 R2 + 0.0351289 R3

− 0.0000534235 R4 meV. (42)

A better fit is provided by

�ECoul.
2p1/2−2s1/2

(R) = −5.19990R2 + 0.0355905R3

− 0.000488059R4 + 0.000172334R5

− 0.0000245051R6 meV. (43)

Using a Friar functional form with only one lnR term, I obtain

�ECoul.
2p1/2−2s1/2

(R) = −5.199365R2 + 0.03466100R3

+ 0.00007366037R4− 0.00001720960R5

+ 1.198332 × 10−6R6

+ 0.0002677236R2lnR meV. (44)

The function with two logarithmic terms and close values of
the Bayesian information criterion (BIC) and χ2 criteria is
given by

�ECoul.
2p1/2−2s1/2

(R)

= −5.199337R2 + 0.03458139R3 + 0.0001092856R4

+ 0.0002788380R2lnR − 0.00004957598R4lnR. (45)

Criteria for the quality of the fit are plotted in Fig. 6. I use
both the reduced χ2 and a BIC to evaluate the improvement
in the value when increasing the number of parameters [73].
We obtain a coefficient for R2 which is −5.1999 meV/fm2

and a coefficient for R3 equal to 0.03559 meV/fm3. Using
our numerical solutions we also find −5.19972 meV/fm2 and
0.032908 meV/fm3 for the Gaussian model. Borie [40] found

2 3 4 5 6 7 8
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1500
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500

0

polynomial degree

B
IC

2 3 4 5 6 7 8
10 14

10 12

10 10

10 8

10 6

10 4

polynomial degree

2

FIG. 6. (Color online) BIC criterium (top) and reduced χ2

(bottom) as a function of the degree of the polynomial and of the
logarithmic dependence used in the fit of the 2s − 2p1/2 Dirac energy
difference as a function of R. Plotted quantities are dimensionless. •:
Polynomial fit. �: Polynomial and R2lnR fit. �: Polynomial, R2lnR

and R4lnR fit.

−5.1975 meV/fm2 and 0.0347 meV/fm3 for an exponential
model, and 0.0317 meV/fm3 for a Gaussian model, in reason-
able agreement with the result presented here.

In the same way, I evaluated the finite size correction to the
fine structure

�ECoul.
2p3/2−2p1/2

(R) = 8.41563570 − 0.00005192R2

+ 1.1818650 × 10−7R3

− 1.19528126 × 10−9R4 meV. (46)

The constant term is in perfect agreement with Borie’s value
8.41564 meV [74] (Table 7).

It is interesting to explore at this stage the influence of
the charge distribution shape on the Coulomb and vacuum
polarization contribution. Friar and Sick [75] have evaluated
the third Zemach moment from Eq. (20), using the proton-
electron scattering data available in 2005. Using a model-
independent analysis, they found 〈r3〉(2) = 2.71 ± 0.13 fm3,
leading to an energy shift of −0.0247 ± 0.0012 meV. Using
the Fourier transform of the exponential (13) distribution in
Eq. (22), I find

〈r3〉(2) = 35
√

3R3

16
≈ 3.789R3, (47)

showing that 〈r3〉(2) is proportional to R3 and justifying the
fit in R2 and R3 performed to derive the coefficients above.
Equation (47) is in exact agreement with the result that can
be obtained from Eq. (15) in Ref. [17], but Eq. (16) in the
same work is not correct (the denominator should be 256
not 64). The value obtained by Friar and Sick corresponds to
R = 0.894 fm. In that case our energy shift is −0.0250 meV,

in good agreement with the energy shift in Ref. [75]. In the
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Gaussian model, I find

〈r3〉(2) = 32R3

3
√

3π
≈ 1.960R3, (48)

leading to R = 0.920 fm and an energy shift of −0.0256 meV,
still in agreement. One can perform a more advanced calcula-
tion, using the experimental charge distribution from [55], as
given in Eq. (23). I find 〈r3〉 = 2.45 fm3, significantly lower
than Friar and Sick’s value. This leads to R = 0.864 fm for the
exponential model and R = 0.889 fm for the Gaussian model,
providing shifts of −0.0226 and −0.0232 meV, respectively,
in closer agreement to Borie’s work. In a recent paper, De
Rùjula [17] claimed that the discrepancy found between the
charge radii obtained from hydrogen and muonic hydrogen
could be due to the fact that theoretical calculations use too
simple a dipole model to represent the nucleus. He builds a
“toy model” composed of the sum of two dipole functions
corresponding to two resonances with different masses. In his
model the third moment of the charge distribution is much
higher than what is derived from a dipole model, enabling
to mostly resolve the discrepancy between the charge radii
obtained from muonic and normal hydrogen. He obtained

〈r3〉(2) = 36.6 ± 7.3 ≈ 43R3, (49)

using R from muonic hydrogen. I use the fit to the experimental
form factor from [55] as given in Eq. (23) to check the result
from [17] against an experimental determination. I obtain

〈r3〉(2) ≈ 2.4485 ≈ 3.98 × 0.8503, (50)

very close to the dipole model value of Eq. (47). Using the
recent MAMI experiment, combined with data from [55],
Distler et al. [23] obtained

〈r3〉(2) ≈ 2.85(8) ≈ 4.18 × 0.8803, (51)

The conclusions from the authors of [17], which depended on
an overly large third moment of the charge distribution, are
thus not supported by the experiment.

B. Finite size correction to the Uehling contribution

For the vacuum polarization I obtain, for a point nucleus,

�E
11,pn
2s1/2−2p1/2

= 205.028201 meV, (52)

to be compared with 205.0282 meV in Ref. [40]. Pachucki [38]
obtained 205.0243 meV as the sum of the nonrelativistic
205.0074 meV and first-order relativistic 0.0169 meV cor-
rections. If I calculate the difference between Eq. (52) and
the Pachuki nonrelativistic value, I obtain a difference of
0.0208076 meV. This is in excellent agreement with the value
provided in Ref. [76], Eq. (6), 0.020843 meV.

To achieve this result I used the mesh parameters described
in the previous section, and checked by varying them so that
the results were stable within the decimal places provided here.
For finite nuclei, I use the same parameters as in the previous
section. Again changes in r0 and h do not change the final
value. I obtain

�E
11,fs
2s1/2−2p1/2

(R) = 205.0282076 − 0.02810970909R2

+ 0.0007111893365R3

− 0.00003572368803R4. (53)

The constant term is in excellent agreement with the one in
Eq. (52). This result must be combined to Eq. (45) to obtain
values that can be compared with the literature. I obtain

�E
11C,fs
2s1/2−2p1/2

(R) = 205.0282076 − 5.227446248R2

+ 0.03529257801R3

+ 0.00007356191826R4

+ 0.0002788380236R2ln(R)

− 0.00004957597920R4ln(R). (54)

The R2 coefficient can be compared to the one in Ref. [76],
Table III, which has the value −5.2254 meVfm−2, which
contains additional recoil corrections.

For the Uelhing correction to the fine structure, I obtain in
the same way

�E
11,fs
2p1/2−2p3/2

(R) = 0.0050157881 − 1.1662334 × 10−7R2

+ 2.2741334 × 10−9R3

− 1.5308196 × 10−10R4 meV, (55)

where the constant term is again in perfect agreement with
Borie’s value 0.0050 meV [74] (Table 7).

C. Finite size correction to the Källén and Sabry contribution

We can then evaluate the Källén and Sabry contribution
�E21

2p1/2
− �E21

2s1/2
using V21 calculated following Sec. IV,

with good accuracy, using our numerical wave functions. For
a point nucleus I obtain

�E
21,pn
2s1/2−2p1/2

= 1.508097 meV, (56)

in agreement with the result of the authors of [38],
1.5079 meV, and in excellent agreement with the one from
the authors of [40], 1.5081 meV. Using the wave functions
calculated with the proton size, I can also evaluate the finite
size correction to the Källén and Sabry contribution. A direct
fit to the numerical data gives a result of the form

�E
21,fs
2s1/2−2p1/2

(R) = 1.508097 − 0.00021341293R2

+ 7.3404895 × 10−6R3

− 5.0291143 × 10−7R4 meV, (57)

and

�E
21,fs
2p1/2−2p3/2

(R) = 0.0000414300 − 9.25489 × 10−10R2

+ 2.33622 × 10−11R3

− 1.80063 × 10−12R4 meV, (58)

for the fine structure, to be compared with 0.00004 meV in
[74].

VI. HIGHER-ORDER VACUUM POLARIZATION
CORRECTIONS

A. Higher-order vacuum polarization

The term named “VP iteration,” which corresponds to
Fig. 7, is given by Eq. (215) of Ref. [39]

�EVPVP(2s) = 0.01244
4

9

(
α

π

)2

(Zα)2μrc
2, (59)
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+ +...

(a) (b)

FIG. 7. Feynman diagrams obtained when the Uehling potential
is added to the nuclear potential in the Dirac equation. A double line
represents a bound electron wave function or propagator and a wavy
line a Coulomb photon propagator. The gray circles correspond to the
interaction with the nucleus. Diagram (b) corresponds to Fig. 5 and
the third term in Eq. (25) in Ref. [77].

where μr = 94.96446 MeV for muonic hydrogen (using
[11]). This adds 0.15086 meV to the Lamb shift for muonic
hydrogen. The Uehling potential under the form used in Sec. III
can be introduced in the potential of the Dirac equation
(3) when solving it numerically. This amounts to obtaining
the exact solution with any number of vacuum polarization
insertions as shown in Fig. 7. The numerical methods that
we used were described in Refs. [60,61]. Because of the
logarithmic dependence of the point nucleus Uehling potential
at the origin, I do not calculate the iterated vacuum polarization
directly for a point nucleus. I instead calculate for different
mean-square radii and charge distribution models, and fit the
curves with f (R) = a + bR2 + cR3 + dR4. All four models
provide very similar values. The final value is

�E
11,loop,fs
2s1/2−2p1/2

(R) = 0.15102161 − 0.000098409804R2

+ 7.9038238 × 10−6R3

− 7.2004764 × 10−7R4 meV. (60)

The value calculated in Ref. [38] is 0.1509 meV and the one
in Ref. [40] is 0.1510 meV, in very good agreement with the
present work. The method employed here provides an addition
to the proton size dependence for this correction, which was
not calculated before. For the fine structure, I obtain in the
same way

�E
11,loop,fs
2p1/2−2p3/2

(R) = 2.33197 × 10−6 − 1.77101 × 10−9R2

+ 9.36429 × 10−10R3

− 1.79951 × 10−10R4 meV. (61)

B. Other higher-order Uehling corrections

Since we include the vacuum polarization in the Dirac
equation potential, all energies calculated by perturbation
using the numerical wave function contain the contribution of
higher-order diagrams where the external legs, which represent
the wave function, can be replaced by a wave function and a
bound propagator with one or several vacuum polarization
insertions. For example, the Källèn and Sabry correction
calculated in this way, contains a correction of the type

(a) (b)

(c) (d)

FIG. 8. Lower-order Feynman diagrams included in the Källén
and Sabry V21(r) potential, when the Uehling potential is included
in the differential equation. See Figs. 4 and 7 for an explanation of
symbols. Diagrams (a) and (b) exactly correspond to diagrams (a)
and (b) in Fig. 5 and Eq. (25) in Ref. [77].

presented in Fig. 8. This correction is given by

�E
21×11,fs
2s1/2−2p1/2

(R) = 0.0021552 − 1.32976 × 10−6R2

+ 9.4577 × 10−8R3

− 8.5185 × 10−9R4 meV, (62)

with a 10−7 meV accuracy. This correction is part of the
three-loop corrections from [77,78]. The diagrams in Fig. 8
correspond to Figs. 5(a) and 5(b) in Ref. [77] and Figs. 2(e)
(upper left) and 2(f) of Ref. [79]. The sum of the contributions
of the diagrams Fig. 8(a) and 8(b) is 0.00223, in good
agreement with our all-order fully relativistic result. The
three-loop diagram Fig. 5(c) of Ref. [77] and Fig. 2(g) of
Ref. [79] is included in the all-order contribution obtained
by solving numerically the Dirac equation with the Uëlhing
potential. For the fine structure this correction is very small

�E
21×11,fs
2p1/2−2p3/2

(R) = 3.75754 × 10−8 − 3.49318 × 10−12R2

+ 2.58244 × 10−13R3

− 2.74201 × 10−14R4 meV. (63)

C. Wichmann and Kroll correction

We use the approximate potentials as presented in Refs. [72,
80] to evaluate the Wichmann and Kroll [81] V13 correction
to the Uehling potential. The corresponding diagram is shown
in Fig. 4(b). This contribution is given together with the light-
by-light scattering diagrams of Fig. 9 in Refs. [77,79,82]. We
find for a point nucleus, the exact value, and a size correction,
given by

�E
13,fs
2s1/2−2p1/2

(R) = −0.0010170628 + 5.5414179 × 10−8R2

− 5.1356872 × 10−10R3

− 1.9364450 × 10−11R4 meV, (64)

to be compared to the value given in Ref. [79] (Table III) of
−0.001018(4) meV. In the lowest-order approximation, the
diagram in Fig. 9(a) provides an energy shift of �E13/Z

2

[79,82]. For the fine structure, this correction is comparable to
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(a) (b)

FIG. 9. Feynman diagrams for the light-by-light scattering. See
Figs. 4 and 7 for an explanation of symbols.

the contribution from Eq. (63)

�E
13,fs
2p1/2−2p3/2

(R) = −4.21088 × 10−8 + 4.41081 × 10−13R2

− 8.49036 × 10−15R3

+ 1.81474 × 10−15R4 meV. (65)

D. Muon radiative corrections

1. Muon self-energy

Highly accurate self-energy values for electronic atoms and
point nucleus are known from [83]. The self-energy correction,
represented in Fig. 10, is conveniently expressed by the slowly
varying function F (Zα) defined by

�ESE = α

π

(Zα)4

n3
mc2F (Zα), (66)

where m is the particle mass.
The recoil corrections to F (Zα) are described in detail

in Ref. [11]. The dependence in the reduced mass has to be
included leading to the following expressions, specialized for
the n = 2 shells:

�EμSE,2S = α

π

(Zα)4

8

(
μr

mμ

)3

mμc
2

{
−4

3
ln k0(2S) + 10

9

+ 4

3
ln

(
mμ

α2μr

)
+

(
139

32
− 2 ln 2

)
πα

+
(

67

30
+ 16 ln 2

3

)
ln

(
mμ

α2μr

)
α2

−
[

ln

(
mμ

α2μr

)]2

α2α2G2s(α)

}
, (67)

�EμSE,2p1/2 = α

π

(Zα)4

8

(
μr

mμ

)3

mμ

[
−4

3
ln k0(2P )

− 1

6

(
mμ

μr

)
+ 103

180
ln

(
mμ

α2μr

)
α2

+α2G2p1/2 (α)

]
, (68)

FIG. 10. Feynman diagrams for the muon self-energy. See Figs. 4
and 7 for explanation of symbols.

and

�EμSE,2p3/2 = α

π

(Zα)4

8

(
μr

mμ

)3

mμ

[
−4

3
ln k0(2P )

+ 1

12

(
mμ

μr

)
+ 29

90
ln

(
mμ

α2μr

)
α2

+α2G2p3/2 (α)

]
. (69)

The Bethe logarithms are given by ln k0(2S) = 2.811769893
and ln k0(2P ) = −0.030016709 [84]. The remainders
are given by G2s(α) = −31.185150(90), G2p1/2 (α) =
−0.97350(20), and G2p3/2 (α) = −0.48650(20) [83,85]. One
then gets the exact muon self-energy for each state.
For the 2s state, this gives 0.675150 meV instead of
0.675389 meV. For the 2p1/2 I get −0.00916882 meV and
for 2p3/2, 0.008393377 meV in place of 0.01424054 and
−0.00332838 meV, respectively, if one would use only the
low-order A40 term.

The finite size correction is given by perturbation theory
[11] Eq. (54)

ESE−NS(R,Zα) =
(

4 ln 2 − 23

4

)
α(Zα)ENS(R,Zα), (70)

where ( [11] Eq. (51))

ENS(R,Zα) = 2

3

(
μr

mμ

)3 (Zα)2

n3
mμ

(
ZαR

λC

)2

, (71)

is the lowest-order finite nuclear size correction to the Coulomb
energy. Here λC = 1.867594282 fm is the muon Compton
wavelength. Equation (71) provides ENS(R) = 5.19745R2 for
muonic hydrogen in agreement with [38,40].

The self-energy correction to the Lamb shift with finite size
correction is then

�E
SE,fs
2p1/2

− �E
SE,fs
2s1/2

(R)

= −0.68431882 + 0.000824062R2 meV, (72)

and to the fine structure:

�E
SE,fs
2p3/2

− �E
SE,fs
2p1/2

= 0.017562197 meV. (73)

It should be noted that in Ref. [40], the R2-dependent part
of the 2s self-energy is much larger than what is given in
Eq. (72). This value was checked independently by using an
all-order calculation with finite size, following the work of
Mohr and Soff [86]. The results of this calculation agrees well
with Eq. (72) and is given by [87]

EH
SE−NS(Z = 1,R) = −0.68431882 + 0.00082432235R2

−0.000014586790R3

+1.2893445 × 10−6R4

−5.5355294 × 10−8R5 meV. (74)

2. Muon loop vacuum polarization

The vacuum polarization due to the creation of virtual
muon pairs is represented by the same Feynman diagram as
in Fig. 4(a) and same equations (28) as vacuum polarization
due to electron-positron pairs, replacing the electron Compton
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wavelength by the muon one. For S states, it is given by [11]
Eq. (27), [36] Eq. (32)

EμVP(ns) = −α(αZ)4

πn3

(
− 4

15
+ πα

5

48

)(
μr

mμ

)3

mμc
2, (75)

in which higher-order terms in Zα have been neglected. For
the 2s Lamb shift in muonic hydrogen it gives 0.01669 meV
and is included in Refs. [38,40,88] Eq. (2.29) for the first
α correction. As it is a sizable contribution, and the muon
Compton wavelength, which represent the scale of QED
corrections for muons is of the order of the finite nuclear
size (1.9 fm), one could expect a nonnegligible finite size
contribution. Using the numerical procedure described in
Sec. III, replacing the electron Compton wavelength by the
muon one in Eq. (28), I obtain

�E
μ11,fs
2s1/2−2p1/2

(R) = 0.01671487464 − 0.00005279721702R2

+ 0.00001269866912R3

− 5.360546098 × 10−6R4

+ 0.00001717649157R2ln(R)

+ 2.047113814 × 10−6R4ln(R) meV,

(76)

where the constant term is in excellent agreement with Eq. (75)
and the R dependence explicit. From [11], Eq. (55), one obtains

Efs
μVP(ns) = 3

4α(Zα)ENS(R,α) = 0.00020758R2 meV (77)

for the 2s level. This term is about four times larger than the
numerical coefficient for R2 in Eq. (76).

Using the wave function evaluated with the Uehling
potential in the Dirac equation, I also obtain the value of the
sum of the diagrams with one muon vacuum polarization loop
and any number of electron loops on each side, as in Fig. 7,
with one loop being a muon loop

�E
μ11×11,fs
2s1/2−2p1/2

(R) = 0.00005348857 − 5.358667885 × 10−7R2

+ 6.495888541 × 10−8R3

− 4.287455607 × 10−8R4

+ 2.822488184 × 10−7R2ln(R)

+ 1.739448734 × 10−8R4ln(R) meV.

(78)

This muonic vacuum polarization is a small contribution to the
fine structure

�E
μ11×11,fs
2p1/2−2p3/2

(R) = 1.67794 × 10−7 − 2.10861 × 10−10R2

+ 8.51427 × 10−11R3

− 1.38884 × 10−11R4 meV. (79)

VII. EVALUATION OF THE RECOIL CORRECTIONS

The relativistic treatment of recoil corrections is described
in, e.g., [11], Eq. (10). The analytic solution of the Dirac
equation for a point nucleus and a particle of mass m is given
by

ED = mc2f (n,j ) (80)

with

f (n,j ) = 1√
1 + (Zα)2

(n−j+ 1
2 +

√
(j+ 1

2 )2−(Zα)2)2

. (81)

The recoil can then be included by evaluating [66,89]

EM = Mc2 + μrc
2[f (n,j ) − 1] + [f (n,j ) − 1]2 μ2

r c
2

2M
(82)

+ 1 − δl,0

κ(2l + 1)

(Zα)4μ3
r c

2

2n3M2
p

, (83)

where M = mμ + Mp. If one expands the previous equation
in powers of (Zα), one would find that the terms of order up
to (Zα)4 are identical to what is given in Ref. [66]. We also
compared the numerical results from our numerical approach
for the point nucleus, as described in Sec. II A to what can be
obtained by using directly (80) and find excellent agreement.
Below, we will make exclusive use of the direct numerical
evaluation of the Dirac equation. The relativistic corrections
to Eq. (83) associated with the motion of the nucleus are called
relativistic-recoil correction. The correction to order (Zα)5 and
to all orders in mμ/Mp is given by [11,42,89,90]

E5
RR(n,l) = μ3

r c
2

mμMp

(Zα)5

πn3

{
δl,0

3
ln

1

(Zα)2
− 8

3
ln k0(l,n)

− δl,0

9
− 7

3
an,l − 2δl,0

M2
p − m2

μ

×
[
M2

p ln

(
mμ

μr

)
− m2

μ ln

(
Mp

μr

)]}
, (84)

where

an,l = −2

[
ln

(
2

n
+

n∑
i=1

1

i

)
+ 1 − 1

2n

]
δl,0

+ 1 − δl,0

l(l + 1)(2l + 1)
. (85)

This correction corresponds to the diagrams in Fig. 11.
The next order of the relativistic recoil corrections is given

for s states by

E6
RR(ns) = mμ

Mp

(Zα)6

n3
mμc

2

{
4 ln 2 − 7

2
− 11

60π
ln

1

(Zα)2

}
,

(86)

FIG. 11. Feynman diagrams corresponding to the relativistic
recoil correction (84). The heavy double line represents the proton
wave function or propagator. The other symbols are explained in
Fig. 4.
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and for l � 1 states by

E6
RR(nl) = mμ

Mp

(Zα)6

n3
mμc

2

{[
3 − l(l + 1)

n2

]

× 2

(4l2 − 1)(2l + 3)

}
. (87)

Using Eqs. (82) to (87), I obtain

�ERec.
2s1/2−2p1/2

= 0 + 0.0574706 − 0.0449705

= 0.0125001 meV, (88)

and to the fine structure

�ERec.
2p1/2−2p3/2

= 0.0000051 − 0.0862059 + 0

= −0.0862008 meV. (89)

This is in excellent agreement with the results from the authors
of [74].

VIII. EVALUATION OF SOME ALL-ORDER HYPERFINE
STRUCTURE CORRECTIONS

The expression of the hyperfine magnetic dipole operator
can be written as

Hhfs = −ecα · A(r) = −ecα · A(r), (90)

with

A(r) = μ0

4π

μ × r
r3

, (91)

where μ is the nuclear magnetic moment and we have assumed
a magnetic moment distribution of a point particle for the
nucleus. It is convenient to express Hhfs using vector spherical
harmonics. On obtains [91–94]

Hhfs = M1 · T 1, (92)

where

T 1(r) = −ie

√
8π

3

α · Y (0)
1q (r̂)

r2
, (93)

and M1 represents the magnetic moment operator from the
nucleus. The operator T 1 acts only on the bound particle
coordinates. The vector spherical harmonic Y (0)

1q (r̂) is an

eigenfunction of J2 and Jz, defined as [92,94–97]

Y (0)
1q (r̂) = Y 11q(r̂)

=
∑

σ

C (1,1,1; q − σ,σ,q) Y1,q−σ (r̂) ξσ , (94)

where C (j1,j2,j ; m1,m2,m) is a Clebsh-Gordan coefficient,
Y1,q are scalar spherical harmonic, and ξσ are eigenvectors
of s2 and sz, the spin-one matrices [92,94–97]. The reduction
to radial and angular integrals is presented in various works
[92–94]. In heavy atoms, the hyperfine structure correction due
to the magnetic moment contribution is usually calculated for a
finite charge distribution, but a point magnetic dipole moment
(see, e.g., [92,93]). When matrix elements nondiagonal in J

are needed, one can use [98] for a one-particle atom

�Ehfs
M1 = A

gα

2Mp

∫ ∞

0
dr

P1(r)Q2(r) + P2(r)Q1(r)

r2
, (95)

where g = μp/2 = 2.792847356 for the proton, is the anoma-
lous magnetic moment, A is an angular coefficient

A = (−1)I+j1+F

{
I j1 F
j2 I k

}
(

I 1 I−I 0 I

) (−1)J1− 1
2

√
(2J1 + 1)(2J2 + 1)

×
(

j1 1 j2
1
2 0 − 1

2

)
π (l1,k,l2), (96)

where π (l1,k,l2) = 0 if l1 + l2 + 1 is odd and 1 otherwise. The
ji are the total angular momentum of the i state for the bound
particle, li are orbital angular momentum, I is the nuclear
spin, k the multipole order [k = 1 for the magnetic dipole
contribution described in Eq. (95)], and F the total angular
momentum of the atom. The difference between �Ehfs values
calculated with a finite or point nuclear charge contribution is
called the Breit-Rosenthal correction [99].

To consider a finite magnetic moment distribution, one uses
the Bohr-Weisskopf correction [100]. The correction can be
written [101]

�EBW = −A
gα

2Mp

∫ ∞

0
drnr

2
nμ(rn)

×
∫ rn

0
dr

P1(r)Q2(r) + P2(r)Q1(r)

r2
, (97)

where the magnetic moment density μ(rn) is normalized as∫ ∞

0
drnr

2
nμ(rn) = 1. (98)

Borie and Rinker [102] wrote the total diagonal hyperfine
energy correction for a muonic atom as

�Ei,j = 4πκ[F (F + 1) − I (I + 1) − j (j + 1)]

κ2 − 1
4

gα

2Mp

×
∫ ∞

0
dr

P1(r)Q2(r)

r2

∫ r

0
drnr

2
nμBR(rn), (99)

where the normalization is different∫ ∞

0
d3rnμBR(rn) = 4π

∫ ∞

0
drnr

2
nμBR(rn) = 1. (100)

This means that μBR(r) = μ(r)/(4π ). The evaluation of the
Wigner 3j and 6j symbols in Eq. (96) give the same angular
factor as in Eq. (95).

The equivalence of the two formalisms can be easily
checked: Starting from Eq. (99) and dropping the angular
factors, we get, doing an integration by parts∫ ∞

0
dr

P1(r)Q2(r)

r2

∫ r

0
drnr

2
nμ(rn)

=
[ ∫ r

0
drnr

2
nμ(rn)

∫ r

0
dt

P1(t)Q2(t)

t2

]∞

0

−
∫ ∞

0
drnr

2
nμ(rn)

∫ rn

0
dr

P1(r)Q2(r)

r2

=
∫ ∞

0
dr

P1(r)Q2(r)

r2

−
∫ ∞

0
drnr

2
nμ(rn)

∫ rn

0
dr

P1(r)Q2(r)

r2
, (101)
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where we have used Eq. (98). We thus find that the formula in
Borie and Rinker represents the full hyperfine structure (HFS)
correction, including the Bohr-Weisskopf part.

In 1956, Zemach [103] calculated the hyperfine structure
energy of hydrogen, including the recoil effects. He showed
that in first order in the finite size, the HFS depends on
the charge and magnetic distribution moments only through
the Zemach’s form factor defined in Eq. (15). The proton is
assumed to be at the origin of coordinates. Its charge and
magnetic moment distribution are given in terms of charge
distribution ρ(r) and magnetic moment distributions μ(r).
Zemach calculated the correction in first order to the hyperfine
energy of s states of hydrogen due to the electric charge
distribution. The HFS energy is written as

�EZ
hfs = −2

3
〈Sp · Sμ〉

∫
|φ(r)|2μ(r)d r (102)

where φ is the nonrelativistic electron wave function and Sx are
the spin operators of the electron and proton. If the magnetic
moment distribution is taken to be the one of a point charge
μ(r) = δ(r), the integral reduces to |φ(0)|2. The first-order
correction to the wave function due to the nucleus finite charge
distribution is given by

φ(r) = φC(0)

(
1 − αmμ

∫
ρ(u)|u − r|du

)
, (103)

where φC(0) is the unperturbed Coulomb wave function at the
origin for a point nucleus. Replacing into Eq. (102) and keeping
only first order terms, we get [Eq. (2.8) of [103] corrected for
a misprint]

�EZ
hfs = −2

3
〈Sp · Sμ〉|φC(0)|2

×
(

1 − 2αmμ

∫
ρ(u)|u − r|μ(r)dud r

)
,

= EF

(
1 − 2αmμ

∫
ρ(u)|u − r|μ(r)dud r

)
,

(104)

where EF is the well known HFS Fermi energy. Transforming
Eq. (104) using r → r + u, and so on Zemach obtained

�EZ
hfs = EF(1 − 2αmμ〈rZ〉), (105)

with 〈rZ〉 given in Eq. (16). The 2s-state Fermi energy is given
by

E2s
F = (Zα)4

3
gp

μ3
r

mpmμ

. (106)

A. Hyperfine structure of the 2s level

To check the dependence of the hyperfine structure on the
Zemach radius and on the proton finite size, I have performed
a series of calculations for a dipolar distribution for both
the charge and magnetic moment distribution. We can then
study the dependence of the HFS beyond the first order corre-
sponding to the Zemach correction. I calculated the hyperfine
energy splitting �Ehfs (RZ,R) = Ehfs(R) + EBW

hfs (R,RM ) nu-
merically. I also evaluate with and without the self-consistent
inclusion of the Uëhling potential in the calculation, to obtain

an all-order Uëhling contribution to the HFS energy. We
calculated the correction �Ehfs (RZ,R) for several values of RZ

between 0.8 and 1.15 fm, and proton sizes ranging from 0.3 to
1.2 fm, by steps of 0.05 fm, which represents 285 values. The
results show that the correction to the HFS energy due to charge
and magnetic moment distribution is not quite independent of
R as one would expect from Eq. (105), in which the finite
size contribution depends only on RZ. We fitted the hyperfine
structure splitting of the 2s level, E2s

hfs (RZ,R) by a function of
R and RZ, which gives

E2s
hfs(RZ,R)

= 22.807995 − 0.0022324349R2

+ 0.00072910794R3 − 0.000065912957R4

− 0.16034434RZ − 0.00057179529RRZ

− 0.00069518048R2RZ − 0.00018463878R3RZ

+ 0.0010566454R2
Z + 0.00096830453RR2

Z

+ 0.00037883473R2R2
Z − 0.00048210961R3

Z

− 0.00041573690RR3
Z + 0.00018238754R4

Z meV.

(107)

The constant term should be close to the sum of the Fermi
energy 22.80541 meV and of the Breit term [104] the HFS
correction calculated with a point-nucleus Dirac wave function
for which I find 22.807995 meV. When setting the speed of
light to infinity in the program I recover exactly the Fermi
energy. The Breit contribution is thus 0.002595 meV, to be
compared to 0.0026 meV in Ref. [41] (Table II, line 3) and
0.00258 meV in Ref. [74]. Martynenko [41] evaluated this
correction, which he named “Proton structure corrections
of order α5 and α6,” to be −0.1535 meV, following [36].
He finds the coefficient for the Zemach’s radius to be
−0.16018 meVfm−1, in very good agreement with the present
all-order calculation −0.16034 meVfm−1. Borie’s value [74]
−0.16037 meVfm−1 is even closer. The difference between
Borie’s value and Eq. (107) is represented in Fig. 12 as
a function of the charge and Zemach radii. The maximum
difference is around 1 μeV.

In Ref. [36], the charge and magnetic moment distributions
are written down in the dipole form, which corresponds to
Eq. (13)

GE(q2) = GM (q2)

1 + κp

= �4

(�2 + q2)2
, (108)

with � = 848.5 MeV. This leads to R = 0.806 fm as in
Ref. [2] and RZ = 1.017 fm using this definition for the
form factor in Eq. (17). Moreover there are recoil corrections
included. Pachucki [36] found that the pure Zemach contri-
bution (in the limit mp → ∞) is −0.183 meV. In Ref. [105],
the Zemach corrections were given as δ (Zemach) × EF =
−71.80 × 10−4EF , for RZ = 1.022 fm. This leads to a
coefficient −0.1602 meVfm−1, in excellent agreement with
our value −0.16036 meVfm−1.

The effect of the vacuum polarization on the 2s hyperfine
structure energy shift as a function of the Zemach and charge
radius have been calculated for the same set of values as the
main contribution. The data can be described as a function of
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FIG. 12. (Color online) Difference between Borie’s value and
Eq. (107) result as a function of the charge and Zemach radii (meV).

RZ and R as

E
2s,VP
hfs (RZ,R)

= 0.074369030 + 0.000074236132R2

+ 0.00013277334R3 − 8.0987285 × 10−6R4

− 0.0017880269RZ − 0.00017204505RRZ

− 0.00037499458R2RZ − 0.000070355379R3RZ

− 0.00022093411R2
Z + 0.00035038656RR2

Z

+ 0.00020554316R2R2
Z + 0.00025100642R3

Z

− 0.00017200435RR3
Z − 0.000061266973R4

Z meV.

(109)

It corresponds to the diagrams presented in Fig. 13. The
size-independent term 0.07437 meV corresponds to the sum
of the two contributions represented by the two top diagrams
in Fig. 13 and is given as �Ehfs

1loop-after-loopVP = 0.0746 meV
in Ref. [41]. The term �Ehfs

1γ,VP = 0.0481 meV corresponds
to a vacuum polarization loop in the HFS potential [36,41,
102], which is not evaluated here. The corrections present in
Ref. [74] not included in Eqs. (107) and (109) give an extra
contribution of

E
2s,HO
hfs = 0.10287 meV. (110)

Combining Eqs. (107), (109), and (110), I get

E2s
hfs(RZ,R)

= 22.985234 − 0.0021581988R2

+ 0.00086188128R3 − 0.000074011685R4

− 0.16213237RZ − 0.00074384033RRZ

− 0.0010701751R2RZ − 0.00025499415R3RZ

+ 0.00083571133R2
Z + 0.0013186911RR2

Z

FIG. 13. Feynman diagrams corresponding to the evaluation of
the hyperfine structure using wave functions obtained with the
Uehling potential in the Dirac equation. The gray squares correspond
to the hyperfine interaction.

+ 0.00058437789R2R2
Z − 0.00023110319R3

Z

− 0.00058774125RR3
Z + 0.00012112057R4

Z meV.

(111)

In Ref. [41], the equivalent expression is

E2sMart.
hfs (RZ) = 22.9857 − 0.16018RZ meV, (112)

while it is

E2sBorie
hfs (RZ) = 22.9627 − 0.16037RZ meV, (113)

in Ref. [74]. Using a Zemach’s radius of 0.9477 fm in
Eq. (112), needed to reproduce entry 11 in Table II of Ref. [41],
one obtains 22.8148 meV as expected. In Eq. (113), it gives
22.8107 meV. Using the same Zemach radius and Eq. (111) I
obtain 22.8104 meV with the muonic hydrogen proton radius
value and 22.8103 meV with the CODATA one, in excellent
agreement with Borie’s value. All three values are in agreement
with the result 22.8146(49) meV in Ref. [20]. In a recent work,
however, the use of form factors in the Breit equations leads to
smaller finite size corrections, leading to 22.8560 meV [106].
A comparison between some of these results is presented in
Table I.

IX. EVALUATION OF MUONIC HYDROGEN n = 2
TRANSITIONS

A. Lamb shift and fine structure

The results presented in this work for the Lamb shift
[Eqs. (45), (54), (57), (60), (62), (64), (72), (76), and (78)]
can be summarized in the following proton-size-dependent
equation:

�E
Tot,fs
2s1/2−2p1/2

(R)

= 206.0209137 − 5.226988356R2 + 0.03530609322R3

+ 0.00006821634516R4 − 5.535529372 × 10−8R5
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TABLE I. Comparison of contributions to the 2s hyperfine structure from [41,74] and the present work (meV) for RZ = 1.0668 fm [2] as
used in Ref. [41]. Note that in this reference, the proton structure correction of order α5 (item # 6) may combine the Zemach correction and the
recoil correction (# 24). VP: Vacuum polarization.

# Ref. [41] Ref. [74] This work

Fermi energy 1 22.8054 22.8054
Dirac energy (includes Breit corr.) 2 22.807995
Vacuum polarization corrections of orders α5,α6 in second order 3 0.0746 0.07443
perturbation theory εVP1

All-order VP contribution to HFS, with finite magnetization distribution 4 0.07244
Finite extent of magnetisation density correction to the above 5 −0.00114
Proton structure corr. of order α5 6 −0.1518 −0.17108 −0.17173
Proton structure corrections of order α6 7 −0.0017
Electron vacuum polarization contribution + proton structure corrections of order α6 8 −0.0026
Contribution of 1γ interaction of order α6 9 0.0003 0.00037 0.00037
εVP2EF (neglected in Ref. [41]) 10 0.00056 0.00056
Muon loop VP (part corresponding to εVP2 neglected in Ref. [41]) 11 0.00091 0.00091
Hadronic Vac. Pol. 12 0.0005 0.0006 0.0006
Vertex (order α5) 13 −0.00311 −0.00311
Vertex (order α6) (only part with powers of ln(α), see [107]) 14 −0.00017 −0.00017
Breit 15 0.0026 0.00258
Muon anomalous magnetic moment correction of order α5, α6 16 0.0266 0.02659 0.02659
Relativistic and radiative recoil corrections with 17 0.0018
proton anomalous magnetic moment of order α6

One-loop electron vacuum polarization contribution of 1γ interaction 18 0.0482 0.04818 0.04818
of orders α5, α6 (εVP2)

Finite extent of magnetization density correction to the above 19 −0.00114 −0.00114
One-loop muon vacuum polarization contribution of 1γ interaction of order α6 20 0.0004 0.00037 0.00037
Muon self energy + proton structure correction of order α6 21 0.001 0.001
Vertex corrections + proton structure corrections of order α6 22 −0.0018 −0.0018
“Jellyfish” diagram correction + proton structure corrections of order α6 23 0.0005 0.0005
Recoil correction [108] 24 0.02123 0.02123
Proton polarizability contribution of order α5 25 0.0105
Proton polarizability [108] 26 0.00801 0.00801
Weak interaction contribution 27 0.0003 0.00027 0.00027
Total 22.8148 22.8129 22.8111

+ 0.0002962967640R2ln(R)

− 0.00004751147090R4ln(R) meV. (114)

In the same way, Eqs. (46), (55), (58), (61), (63), (65), (73),
(79), and (89) lead to the fine structure interval [which include
the recoil corrections (89), included in Table II for the 2s Lamb
shift]

�E
Tot,fs
2p1/2−2p3/2

(R) = 8.352051651 − 0.00005203798087R2

+ 1.215060759 × 10−7R3

− 1.544056441 × 10−9R4 meV. (115)

Martynenko [109] found E
Tot,fs
2p1/2−2p3/2

= 8.352082 meV for the
fine structure.

A number of terms not included in Eqs. (114) are presented
in Table II together with the relevant references. Combining
Eq. (114) with the sum of the contributions contained in
Table II, I obtain the final 2s − 2p1/2 energy

�E
Tot,fs
2s1/2−2p1/2

(R)

= 206.0465137 − 5.226988356R2 + 0.03530609322R3

+ 0.00006821634516R4 − 5.535529372 × 10−8R5

+ 0.0002962967640R2ln(R)

− 0.00004751147090R4ln(R) meV. (116)

This can be compared with the result from from Borie [74]

�E
Borie,fs
2s1/2−2p1/2

(R) = 206.0579(60) − 5.22713R2

+ 0.0365(18)R3 meV, (117)

and Carroll et al. [121]

�ECarlsonfs
2s1/2−2p1/2

(R) = 206.0604 − 5.2794R2 + 0.0546R3 meV.

(118)

An extra recoil contribution is given in Ref. [76] for the fine
structure, corresponding to entry #9 in Table II for the Lamb
shift

�EVPRec.
2p1/2−2p3/2

= −0.00006359 meV. (119)

This term corresponds to corrections beyond the full Dirac
term. This leads to the final result

�E
Tot,fs
2p1/2−2p3/2

(R) = 8.351988061 − 0.00005203798087R2

+ 1.215060759 × 10−7R3

− 1.544056441 × 10−9R4 meV. (120)
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TABLE II. Contributions to the Lamb shift not included in Eq. (114) (meV). The uncertainty on the proton polarization value used in
Ref. [12] has been increased by a factor of 10, according to the discussion in Ref. [27].

# Contribution Ref. Value Unc.

1 NR three-loop electron VP [Eqs. (11), (15), (18), and (23)] [77] 0.00529
2 Virtual Delbrück scattering (2:2) [79,82] 0.00115 0.00001
3 Light-by-light electron loop contribution (3:1) [79,82] −0.00102 0.00001
4 Mixed self-energy vacuum polarization [36,88,110] −0.00254
5 Hadronic vacuum polarization [111–113] 0.01121 0.00044
6 Recoil contribution Eqs. (82) and (83) [11,37,66,89] 0.05747063
7 Relativistic recoil of order (Zα)5 Eq. (84) [11,38–40,42] −0.04497053
8 Relativistic recoil of order (Zα)6 Eq. (86) [11,38] 0.0002475
9 Recoil correction to VP of order m/M and (m/M)2 in Eq. (4) [76] −0.001987

10 Proton self-energy [36,38,42,114] −0.0108 0.0010
11 Proton polarization [19,38,112,115,116] 0.0129 0.0040
12 Electron loop in the radiative photon of order α2(Zα)4 [102,117–119] −0.00171
13 Mixed electron and muon loops [120] 0.00007
14 Rad. recoil corr. α(Zα)5 [65] 0.000136
15 Hadronic polarization α(Zα)5mr [112,113] 0.000047
16 Hadronic polarization in the radiative photon α2(Zα)4mr [112,113] −0.000015
17 Polarization-operator-induced correction [113] 0.00019

to nuclear polarizability α(Zα)5mr

18 Radiative-photon-induced correction [113] −0.00001
to nuclear polarizability α(Zα)5mr

Total 0.0256 0.0041

B. Transitions between hyperfine sublevels

The energies of the two transitions observed experimentally
in muonic hydrogen are given by

EF=2
2p3/2

− EF=1
2s1/2

= �E2s1/2−2p1/2 + �E2p1/2−2p3/2

+ 3
8E

2p3/2

hfs − 1
4E2s

hfs , (121)

and

EF=1
2p3/2

− EF=0
2s1/2

= �E2s1/2−2p1/2 + �E2p1/2−2p3/2

− 5
8E

2p3/2

hfs + 3
4E2s

hfs + δEF=1
hfs . (122)

Here we use the results from [109] for the 2p states

E
2p1/2

hfs = 7.964364 meV,

E
2p3/2

hfs = 3.392588 meV, (123)

δEF=1
hfs = 0.14456 meV.

Using the results presented above I get

EF=2
2p3/2

(RZ,R) − EF=1
2s1/2

(RZ,R)

= 209.92441 − 5.2265008R2 + 0.035090744R3

+ 0.000086717722R4 − 5.5355294 × 10−8R5

+ 0.040533092RZ + 0.00018596008RRZ

+ 0.00026754376R2RZ + 0.000063748539R3RZ

− 0.00020892783R2
Z − 0.00032967277RR2

Z

− 0.00014609447R2R2
Z + 0.000057775798R3

Z

+ 0.00014693531RR3
Z − 0.000030280142R4

Z

+ 0.00029629676R2ln(R)

−0.000047511471R4ln(R) meV. (124)

This can be compared with the result from Jentschura [88]

E
Jents.,F=2
2p3/2

− E
Jents.,F=1
2s1/2

= 209.9974(48) − 5.2262R2 meV,

(125)

using the 2s hyperfine structure of [41].
For the other transition I obtain

EF=1
2p3/2

(RZ,R) − EF=0
2s1/2

(RZ,R)

= 229.66162 − 5.2286590R2 + 0.035952626R3

+ 0.000012706037R4 − 5.5355294 × 10−8R5

− 0.12159928RZ − 0.00055788025RRZ

− 0.00080263129R2RZ − 0.00019124562R3RZ

+ 0.00062678350R2
Z + 0.00098901832RR2

Z

+ 0.00043828342R2R2
Z − 0.00017332740R3

Z

− 0.00044080593RR3
Z + 0.000090840426R4

Z

+ 0.00029629676R2ln(R)

− 0.000047511471R4ln(R) meV. (126)

Using Eq. (124), a Zemach radius of 1.0668 fm from [41],
and the transition energy from [12], I obtain a charge radius
for the proton of 0.84091(69) fm in place of 0.84184(69) fm
in Ref. [12] and 0.8775(51) fm in the 2010 CODATA funda-
mental constant adjustment. This is 7.1 σ (using the combined
σ ) from the 2010 CODATA value. A summary of proton size
determinations is presented in Table III and Fig. 14.

X. CONCLUSION

In the present work, I have evaluated finite-size-dependent
contributions to the n = 2 Lamb shift in muonic hydrogen,
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TABLE III. Proton size determinations (fm). e−p: electron-proton scattering; μH: muonic hydrogen; ChPt: Lattice QCD corrected with
Chiral perturbation theory. The values in the four last lines are obtained using the transition frequency from [12]

Hand et al. [1] 0.805 ± 0.011 e−p

Simon et al. [2] 0.862 ± 0.012 e−p

Mergel et al. [122] 0.847 ± 0.008 e−p

Rosenfelder [123] 0.880 ± 0.015 e−p

Sick 2003 [124] 0.895 ± 0.018 e−p

Angeli [125] 0.8791 ± 0.0088 e−p

Kelly [126] 0.863 ± 0.004 e−p

Hammer et al. [127] 0.848 hydrogen, e−p

CODATA 06 [11] 0.8768 ± 0.0069 Hydrogen, e−p

Arington et al. [55] 0.850 e−p

Belushkin et al. [54] SC approach 0.844 −0.004
+0.008 e−p

Belushkin et al. [54] pQCD app. 0.830 −0.008
+0.005 e−p

Wang et al. [128] 0.828 ChPt
Pohl et al. [12] 0.84184 ± 0.00067 μH
Bernauer et al. [14] 0.879 ± 0.008 e−p

CODATA 2010 [15,16] 0.8775 ± 0.0051 Hydrogen, e−p

Adamuščı́n et al. [129,130] 0.84894 ± 0.00690 e−p

This work (using RZ = 1.045 fm [131]) 0.84079 ± 0.00069 μH
This work (using RZ = 1.0668 fm [41]) 0.84089 ± 0.00069 μH
Using Jentschura [88] 0.84169 ± 0.00066 μH
Using Borie 0.84232 ± 0.00069 μH

to the fine structure, and to the 2s hyperfine splitting. The
calculations were performed numerically, to all order in the
finite size correction, in the framework of the Dirac equation.
High-order size contributions to the Uelhing potential and to
higher-order QED corrections have been evaluated. The full
dependance of the 2s hyperfine splitting on the proton charge
distribution and Zemach radius has been evaluated as well.

The discrepancy between the proton size deduced from
muonic hydrogen and the one coming from CODATA is
slightly enlarged when taking into account all the newly
calculated effects. It is changed from 6.9 σ to 7.1 σ .

FIG. 14. (Color online) Plot of the proton size as a function of
time and method.
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APPENDIX A: COEFFICIENTS FOR THE NUMERICAL
EVALUATION OF THE KÄLLÉN AND SABRY POTENTIAL

FOR A POINT NUCLEUS

The functions defined in Eq. (35) are given here. We find,
for x � 3, the functions valid for a point nucleus

g0(r) = 0.00013575124407339550307r8

− 0.00012633396034194731891r7

+ 0.0023754193119115541914r6

− 0.0052460271878852635132r5

+ 0.16925588925254111005r4

− 0.25201860708873574898r3

+ 0.95109984162919008905r2
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− 2.0864972181198001792r

+ 1.6459704071917522632, (A1)

g1(r) = −0.000078684672329473358699r8

− 0.0012293141869424835524r6

− 0.097906849416525020713r4

− 0.41666290189975666225r2

+ 0.13769050748433509769, (A2)

and

g2(r) = −0.000012756169252850100497r8

+ 0.017425498169562658160r4

+ 0.44444444460943167625 . (A3)

For x > 3, we fitted the coefficients in Eq. (40) to the numerical
values. We obtain

a = 4.3942926509010, b = −10.059551479890,

c = 5.5493632222582, d = 5.3327556570422,

e = −9.0762837836987, f = 5.1094977559523 .

Using these functions we reach an agreement to nine decimal
place with both the result of the numerical evaluation and the
expansion from [72].

APPENDIX B: COEFFICIENTS FOR THE NUMERICAL
EVALUATION OF THE KÄLLÉN AND SABRY POTENTIAL

FOR A FINITE NUCLEUS

The coefficients for the functions defined in Eq. (39) that
we obtained are listed below:

h0(r) = −0.00001608988362060r9 + 0.000015791745043r8

−0.00036443366062r7 + 0.0008743378646r6

− 0.038046259798r5 + 0.063004651772r4

− 0.36332915853r3 + 1.04324860906r2

− 2.39716878893r + 2.005566300, (B1)

g1(r) = 0.7511983817345282548

+ 0.13888763396658555408r2

+ 0.020975409736870016795r4

+ 0.00017561631242035479319r6

+ 9.057708511987165794 × 10−6r8, (B2)

and

g2(r) = −0.44444444460943167625

− 0.0034850996339125316319r4

− 1.4173521392055667219 × 10−6r8 . (B3)
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