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Locating the boundaries of consecutive blocks of quantum information is a fundamental building block for
advanced quantum computation and quantum communication systems. We develop a coding theoretic method
for properly locating boundaries of quantum information without relying on external synchronization when block
synchronization is lost. The method also protects qubits from decoherence in a manner similar to conventional
quantum error-correcting codes, seamlessly achieving synchronization recovery and error correction. A family
of quantum codes that are simultaneously synchronizable and error-correcting is given through this approach.
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I. INTRODUCTION

The field of quantum information theory has experienced
rapid and remarkable progress toward understanding and
realizing large-scale quantum computation and quantum
communication. One of the most important missions is
to develop theoretical foundations for robust and reliable
quantum information processing. The discovery of the fact
that it is even possible for us to correct the effects of
decoherence on quantum states was one of the most important
landmarks in quantum information theory in this regard [1].
The field has since made various kinds of remarkable progress,
from developing quantum analogues of important concepts in
classical information theory to finding surprising phenomena
that are uniquely quantum information theoretic [2]. Quantum
error correction has been realized in various experiments as
well [3–11].

One of the most important problems of reliable quantum
information processing that remain unaddressed, however, is
block synchronization (or, more commonly, “frame synchro-
nization,” in the language of classical communications [12]).
In classical digital computation and communications, virtually
all data have some kind of block structure, which means that in
order for one to make sense of data, one must know the exact
positions of the boundaries of each block of information, or
word, in a stream of bits.

This fact will stay the same in the quantum domain.
In fact, not only will the actual quantum information one
wishes to process most likely have a block structure for the
same reason as in the classical domain, but procedures for
manipulating quantum information also typically demand very
precise alignment. For instance, we have a means to encode
one qubit of information into five physical qubits to reduce the
effects of decoherence to the theoretical limit [13]. However,
this does not mean that we can apply the procedure to, say,
the last three qubits from an encoded quantum state and
the first two qubits from the following information block to
correct errors. If that worked, one would still not be able to
correctly interpret the information carried by the qubits; after
all, “quantum information theory” is not quite the same as
“antumin formationth eory” with “qu” before it.
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Block synchronization is critical when correct block align-
ment cannot be provided or is difficult to provide by a simple
external mechanism. For instance, block synchronization is
a critical problem in virtually any area of classical digital
communications, where two parties are physically distant, so
that synchronization must be achieved through some special
signaling procedure, such as inserting “marker” bits or using a
specially allocated bit pattern as a “preamble” to signal the start
of each block (see, for example, [14,15] for the basics of block
synchronization techniques for digital communications).

It is true that if we assume that a qubit always goes
through wires as expected in a quantum circuit and that storing,
retrieval, and transmission of quantum information are always
securely synchronized by external physical mechanisms, then
block synchronization is certainly not a problem. However,
such a strict assumption imposes demanding requirements on
hardware and limits what quantum information processing
can offer. For example, without a software solution to
block synchronization, quantum communication would have
to always be supported by perfectly synchronized classical
communications to a large degree [16].

One of the most substantial barriers to establishing block
synchronization in the quantum domain is the fact that mea-
suring qubits usually destroys the quantum information they
contain. Existing classical block synchronization techniques
typically require that the information receiver or processing
device constantly monitor the data to pick up on inserted
boundary signals, which translates into constant measurement
of all qubits in the quantum case. Hence, if an analog of a
classical synchronization scheme such as inserting a preamble
were to be employed in a naive manner, one would have to
know exactly where those inserted boundary signals are in
order not to disturb quantum information contained in data
blocks, which would require accurate synchronization to begin
with.

One might then expect that a sophisticated block syn-
chronization scheme based on information theory would
be more attractive and promising in the quantum world.
Another big hurdle lies exactly here; sophisticated coding for
synchronization is already a notoriously difficult problem in
classical information theory (see, however, [17] for a recent
survey of coding theoretical approaches to fighting various
kinds of synchronization error for the classical case). Making
things more challenging, quantum bits are thought to be more
vulnerable to environmental noise than classical bits, which
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implies that we ought to simultaneously answer the need for
strong protection from the effects of decoherence.

The primary purpose of the present paper is to show
that it is, indeed, possible to encode information about the
boundaries of blocks into qubits in such a way that block
synchronization recovery and quantum error correction are
seamlessly integrated. The proposed scheme does not rely
on external synchronization mechanisms or destroy quantum
information by searching for boundaries. We make use of clas-
sical error-correcting codes with certain algebraic properties,
so that the problem of finding such quantum synchronizable
error-correcting codes is reduced to that of searching for
special classical codes.

In the next section, we give a simple mathematical model
of block synchronization in the quantum domain and define
quantum synchronizable error-correcting codes. The details of
our scheme are presented in Sec. III. Concluding remarks are
given in Sec. IV.

II. BLOCK SYNCHRONIZATION

Here we give a simple mathematical model of block
synchronization in the quantum setting. Note that while
the term block might seem to suggest that each block is
encoded by the same block code, we may treat them as more
general structures, so that different blocks can contain different
numbers of qubits encoded by different coding schemes.

Let Q = (q0, . . . ,qx−1) be an ordered set of length x,
where each element represents a qubit. A block Fi is a set of
consecutive elements of Q. Let F = {F0, . . . ,Fy−1} be a set of
blocks. The ordered set (Q,F) is called a blockwise structured
sequence if |{∪iFi}| = x and Fi ∩ Fj = ∅ for i �= j . In other
words, the elements of a sequence are partitioned into groups
of consecutive elements called blocks.

Take a set G = {qj , . . . ,qj+g−1} of g consecutive elements
of Q. G is said to be misaligned by a qubits to the right with
respect to (Q,F) if there exits an integer a and a block Fi such
that Fi = {qj−a, . . . ,qj+g−a−1} and G �∈ F . If a is negative,
we may say that G is misaligned by |a| qubits to the left. G is
properly aligned if G ∈ F .

To make this mathematical model clearer, take three
qubits and encode each qubit into nine qubits by Shor’s
nine-qubit code [1]. The resulting 27 qubits may be seen
as Q = (q0, . . . ,q26), where the three encoded nine-qubit
blocks |ϕ0〉, |ϕ1〉, and |ϕ2〉 form blocks F0 = (q0, . . . ,q8), F1 =
(q9, . . . ,q17), and F2 = (q18, . . . ,q26), respectively. These
27 qubits may be sent to a different place, stored in quantum
memory, or immediately processed for quantum computation.
A device, knowing the size of each information block, operates
on nine qubits at a time. If misalignment occurs by, say, two
qubits to the left, then the device that tries to correct errors on
qubits in |ϕ1〉 applies the error-correction procedure to the set
G of nine qubits q7, . . ., q15, two of which come from F0 and
seven of which come from F1. In this case, when measuring
the stabilizer generator IZZIIIIII of the nine-qubit code
to obtain the syndrome, what the device actually does to the
whole system can be expressed as

I⊗8ZZI⊗17|ϕ0〉|ϕ1〉|ϕ2〉,

which, if block synchronization were correct, would be

I⊗10ZZI⊗15|ϕ0〉|ϕ1〉|ϕ2〉.
I⊗8Z does not stabilize |ϕ0〉, nor does ZI⊗8 |ϕ1〉. Hence,
errors are introduced to the system, rather than detected or
corrected. Similarly, if the same misalignment happens during
fault-tolerant computation, then the device that tries to apply
logical X̄ to the third logical block |ϕ2〉 will apply I⊗16X⊗9II

to the 27-qubit system.
Other kinds of synchronization error such as deletion

may be considered in the quantum setting (see [17] for
mathematical models of such errors in the classical case).
As in the classical coding theory, however, we would like
to separately treat them and do not consider fundamentally
different types of synchronization in the current paper. Instead,
we assume that no qubit loss or gain in the system occurs and
that a device regains access to all of the qubits in proper order
in the system if misalignment is correctly detected.

Our objective is to ensure that the device identifies, without
destroying quantum states, how many qubits off it is from
the proper alignment should misalignment occur. A code
that is designed for detecting this type of misalignment is
called a synchronizable code in the modern information theory
literature. Borrowing this term, we call a coding scheme a
quantum synchronizable (al,ar )-[[n,k]] code if it encodes k

logical qubits into n physical qubits and corrects misalignment
by up to al qubits to the left and up to ar qubits to the right.

We assume that a linear combination of I , X, Z, and Y acts
on each qubit independently over a noisy quantum channel.
For error correction against such errors, we employ a version
of syndrome decoding and show how to correct errors. In
principle, the true values of the minimum distances of our
quantum synchronizable codes can be computed. However,
we focus on how many nontrivial quantum errors our decoding
procedure can correct. Hence, the actual minimum distances
of our quantum synchronizable codes may be larger than what
our decoding algorithm suggests.

In what follows, we give a general construction for
quantum synchronizable error-correcting codes and describe
the procedures of encoding, error correction, synchronization
recovery, and decoding. An infinite class of such quantum
codes will be given at the end of the next section as an example.

III. CODING SCHEME

In this section, we give the mathematical details of our
solution and show how to realize quantum synchronizable
codes. We employ classical and quantum coding theory. For
the basic facts and notions in classical and quantum coding
theories, the reader is referred to [2,18].

A. Preliminaries

As usual, we define a binary linear [n,k] code as a
k-dimensional subspace of the n-dimensional vector space Fn

2
over the finite field of order two. Because we do not consider
a code over another field, we always assume that a classical
code is binary unless otherwise stated.

A cyclic code C is a linear [n,k] code with the property
that if c = (c0, . . . ,cn−1) is a codeword of C, then so is
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every cyclic shift of c. It is known that by regarding each
codeword as the coefficient vector of a polynomial in F2[x],
a cyclic code can be seen as a principal ideal in the
ring F2[x]/(xn − 1) generated by the unique monic nonzero
polynomial g(x) of minimum degree in the code which divides
xn − 1. Computations inF2[x]/(xn − 1) are modulo xn − 1. A
cyclic shift thus corresponds to multiplying by x, and the code
can be written as C = {i(x)g(x)| deg (i(x)) < k}. Multiplying
by x is an automorphism. The orbit of a given codeword
i(x)g(x) by this group action is written as Orb(i(x)g(x)) =
{i(x)g(x),xi(x)g(x),x2i(x)g(x), . . . }.

Let C and D be two linear codes of the same length. D is
C-containing if C ⊆ D. It is dual-containing if it contains its
dual D⊥ = {d⊥ ∈ Fn

2 | d · d⊥ = 0,d ∈ D}. The Calderbank-
Shor-Steane construction [19,20] turns a C-containing linear
code into a quantum error-correcting code, called a CSS code.
If we apply a dual-containing [n,k,d] linear code, the resulting
CSS code is of parameters [[n,2k − n,d ′]] for some d ′ � d.
In terms of block synchronization, this CSS code is a quantum
synchronizable (0,0)-[[n,2k − n]] code, as the code tolerates
no synchronization error. Any combination of up to � d−1

2 

quantum errors can be corrected through a separate two-step
error-correction procedure by directly exploiting the error-
correction mechanism of the corresponding classical code. A
higher quantum error-correction capability may be achieved if
the code is degenerate. For the sake of simplicity, however, we
do not investigate the degeneracy of each individual quantum
error-correcting code. In the remainder of this paper, we
assume familiarity with the structure of CSS codes as well
as their basic encoding and decoding mechanisms given in a
standard textbook such as [2].

B. Main theorem

Our main theorem employs a pair of cyclic codes C and D
satisfying C⊥ ⊆ C ⊂ D to generate a quantum synchronizable
code.

Theorem. If there exist a dual-containing cyclic [n,k1,d1]
code C and a C-containing cyclic [n,k2,d2] code with k1 < k2,
then for any pair of non-negative integers al , ar satisfying al +
ar < k2 − k1 there exists a quantum synchronizable (al,ar )-
[[n + al + ar,2k1 − n]] code that corrects at least up to � d1−1

2 

phase errors and at least up to � d2−1

2 
 bit errors.
To prove the above theorem, we realize a quantum synchro-

nizable code as a carefully translated vector space similar to a
CSS code. The proof of the above theorem will be completed in
Sec. III D5 after describing encoding and decoding procedures
in Secs. III C and III D 1–4.

Let C be a dual-containing cyclic [n,k1,d1] code that lies in
another cyclic [n,k2,d2] code D with k1 < k2. Define g(x)
as the the generator of D = 〈g(x)〉, which is the unique
monic nonzero polynomial of minimum degree in D. Define
also h(x) as the generator of C, which is the unique monic
nonzero polynomial of minimum degree in C. Since C ⊂ D,
the generator g(x) divides every codeword of C. Hence, h(x)
can be written as h(x) = f (x)g(x) for some polynomial f (x)
of degree n − k1 − deg (g(x)) = k2 − k1.

For every polynomial j (x) = j0 + j1x + · · · + jn−1x
n−1

of degree less than n, define |j (x)〉 as the n-qubit quantum
state |j (x)〉 = |j0〉|j1〉 · · · |jn−1〉. For a set J of polynomials of

degree less than n, we define |J 〉 as

|J 〉 = 1

|J |
∑

j (x)∈J

|j (x)〉.

For a polynomial k(x), we define J + k(x) = {j (x) +
k(x) | j (x) ∈ J }.

Let R = {ri(x)|0 � i � 22k1−n−1} be a system of rep-
resentatives of the cosets C/C⊥. Consider the set Vg =
{|C⊥ + ri(x) + g(x)〉|ri(x) ∈ R} of 22k1−n states. Because R

is a system of representatives, these 22k1−n states form an
orthonormal basis. Let Vg be the vector space of dimension
22k1−n spanned by Vg . We employ this translated space Vg to
prove our main theorem.

C. Encoding

Take a full-rank parity-check matrix HD of D. For each row
of HD, replace zeros with I ’s and ones with X’s. Perform the
same replacement with I ’s for zeros and Z’s for ones. Because
C⊥ ⊂ C ⊂ D impliesD⊥ ⊂ D, the codeD is a dual-containing
cyclic code of dimension k2. Hence, the resulting 2(n − k2)
Pauli operators on n qubits form stabilizer generators SD of
the Pauli group on n qubits that fixes a subspace of dimension
2k2 . The set of the Pauli operators on n qubits in SD that consist
of only Z’s and I ’s is referred to as SZ

D . Construct stabilizer
generators SC in the same manner by using C.

Take an arbitrary (2k1 − n)-qubit state |ϕ〉, which is to
be encoded. By using an encoder for the CSS code of
parameters [[n,2k1 − n]] defined by SC , the state |ϕ〉 is
encoded into n-qubit state |ϕ〉enc = ∑

i αi |vi〉, where each vi

is an n-dimensional vector with the orthogonal basis being
{|C⊥ + ri(x)〉|ri(x) ∈ R}. Let Ug be the unitary operator that
adds the coefficient vector g of g(x). By applying Ug , we have

Ug|ϕ〉enc =
∑

i

αi |vi + g〉.

Take a pair of non-negative integers al , ar that satisfy al +
ar < k2 − k1. Using al + ar ancilla qubits and CNOT gates, we
take this state to an (n + al + ar )-qubit state as follows:

|0〉⊗al Ug|ϕ〉enc|0〉⊗ar →
∑

i

αi

∣∣w1
i ,vi + g,w2

i

〉
,

where w1
i and w2

i are the last al and the first ar portions of
the vector vi + g, respectively. The resulting state |ψ〉enc =∑

i αi |w1
i ,vi + g,w2

i 〉 then goes through a noisy quantum
channel.

D. Error correction and block synchronization

Gather n + al + ar consecutive qubits G =
(q0, . . . ,qn+al+ar−1). We assume the situation where correct
block synchronization means that G is exactly the qubits of
|ψ〉enc, but G can be misaligned by a qubits to the right, where
−al � a � ar .

Let P = (p0, . . . ,pn+al+ar−1) be the n + al + ar

qubits of the encoded state. If a = 0, then P = G.
Define Gm = (qal

, . . . ,qal+n−1). By assumption,
Gm = (pal+a, . . . ,pal+n−1+a). Let n-fold tensor product
E of linear combinations of the Pauli matrices be the errors
that occurred on P .
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We first outline the bit error correction procedure on the
window Gm. Synchronization is recovered after making Gm

free from bit errors. The bit errors outside of Gm are then
corrected. The phase errors on qubits will be treated at the
final step after reversing the extension process.

1. Bit error correction on the initial window

We correct bit errors that occurred on qubits in Gm in the
same manner as the separate two-step error-correction proce-
dure for a CSS code. Since C ⊂ D, the vector space spanned
by the orthogonal basis stabilized by SD contains Vg as a
subspace. Hence, through a unitary transformation using SZ

D ,
we can obtain the error syndrome in the same manner as when
detecting errors with the CSS code defined by SD as follows:

E|ψ〉enc|0〉⊗n−k2 → E|ψ〉enc|χ〉,
where |χ〉 is the (n − k2)-qubit syndrome by SZ

D . If E

introduced at most � d2−1
2 
 bit errors on qubits in Gm, these

quantum errors are detected and then corrected by applying
the X operators if necessary.

More formally, rewrite the original encoded state |ψ〉enc =∑
i αi |w1

i ,vi + g,w2
i 〉 as

|ψ〉enc =
∑

i

αi |l i ,ci ,r i〉,

where ci correspond to the window misaligned by a qubits to
the right, which can be obtained by cyclically shifting vi + g.
Hence, the binary vectors l i , and r i are of lengths al + a and
ar − a, respectively.

Without loss of generality, we consider E the discretized bit
errors and phase errors on the n + al + ar qubits of |ψ〉enc. Let
eb be the (n + al + ar )-dimensional binary error vector such
that i ∈ supp(eb) if and only if a bit error occurred on qubit
pi . In other words, the positions of 1’s in eb represent which
qubits are bitwise flipped. Define the phase error vector ep

in the same way for the phase errors that occurred on |ψ〉enc.
Then, the transformation due to the noisy quantum channel
that introduced quantum error E is

|ψ〉enc → E|ψ〉enc =
∑

i

αi(−1)(l i ,ci ,r i )·ep |(l i ,ci ,r i) + eb〉.

Write the bit error vector as eb = (eb
l ,e

b
c ,e

b
r ), where eb

l , eb
c ,

and eb
r are the first al + a, next n, and last ar − a bits of

eb, respectively. Recall that HD is the full-rank parity-check
matrix of D corresponding to the stabilizer generators. We
perform the following unitary transformation using SZ

D with
n − k2 ancilla qubits:

E|ψ〉enc|0〉⊗n−k2 → E|ψ〉enc

∣∣HDeb
c

〉
.

Because HD is a parity-check matrix of D, measuring
the ancilla gives the error syndrome in the same manner
as the corresponding classical linear code does. Thus, as
in the standard bit error correction procedure for a CSS code,
if we assume that E introduced at most � d2−1

2 
 bit errors on
qubits in Gm, then applying X operators to qubits specified by
the error syndrome HDeb

c takes the encoded state with errors to

E′|ψ〉enc =
∑

i

αi(−1)(l i ,ci ,r i )·ep ∣∣(l i ,ci ,r i) + (
eb
l ,0,eb

r

)〉
,

where E′ represents the partially corrected quantum errors.

2. Synchronization recovery

We perform synchronization recovery by exploiting the bit
error free Gm we just obtained. Recall that all codewords
of C⊥ and ri(x) ∈ R belong to C, and hence to D as well.
Because g(x) is the generator of D, it divides any polynomial
of the form s(x) + ri(x) + g(x) over F2[x]/(xn − 1), where
s(x) ∈ C⊥. Since we have

s(x) + ri(x) + g(x) = i0(x)f (x)g(x) + i1(x)f (x)g(x) + g(x)

for some polynomials i0(x) and i1(x) of degree less than k1,
the quotient is of the form j (x)f (x) + 1 for some polynomial
j (x). Dividing the quotient by f (x) gives 1 as the remainder.
Note that g(x) is a monic polynomial of degree n − k2 that
divides xn − 1, where k2 is strictly larger than � n

2 �. Let i be an
integer satisfying 1 � i � � n

2 � � k2 − 1. Then,

deg (xig(x)) = n − k2 + i �= deg (g(x)).

Hence, we have |Orb(g(x))| � k2 > � n
2 �. Because |Orb(g(x))|

must divide n, we have |Orb(g(x))| = n. Thus, applying
the same two-step division procedure to any polynomial
appearing as a state in cyclically shifted Vg by a qubits gives
xa (mod f (x)) as the remainder. By assumption, we have

0 < al + ar < k2 − k1 = deg (f (x))

and −al � a � ar . Thus, the remainder xa (mod f (x)) is
unique to each possible value of a.

Recall that every state in Vg is of the form |C⊥ + ri(x) +
g(x)〉. Because Gm contains no bit errors, the basis states of
the corresponding portion in E′|ψ〉enc are the cyclically shifted
coefficient vectors of the correct polynomials. Let Dqt(x) and
Drt(x) be the polynomial division operations on n qubits that
give the quotient and remainder, respectively, through quantum
shift registers defined by a polynomial t(x) of degree less
than n [21] (see also [22] for an alternative way to implement
quantum shift registers). Let Q = I⊗al+aDqg(x)I

⊗ar−a and R =
I⊗n+al+ar Drf (x) , so that the two represent applying Dqg(x) to the
window and Drf (x) to the ancilla qubits of Dqg(x) that contain
the calculated quotient. These operations give the syndrome
for the synchronization error as

E′|ψ〉enc|0〉⊗n RQ−−→ E′|ψ〉enc|xa (mod f (x))〉,
where |0〉⊗n is the ancilla for Dqg(x) . Hence, by regarding the
remainder xa (mod f (x)) as the syndrome of synchronization
error a, the magnitude and direction are identified.

3. Bit error correction outside the initial window

Because we obtained the information about how many
qubits away G = (q0, . . . ,qn+al+ar−1) is from the proper
position P = (p0, . . . ,pn+al+ar−1) and in which direction,
by assumption, we can correctly shift the window to the
last n qubits (pal+ar

, . . . ,pn+al+ar−1) of P . Note that if
a is negative, then the last |a| qubits are outside of G,
which means that the receiver may be required to gather
|a| more qubits in addition to the consecutive n + al + ar

qubits initially received. Because we employed classical cyclic
codes, the same error-correction procedure can be performed
on (pal+ar

, . . . ,pn+al+ar−1), allowing for correcting bit errors
that may have occurred on the last n qubits of P . By the same
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token, moving the window to the first n qubits of P enables us
to correct the remaining bit errors on P . Thus, if the channel
introduced at most � d2−1

2 
 bit errors on any consecutive n

qubits, we can correct all bit errors that occurred on P to
obtain E′′|ψ〉enc, where E′′ only introduces phase errors.

4. Phase error correction

Next we correct the effect of the phase errors that oc-
curred on qubits in P . The first step we take is to reverse
the extension operation and the unitary operation Ug that
transformed the n-qubit encoded state |ϕ〉enc = ∑

i αi |vi〉 into
the (n + al + ar )-qubit state |ψ〉enc = ∑

i αi

∣∣w1
i ,vi + g,w2

i

〉
.

Here we straightforwardly apply the same CNOT operations to
the qubits in E′′ |ψ〉enc as we did when extending Ug |ϕ〉enc,
then discard the al + ar qubits that were initially ancilla qubits
for extension, and finally apply Ug again to the resulting
n-qubit state.

Write the phase error vector as ep = (ep

l ,ep
c ,ep

r ), where the
binary error vectors ep

l , ep
c , and ep

r correspond to the phase
errors that occurred on the first al , next n, and last ar qubits
of P . Then, the above reversing operation can be described by
the following transformation:

E′′ |ψ〉enc → ∑
i αi(−1)(vi+g)·(ep

c +(0,ep

l )+(ep
r ,0)) |vi〉

= eiθ
∑

i αi(−1)vi ·(ep
c +(0,ep

l )+(ep
r ,0)) |vi〉 ,

where θ is some multiple of π , and (0,ep

l ) and (ep
r ,0) are the

n-dimensional binary vectors obtained by padding n − al and
n − ar zeros to the head of ep

l and the tail of ep
r , respectively.

Note that by writing as np the number of qubits on which the
phase errors occurred among the n + al + ar qubits, we have

∣∣supp
(
ep
c + (

0,ep

l

) + (
ep
r ,0

))∣∣

�
∣∣supp

(
ep
c

)∣∣ + ∣∣supp
((

0,ep

l

))∣∣ + ∣∣supp
((

ep
r ,0

))∣∣
= np.

The encoded state |ϕ〉enc is stabilized by SC . Thus, ignoring
the global phase factor eiθ , if np � � d1−1

2 
, we can correctly
diagnose the effect of ep

c + (0,ep

l ) + (ep
r ,0) through the stan-

dard phase error correction procedure for the CSS code based
on the dual-containing cyclic code C:

E′′′ |ϕ〉enc |0〉⊗n−k1 → E′′′|ϕ〉enc

∣∣HC
(
ep
c + (

0,ep

l

) + (
ep
r ,0

))〉
,

where HC is a full-rank parity-check matrix of C and E′′′ is the
phase error operator on |ϕ〉enc that represents the effect of ep

c +
(0,ep

l ) + (ep
r ,0). Applying Z operators on the qubits specified

by the syndrome completes the error correction procedure.

5. Proof of the Theorem and example codes

We are now able to prove our main theorem.
Proof of Theorem. Take a dual-containing cyclic [n,k1,d1]

code C that is contained in a cyclic [n,k2,d2] code, where
k1 < k2. Encode 2k1 − n logical qubits into n + al + ar

physical qubits as described above. The error-correction and
synchronization recovery procedures described above correct
misalignment by a qubits to the right, as long as a lies in the
range −al � a � ar , and correct up to � d1−1

2 
 phase errors
on the n + al + ar qubits and up to � d2−1

2 
 bit errors on any
consecutive n qubits. The final decoding step is completed

by reducing the state |ϕ〉enc = ∑
i αi |vi〉 to the original state

|ϕ〉 by a decoding circuit of the CSS code based on the
dual-containing cyclic code C. Thus, the scheme is a quantum
synchronizable (al,ar )-[[n + al + ar,2k1 − n]] code with the
desired error-correction capability. �

To take full advantage of this Theorem, we need dual-
containing cyclic codes that achieve large minimum distance
and contain dual-containing cyclic codes of smaller dimension.
A class of the well-known Bose-Chaudhuri-Hocquenghem
(BCH) codes [18] gives such classical codes. The dual-
containing properties of BCH codes have been thoroughly
investigated in [23,24]. The following is an infinite series
of quantum synchronizable error-correcting codes based on
a class of such codes, called the primitive, narrow-sense BCH
codes (see [18] for the definition and basic properties of
primitive, narrow-sense BCH codes):

Corollary. Let n, d1, and d2 be odd integers satisfying n =
2m − 1 and 3 � d2 < d1 � 2� m

2 � − 1, where m � 5. Then,
for some d ′

1 � d1, some d ′
2 � d2, and any pair of non-

negative integers al , ar satisfying al + ar < m(d1−d2)
2 , there

exists a quantum synchronizable (al,ar )-[[n + al + ar,n −
m(d2 − 1)]] code that corrects up to d ′

1−1
2 phase errors on the

n + al + ar qubits and up to d ′
2−1
2 bit errors on any consecutive

n qubits.
Proof. Let n, d1, and d2 be integers satisfying the condition

given in the statement. Let D be a primitive narrow-sense
BCH code of length n and designed distance d2 such that
3 � d2 < 2� m

2 � − 1. Construct a primitive narrow-sense BCH
code C by joining one or more cyclotomic cosets, so that its
designed distance d1 is larger than d2 but smaller than or equal
to 2� m

2 � − 1. The dimensions of C and D are n − m(d1−1)
2 and

n − m(d2−1)
2 , respectively. D contains C, and the two cyclic

codes are both dual-containing (see [23]), forming the desired
quantum synchronizable codes. �

IV. CONCLUSION

We developed a coding scheme that seamlessly integrates
block synchronization and quantum error correction. A close
relation is found between quantum synchronizable error-
correcting codes and pairs of cyclic codes with special
properties. Through this relation, the well-known BCH codes
were shown to generate desirable quantum codes for block
synchronization.

In classical communications, a unified method for syn-
chronization and error correction can reduce implementation
complexity [25]. A similar method using cyclic codes has
also been proposed recently in the classical domain for simple
implementation of asynchronous code division multiple access
(CDMA) systems with random delays [26]. We hope that
our seamlessly unified solution to block synchronization and
quantum error correction may help simplify requirements on
hardware and open up new possibilities of quantum computa-
tion and quantum communication, such as transmission of a
large amount of consecutive quantum information blocks with
little aid from classical communications.

One potential weakness of the approach presented in this
paper is that our quantum synchronizable codes of length
n + al + ar may face a larger number of quantum errors
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than the underlying standard CSS codes of length n would
because of their extended lengths. For instance, in a scenario
where the receiver missed the first several qubits, the window
may be suffering from severe quantum errors, which may
not be correctable. Phase error correction requires particular
attention in this regard because while the current scheme takes
advantage of the subcode C, which typically has a larger
minimum distance than D for bit errors, the error-correction
scheme for phase errors is expected to handle all phase errors
at once, unlike the bit error correction procedure. While
the ability to recover from misalignment is highly valuable
because even the slightest synchronization error is fatal to
information transmission, these weaknesses should be noted
and are worthy of further investigation.

One aspect we may be able to improve is the maximum
magnitude of a correctable synchronization error. The scheme
presented in this paper relies on the uniqueness of the
syndrome for each possible combination of the magnitude
and direction. While the remainder xa (mod f (x)) after the
two-step division procedure for synchronization recovery is
certainly unique if we limit al + ar to be less than deg (f (x)),
this may be overly conservative in a sense. In fact, there
are 2deg (f (x)) possible polynomials of degree deg (f (x)) or
smaller while we only need at most n distinct synchronization
error syndromes even if we extend a CSS code of length
n to a full 2n-qubit code by copying all n qubits with
CNOT gates. While our scheme does not appear to allow a
better general bound on the maximum correctable magnitude

in a simple form without a deeper observation and careful
modification, it is plausible that a sophisticated treatment of
syndromes may yield quantum synchronizable codes with
better synchronization error tolerance than is proved in this
paper.

Finally, while we have focused on binary dual-containing
cyclic codes, it is certainly of interest to look into more general
approaches to quantum error correction, such as orthogonal
pairs of cyclic codes that are not dual-containing and the
quantum error-correcting codes from additive codes over
F4 found in [27]. While CSS codes and similar quantum
error-correcting codes based on classical cyclic codes that
admit decoding through quantum shift registers have not been
studied very well in the literature, there are some examples that
have very similar structures, such as quantum Reed-Solomon
codes [28] (see also [21] for a possible decoding scheme for
this type of quantum error-correcting code through quantum
shift registers). A further look into these types of quantum
cyclic code would be of interest.
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