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We have developed methods for performing qudit quantum computation in the Jaynes-Cummings model with
the qudits residing in a finite subspace of individual harmonic oscillator modes, resonantly coupled to a spin-1/2
system. The first method determines analytical control sequences for the one- and two-qudit gates necessary
for universal quantum computation by breaking down the desired unitary transformations into a series of state
preparations implemented with the Law-Eberly scheme [Law and Eberly, Phys. Rev. Lett. 76, 1055 (1996)].
The second method replaces some of the analytical pulse sequences with more rapid numerically optimized
sequences. In our third approach, we directly optimize the evolution of the system, without making use of any
analytic techniques. While limited to smaller dimensional qudits, the third approach finds pulse sequences which
carry out the desired gates in a time which is much shorter than either of the other two approaches.
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I. INTRODUCTION

The Jaynes-Cummings model [1,2], describing a harmonic
oscillator coupled to a spin-1/2 system, underlies a wide
variety of potential platforms for quantum computation, such
as atoms in cavities [1], trapped ions [3–7], superconducting
circuits [2,8–16], and clouds of cold atoms [17]. Because of its
ubiquity, understanding how to control the Jaynes-Cummings
model is a key step in the development of a quantum computer.
Synthesizing arbitrary states of one [1,6,7,18] or more [2,8,9]
oscillators is a widely studied first step. Growing interest
in quantum computation, led to several proposals to use a
harmonic oscillator as a bus between qubits [3–5]. More recent
work has focused on the controllability of the system [19,20].
Here, the goal is to prove that arbitrary unitary transformations
may be synthesized with a given set of controls, without
necessarily providing an explicit algorithm to perform the
synthesis. The most advanced experimental implementation
of the Jaynes-Cummings model is superconducting circuits,
where both state synthesis in single oscillators [10,11], as
well as entanglement between two oscillators [9,12], has been
studied. High fidelity qubit readout [13] as well as the quantum
von Neumann architecture have also been demonstrated [14].

In the standard approach to quantum computing, infor-
mation is stored in a series of two level qubits and the
information is manipulated by applying one and two qubit
gates. In most schemes, single qubit gates can be done
with relatively high fidelity, but two qubit gates often cause
problems both because control over two-particle interactions
is less well developed experimentally and because they can
lead to increased coupling to the environment, leading to
decoherence. Thus, by minimizing multiparticle interactions,
higher fidelity operations may be possible. One approach to
reducing the number of multiparticle interactions is to make
use of d-level systems known as qudits. By combining a
few of the qubits into a single, larger dimensional system
the gates between those qubits become manipulations of
individual qudits, which may be more reliable. A number of
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issues facing qudit quantum computation have already been
considered, such as gate decompositions [21–23], simulation
[24], and error correction [25]. In addition, qudits may offer
some advantages over qubits, in particular nonlocality without
entanglement [26], improved detection efficiencies for Bell
tests [27], and systems to study quantum chaos [28]. A
variety of experimental systems have been considered as
qudits, including optical systems [29,30], superconductors
[2,8,15,16], and atomic spins [31–34].

In this paper we describe the synthesis of general unitary
transformations on a qudit system defined as a two-level
system and the first n = 0 . . . N levels of a harmonic oscillator.
Similar studies have been reported for the circuit QED
system, where the interaction between the superconducting
qubit system and the cavity field can only be switched off
by detuning the systems with respect to each other [15,16].
The Jaynes-Cummings model, however, also describes atomic
systems coupled to a quantized cavity field by a Raman process
with a classical laser field that can be both detuned and
switched completely off [1]. Harmonically trapped ions also
implement the Jaynes-Cummings model with the possibility
to resonantly drive an internal two-state transition, and a
sideband transition, which couples the internal state and
the motional oscillator state of the system [6]. Finally, the
collective occupation of different internal states in an ensemble
of atoms can be effectively described by oscillator degrees
of freedom, and, e.g., by the Rydberg blockade mechanism
[17,35]; one of the populations may be effectively limited
to two values and thus implement a collective two-level
degree of freedom in the system. These systems motivate our
search for effective means to control the Jaynes-Cummings
model, using the fast, resonant processes offered by the
laser driven atomic systems. Our analysis uses a different
approach and thus supplements recent work by Strauch [16],
which also includes use of resonant interactions. As such,
after introducing the basic controls in Sec. II, we show
that resonant Jaynes-Cummings interactions are sufficient to
generate arbitrary transformations on a qudit system in Sec. III.
We introduce a semianalytic protocol to synthesize arbitrary
transformations that uses a combination of numerical and
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analytic techniques to synthesize qudit transformation much
more rapidly in Sec IV. We also show that direct numerical
optimization, without making use of any analytic techniques,
can speed up transformation synthesis even more in Sec. V.
Finally, in Sec. VI we extend our results to multiple modes.

II. BASIC CONTROLS

Our goal is to use qudits consisting of the first n = 0, . . . ,N

levels of a harmonic oscillator. To control the oscillators, we
couple them to a spin-1/2 system, so that in the rotating frame
and under the rotating wave approximation, the Hamiltonian
of the Jaynes-Cummings model we consider is

H = Hs +
∑

k

Hsc,k, (1)

Hs = − 1
2�(t)σz + 1

2χ (t){cos[φ(t)]σx + sin[φ(t)]σy}, (2)

Hsc,k = 1
2gk(t)(eiβk(t)a

†
kσ− + e−iβk (t)akσ+). (3)

Although the ground state in the nonrotating frame is spin
down with the oscillator in the n = 0 state, in the rotating
frame the ground state depends on the sign of the detuning. We
define the detuning as � = ωd − ω0, where ωd is the frequency
of the field driving transitions between spin up and spin down
and ω0 is the energy splitting between spin up and spin down.
The controls are the spin’s detuning, �(t), drive strength and
phase, χ (t), φ(t), and coupling strength and phase, gk(t), βk(t).
From this point forward, we will drop the explicit dependence
on time in the controls. These controls are available in
systems such as clouds of Rydberg atoms [17,35], trapped
ions [6,7], and three level atoms in cavities [1]. Here, we focus
on the generic features available in any system with these
controls.

We begin by considering the single mode case and drop the
mode index k. It is convenient to define the finite computational
subspace hcomp consisting of the first N + 1 states of the
oscillators and the two spin states, represented in the following
by product states {|n ↑〉,|n ↓〉}n=0...N . The system’s evolution
can be greatly simplified in two regimes. In the first regime
g = 0, and the Hamiltonian

H (1) = − 1
2�σz + 1

2χ [cos(φ)σx + sin(φ)σy] (4)

only couples states within the two-dimensional subspaces
h(1)

n = {|n ↑〉 , |n ↓〉}. Let P (1)
n = |n〉〈n| denote the projectors

onto those subspaces. Using H (1), we can generate an arbitrary
rotation on the Bloch sphere,

Ũ (1)(θ,n) = e−iθ n·σ/2. (5)

Next, we choose χ = 0, so the Hamiltonian

H (2) = − 1
2�σz + 1

2g(eiβa†σ− + e−iβaσ+) (6)

couples the states within the two-dimensional subspaces,

h(2)
n =

{ {|n − 1 ↑〉 , |n ↓〉} n �= 0,

|0 ↓〉 n = 0.
(7)

We also define the associated projectors,

P (2)
n =

{ |n − 1 ↑〉〈n − 1 ↑ | + |n ↓〉〈n ↓ | n �= 0,

|0 ↓〉〈0 ↓ | n = 0,
(8)

and the set of Pauli operators on the h(2)
n subspaces with n �= 0,

σx,n = |n ↓〉〈n − 1 ↑ | + |n − 1 ↑〉〈n ↓ |, (9)

σy,n = i|n ↓〉〈n − 1 ↑ | − i|n − 1 ↑〉〈n ↓ |, (10)

σz,n = −|n ↓〉〈n ↓ | + |n − 1 ↑〉〈n − 1 ↑ |. (11)

Defining σj,0 = 0, the Hamiltonian can be written

H (2) = −1

2
�σz + 1

2
g

∞∑
n=0

√
n[cos(β)σx,n + sin(β)σy,n],

(12)

and it generates the following evolution:

Ũ (2)(g,�,β,T ) = e
−i(−�T σz+gT

∞∑
n=0

√
n[cos(β)σx,n+sin(β)σy,n])/2

.

(13)

In the appendixes, we show that it is possible to use these
controls to synthesize transformations of the form

U (2) =
N+1∑
n=0

e−iφ(n)m(n)·σ n/2P (2)
n , (14)

where φ(n) and m(n) are different rotation angles and torque
vectors for each subspace h(2)

n . The transformations Eqs. (5),
(13), and (14) form the basic building blocks from which all
other controls will be built.

III. ANALYTIC SYNTHESIS OF ARBITRARY
TRANSFORMATIONS

Our unitary design scheme builds on the state preparation
protocol originally developed by Law and Eberly [1], which
we review here for completeness. Given the controls available,
we need to synthesize a transformation U , which maps an
arbitrary state of the oscillator-spin system, |φ〉, to |0 ↓〉. To
find U , we break the problem into a series of substeps,

U = Ũ
(1)
N+1

N∏
k=1

Ũ
(2)
k Ũ

(1)
k , (15)

where Ũ
(1)
j and Ũ

(2)
j have the form of Eqs. (5) and (13). The

pulse sequences are chosen so that the population is removed
sequentially from each harmonic oscillator level. The state |φ〉
initially has population spread over all N oscillator levels,

|φ〉 =
N∑

n=0

cn↓ |n ↓〉 + cn↑ |n ↑〉 . (16)

The combination Ũ
(2)
1 Ũ

(1)
1 is designed to remove all the

population in h
(1)
N by transferring the population to |N − 1 ↑〉.

First, Ũ (1)
1 transfers all the population in h

(1)
N to |N ↓〉, then Ũ

(2)
1

transfers all the population in h
(2)
N to |N − 1 ↑〉. The result is

a new state,

|φ(1)〉 = Ũ
(2)
1 Ũ

(1)
1 |ψ〉

=
N−1∑
n=0

c
(1)
n↓ |n ↓〉 + c

(1)
n↑ |n ↑〉 , (17)
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with altered coeficients, c
(1)
n↑ and c

(1)
n↓, whose highest populated

oscillator state is N − 1. The rest of the pulse sequences
proceed in a similar manner with Ũ

(2)
j Ũ

(1)
j clearing out each

oscillator level one by one until all the population has been
transferred to h

(1)
0 . A final Ũ

(1)
N+1 transfers all of the population

to |0 ↓〉.
To see how the Law-Eberly scheme for state preparation can

be extended to unitary transformation synthesis, we note that
a unitary transformation may be defined as a transformation
which maps a particular basis set |φn,s〉 back to the |n,s〉 basis.
In other words, U |φn,s〉 = |n,s〉, where n is the harmonic
oscillator level and s = {↑ , ↓} is the spin state.

Thus, we can break a transformation up into a series of
substeps,

U =
∏
n

∏
s

U (ns). (18)

The main goal of each substep is to complete one state
transformation, which maps a given state |φns〉 back to the
corresponding basis state |ns〉, so that

|ns〉 = U (ns) . . . U (0↑)U (0↓) |φns〉 . (19)

Each U (ns) accomplishes this goal via a Law–Eberly-type
sequence of substeps. However, there are a couple of extra
constraints on U (ns) which require some modifications of the
Law-Eberly scheme.

After the first transformation, U (0↓), we will have trans-
formed |φ0↓〉 to |0 ↓〉. All other |φns〉 will be transformed to
a new set of target states |φ(1)

ns 〉 = U (0↓) |φns〉. We do not want
population leaving the computational space, so U (0↓) must
satisfy the additional constraint that |φ(1)

ns 〉 ∈ hcomp.
The next pulse sequence, U (0↑), will transform |φ(1)

0↑ 〉
to |0 ↑〉, but we also need to ensure that the previously
prepared state, |0 ↓〉 is unchanged. Thus, we also require
that U (0↑) |0 ↓〉 = |0 ↓〉. For all other target states U (0↑)

will transform them to |φ(2)
ns 〉 = U (0↑) |φ(1)

ns 〉. Once again, the
transformation must prevent any population from leaking out
of the computational space, so |φ(2)

ns 〉 ∈ hcomp.
All the other U (ns) will have a similar form. First of all, U (ns)

will complete the corresponding state preparation, so that

U (ns) |φ(2n+s)
ns 〉 = |ns〉 , (20)

where we use s = 1 for spin up and s = 0 for spin down.
Second, we must keep track of the changes previous U (ns)’s
have made to the original target states. The transformation
U (ns) takes these states from |φ(2n+s)

ns 〉 to some new set of target
states, |φ(2n−s+2)

ns 〉, which must remain in the computational
subspace, in order to prevent population from leaking out of
that space,

U (n↑) |φ(2n+s)
n′s ′ 〉 = |φ(2n+s+1)

n′s ′ 〉 ∈ hcomp n′ > n, (21a)

U (n↓) |φ(2n+s)
n′s ′ 〉 = |φ(2n+s+1)

ns 〉 ∈ hcomp n′ > n; n = n′

and s ′ =↑ . (21b)

Finally, after each U (ns), we will have a growing set
of previously prepared states, {|0 ↓〉 , |0 ↑〉 , |1 ↓〉 , . . .}, and
subsequent U (ns)’s must not allow any further changes to these

states,

U (n↓) |n′s ′〉 = |n′s ′〉 , n′ < n, (22a)

U (n↑) |n′s ′〉 = |n′s ′〉 , n′ < n; n = n′ and s ′ =↓ .

(22b)

We define hid = {|0 ↓〉 , |0 ↑〉 , |1 ↓〉 , . . .} to be those pre-
viously prepared states that must remain unchanged through-
out the rest of the pulse sequence. To fulfill Eqs. (21) and (22)
and carry out the requisite state preparation, all we need to do
is break Uns up as we did in Eq. (15),

U (ns) =
{∏N−n

k=1 U
(ns,2)
k U

(ns,1)
k s =↑ ,

U
(ns,1)
N−n+1

∏N−n
k=1 U

(ns,2)
k U

(ns,1)
k s =↓ ,

(23)

where

U
(ns,1)
k =

{
u

(1)
N−k+1,n s =↑ ,

u
(1)
N−k+1,n−1 s =↓ ,

(24a)

U
(ns,2)
k = u

(2)
N−k+1,n, (24b)

and

u
(1)
j,N =

N∑
l=0

P
(1)
l + M

(1)
j P

(1)
j + W (1)

comp + W
(1)
⊥comp, (25a)

u
(2)
j,N =

N∑
l=0

P
(2)
l + M

(2)
j P

(2)
j + W (2)

comp + W
(2)
⊥comp. (25b)

Examining the action of u
(a=1,2)
j,N , we see that each term

operates on a different subspace. The first term operates on
hid , leaving it unchanged. The second term operates on the
subspace h

(a)
j , with M

(a)
j a two level rotation within that

subspace. The third term, W (a)
comp, is a unitary transformation

that operates in the subspace of hcomp orthogonal to hid ⊕ h
(a)
j .

The fourth term, W (a)
⊥comp, operates on the subspace orthogonal

to hcomp. The precise forms of W (a)
comp and W

(a)
⊥comp are not

important. Rather, it is important that they do not allow any
population to be coupled out of the computational subspace.
By inspection U

(ns,1)
k and U

(ns,2)
k above satisfy Eqs. (21) and

(22) and they satisfy Eq. (20) if M
(a)
j are chosen as described

below. We show in Appendix A and B how to synthesize u
(2)
j,N

and u
(1)
j,N , respectively.

To determine M
(a)
j , we begin by considering the Kth

step synthesizing U (ns) with s =↑, as depicted in Fig. 1.
The population of

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 is spread
throughout the computational space, with the size of the
circles representing the amount of population in each level.
By unitarity,

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 has no overlap with
the states in hid . Figure 1(a) depicts the action of U (ns,1).
It leaves hid unchanged while M

(1)
N−K+1 transfers all the

population of
∏K−1

k=1 U
(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 within h
(1)
N−K+1 to

|N − K + 1 ↓〉. Figure 1(b) depicts the action of U
(ns,2)
K , which

once again does not effect hid , while M
(2)
N−K+1 transfers all the

population in h
(2)
N−K+1 of U

(ns,1)
K

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉
to |N − K ↑〉. The net result of the Kth step synthesizing U (ns)

is shown in Fig. 1(c). As we see, all the population in h
(1)
N−K+1 of
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(a)

(b)

(c)

FIG. 1. The effect of U
(ns,2)
K U

(ns,1)
K on

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 for s =↑. The size of the circles represents the amount of population in
each level. (a) The transformation U

(ns,1)
K leaves hid unchanged, while transferring all the population in h

(1)
N−K+1 of

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉
to |N − K + 1 ↓〉. The four different terms of Eq. (25a) are highlighted by the different boxes. The first box on the left corresponds to
the first term, which performs the identity on hid . The second and fourth boxes correspond to the third term, which performs the unitary
transformation W (1)

comp on the subspace of the computational space orthogonal to hid ⊕ h
(1)
N−K+1. The third box corresponds to the second term,

which performs the two-level rotation M
(1)
N−K+1 on the h

(1)
N−K+1 subspace. The last, open ended box, corresponds to the fourth term, which

performs the transformation W
(1)
⊥comp on the subspace orthogonal to hcomp. (b) The transformation U

(ns,2)
K again leaves hid unchanged, while

transferring all the population in h
(2)
n−K+1 of U

(ns,1)
K

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 to |N − K ↑〉. As before, the boxes represent the four terms of
Eq. (25b). (c) The net effect of U

(ns,2)
K U

(ns,1)
K on

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 is to remove all the population from the highest occupied oscillator
level, N − K + 1, while leaving hid unaffected.

∏K−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 has been transferred to h
(1)
N−K . If

K �= N − n, then we are only concerned with transferring pop-
ulation, so the torque vectors of neither M

(1)
N−K+1 nor M

(2)
N−K+1

require a z component. In the final step of synthesizing U (n↑),
the transformation M

(2)
n+1 must transfer all the population in

h
(2)
n+1 of U

(ns,1)
N−n

∏N−n−1
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 to |n ↑〉 and set
the resulting phase in |n ↑〉 to zero. In this case, we must
control the phase of the final state, so M

(2)
n+1 requires a torque

vector with a z component.
Similarly, if s =↓ and K �= N − n + 1, then

M
(2)
N−K+1M

(1)
N−K+1 must transfer all the population in h

(1)
N−K+1

of
∏K−1

k=1 U
(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉 to h
(1)
N−K . Since we are only

concerned with transferring population, the torque vectors of
neither M

(1)
N−K+1 nor M

(2)
N−K+1 require a z component. During

the last step synthesizing U (n↓), the transformation M (1)
n must

move all the population in h(1)
n of

∏N−n
k=1 U

(ns,2)
k U

(ns,1)
k |φ(2n+s)

ns 〉
to |n ↓〉 and set the resulting phase in |n ↓〉 to zero. In this

case, we must control the phase of the final state, so M (1)
n

requires a torque vector with a z component.

IV. SEMIANALYTIC SYNTHESIS OF ARBITRARY
TRANSFORMATIONS

A. Semianalytic protocol

The analytic construction of the previous section is suf-
ficient to show that the coupled oscillator-spin system can
be controlled in a finite time but we note that the number
of operations needed to carry out a general unitary operation
on the qudit space is prohibitively large. In this section we
will explore numerical optimization in order to speed up
the time required to synthesize an arbitrary transformation.
In particular, fast implementations of the unitary operators
u

(a)
jN in Eq. (25) can substantially shorten the amount of

time required to perform general transformations. For each
target transformation U , we would, however, have to do a
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separate optimization to find the corresponding set of u
(a)
j,N .

We therefore proceed by synthesizing first the following
transformations, which are independent of the chosen target
transformation:

V
(1)
n,N =

⎧⎪⎪⎨
⎪⎪⎩

∑N
j=0 P

(1)
j + eiπσz/2P (1)

n + W
′(1)
comp + W

′(1)
⊥comp, n �= N + 1,∑N

j=0 P
(1)
j + e−iπ/2eiπσz/2P (1)

n + W
′(1)
comp + W

′(1)
⊥comp, n = N + 1, n �= N,∑N

j=0 P
(1)
j + e−iπ/2eiπσz/2P

(1)
N + W

′(1)
⊥comp, n = N + 1, n = N,

(26a)

V
(2)
n,N =

N∑
j=0

P
(2)
j + e−iπσz,j /2P (2)

n + P
(2)
N+1 + W ′(2)

comp + W
′(2)
⊥comp, (26b)

where W
′(a)
comp and W

′(a)
⊥comp are defined analogously to W (a)

comp

and W
(a)
⊥comp and their specific forms are not important for

the rest of the construction. We illustrate the action of V
(1)
j,N

in Fig. 2. Thus, V
(a)
n,N is the identity within h

(a)
id , a z rotation

within h(a)
n , and does not couple any population out of the

computational space. For the following constructions, we will
only need n � N + 1. All of the transformations V

(a)
n,N are

special cases of Eq. (14), so we have already proven we can
synthesize them with the available controls. Once we choose
the dimension of our qudit, we run a single set of optimizations
to find the required V

(a)
n,N for that dimension.

We will need two slightly different types of pulse sequences
to synthesize U

(ns,1)
k and U

(ns,2)
k , depending on whether the

torque vector of M
(1)
j or M

(2)
j requires a z component. We begin

with pulse sequences which use V
(1)
n,N and V

(2)
n,N to perform

arbitrary rotations around a torque vector in the xy plane of
the h(1)

n and h(2)
n subspace, respectively, while also satisfying

Eqs. (21) and (22),

u
(1)
n,N = V

(1)†
n,N

√
Ũ (1)

†
V

(1)
n,N

√
Ũ (1), (27a)

u
(2)
n,N = V

(2)†
n,N

√
Ũ (2)

†
V

(2)
n,N

√
Ũ (2). (27b)

To understand why Eq. (27) holds, we begin with Eq. (27b)
and note that within all the h(2)

n subspaces, the action of
√

Ũ (2)

is a rotation around a torque vector in the x-y plane. The reason
Eq. (27b) holds is because of the different effect V

(2)
n,N has in

the hid and h(2)
n subspaces. Within the h(2)

n subspace, the action
of V

(2)
n,N and V

(2)†
n,N is a rotation around the positive and negative

z axis by π , respectively. Thus, within h(2)
n the effect of V

(2)
n,N

and V
(2)†
n,N in Eq. (27b) is to rotate the torque vector of

√
Ũ (2)†

so that it points in the opposite direction in the x-y plane. In
other words, for a state |ψ〉 ∈ h(2)

n ,

V
(2)†
n,N

√
Ũ (2)

†
V

(2)
n,N |ψ〉 =

√
Ũ (2) |ψ〉 . (28)

Furthermore, since
√

Ũ (2) only couples states in h(2)
n to one

another, we have
√

Ũ (2) |ns〉 ∈ h(2)
n . Therefore, within h(2)

n , the

two
√

Ũ (2) act cumulatively and

V
(2)†
n,N

√
Ũ (2)

†
V

(2)
n,N

√
Ũ (2) |ns〉 = Ũ (2) |ns〉 . (29)

In contrast, within hid , the transformation V
(2)
n,N is the

identity. Then within this subspace, V
(2)
n,N and V

(2)†
n,N have no

effect in Eq. (27b). In other words, for |ψ〉 ∈ h
(2)
id ,

V
(2)†
n,N

√
Ũ (2)

†
V

(2)
n,N |ψ〉 =

√
Ũ (2)

†
|ψ〉 . (30)

Furthermore, if |ks〉 ∈ hid , then
√

Ũ (2) |ks〉 is also in hid and

so
√

Ũ (2)
†

and
√

Ũ (2) cancel one another out, giving

V
(2)†
n,N

√
Ũ (2)

†
V

(2)
n,N

√
Ũ (2) |ks〉 = |ks〉 . (31)

Neither V
(2)
n,N nor

√
Ũ (2) couple states in the computational

subspace to states outside of it, so for |φ〉 ∈ hcomp,

V
(2)†
n,N

√
Ũ (2)

†
V

(2)
n,N

√
Ũ (2) |φ〉 ∈ hcomp. (32)

Thus, we see that the net effect of the sequence

V
(2)†
n,N

√
Ũ (2)

†
V

(2)
n,N

√
Ũ (2) in hid is the identity, within h(2)

n it
applies Ũ (2), and it leaves the remainder of the computational
space within the computational space. Then by choosing

FIG. 2. Illustration of V
(1)
j,N for N+ 1 < n � N .
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Ũ (2) = M (2)
n , we obtain Eq. (27a). A similar argument yields

Eq. (27b).
The pulse sequence which synthesizes torque vectors with

z components within h(1)
n and h(2)

n is a modification of the pulse
sequence just discussed,

u
(1)
n,N = Ũ (1)′†V (1)†

n,N

√
Ũ (1)

†
V

(1)
n,N

√
Ũ (1)Ũ (1)′ , (33a)

u
(2)
n,N = Ũ (2)′†V (2)†

n,N

√
Ũ (2)

†
V

(2)
n,N

√
Ũ (2)Ũ (2)′ . (33b)

Defining m and α by

M (1)
n = e−iαm·σ/2, (34)

if we choose

Ũ (1) = e−iα[cos(ν)σx+sin(ν)σy ]/2, (35a)

Ũ (1)′ = eiησx/2, (35b)

cos(ν) = mx, (35c)

tan(η) = mz

my

, (35d)

then M (1)
n = Ũ (1)†′

Ũ (1)Ũ (1)′ . Finally, we note that since√
Ũ (1)Ũ (1)′ = Ũ (1)′′ is of the form Eq. (5), we use the following

slightly shorter sequence:

u
(1)
n,N = Ũ (1)′†V (1)†

n,N

√
Ũ (1)

†
V

(1)
n,N Ũ (1)′′ . (36)

Thus, Eqs. (27), (33b), and (36) are sufficient to synthesize
arbitrary unitary transformations.

B. Numerical optimization

Our goal in this section is to find a pulse sequence, V
(a)
nN ,sa ,

which approximates V
(a)
nN using fewer pulses than the analytic

sequence described in Sec. III. To do so, we numerically
optimize pulse sequences of the form

V
(a)
n,N ,sa =

M∏
m=1

Ũ (2)
(
g

(a)
n,N ,m,0,β

(a)
n,N ,m,Tg/2

)
, (37)

where Tg = 2π/gmax and gmax is the maximum allowed
coupling strength. The optimization finds a sequence of
{g(a)

n,N ,m,β
(a)
n,N ,m} which minimizes the error up to a global phase

change,

ε(a) = 1

4(N + 1)
min

φ

∣∣∣∣PC

(
V

(a)
n,N − eiφV

(a)
n,N ,sa

)
PC

∣∣∣∣2
. (38)

V
(a)
n,N is only defined on a subspace of the computational space,

and we can hence ignore the unimportant subspace. We begin
by noting that because Tr{PCV

(a)†
nN ,saPCV

(a)
nN ,saPC} � 2(N +

1), we have

ε(a) � 1 − 1

2(N + 1)
|Tr{PCV

(a)†
nN PCV

(a)
nN ,saPC}|. (39)

If we define P
(a)
nN to be the projector onto the optimized

subspace, then

P
(a)
n,N =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑N+1
j=1 P

(2)
j + P (2)

n + P
(2)
n+1 + P

(2)
N+1, a = 1, n �= N + 1, n �= N, (40a)∑N+1

j=1 P
(2)
j + P

(2)
N + P

(2)
N+1, a = 1, n �= N + 1, n = N, (40b)∑N

j=1 P
(2)
j + P (2)

n + P
(2)
n+1 + P

(2)
N+1, a = 1, n = N + 1, n �= N, (40c)∑N

j=1 P
(2)
j + P

(2)
N + P

(2)
N+1, a = 1, n = N + 1, n = N, (40d)∑N

j=1 P
(2)
j + P (2)

n + P
(2)
N+1, a = 2, (40e)

and we arrive at the following error to be minimized:

ε(a)
sa = 1 − 1

2(N + 1)
|d (a)

⊥nN + Tr{P (a)
nNV

(a)†
nN P

(a)
nNV

(a)
nN ,saP

(a)
nN |,

(41)

where d
(a)
⊥nN is the size of the subspace of the computational

space orthogonal to P
(a)
nN . Note that the sums in Eq. (40) begin

with j = 1 while the sums in Eq. (26) begin with j = 0. The
reason is that the form of Ũ (2) ensures that any sequence of
the form Eq. (37) will leave |0 ↓〉 unchanged. Thus, we do
not need to explicitly account for |0 ↓〉 when we perform the
optimizations.

For each V
(a)
nN ,sa , we begin with M = 3 pulses and perform

at most 40 optimizations using MATLAB’s constrained opti-
mization routine, f mincon, with the constraint that g(a)

n,m �
gmax. Each optimization finds a choice of {g(a)

n,m, β(a)
n,m} that is a

local minimum of ε(2)
sa . We repeat this entire procedure, incre-

menting M by 1 each time until we find a pulse sequence which
approximates V

(a)
nN to an error better than a chosen threshold

εthreshold. Since our end goal is to find a sequence of pulses
which approximates our target transformation to a desired
accuracy η, and we need to apply gsa(N ) = 4N2 + 6N + 2
transformations of the form V

(a)
nN to use the construction of

Sec. IV A, our threshold is

εthreshold = η

g2
sa(N )

. (42)

Finally, to bound the total time to synthesize an arbitrary
transformation, we assume gmax = χmax, so we can bound the
time for Ũ (a) by T (Ũ (a)) � 1

2Tg and T (
√

Ũ (a)) � 1
4Tg in Eqs.

(27) and (33). Let Usa be the approximation to an arbitrary
transformation U , synthesized using the semianalytic protocol
of this section. If r is the total number of full rotations Ũ (a) and
s is the total number of half rotations

√
Ũ (a) used to synthesize

Usa , then we can bound the time to synthesize an arbitrary
transformation Usa as

T (Usa) �
(

1

2
r + 1

4
s

)
Tg. (43)
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FIG. 3. Controls for V
(1)
N,N−1 for N = 8. Panel (a) depicts the coupling strength per pulse, g

(1)
N,N−1,m, while panel (b) depicts the angle of

the torque vector relative to the x axis of the Bloch sphere, β
(1)
N,N−1,m. The optimization finds a sequence of {g(a)

nN ,m,β
(a)
nN ,m} as in Eq. (37) that

minimizes the resulting error, ||V (a)
nN − V

(a)
nN ,sa||. The optimization is repeated a number of times with initial random guesses for {g(a)

nN ,m,β
(a)
nN ,m}

and increasingly longer pulses, until a threshold error η � 10−4, as defined in Eq. (42), is achieved.

In Fig. 3 we plot the controls found by numerical opti-
mization to synthesize V

(1)
N,N−1 for N = 8. As is typical for

numerically optimized controls, there is not much structure in
g

(1)
N,N−1,m. However, examination of β

(1)
N,N−1,m reveals that the

torque vector lies near the x axis for much of the synthesized
transformation.

Results from the optimizations are presented in Figs. 4 and
5. In Fig. 4 we plot the time required to reach a threshold of η �
10−4 for two families of transformations, V (1)

N,N−1 and V
(1)
N,N−2,

used to construct more arbitrary transformations. We are able
to reach high fidelity transformations in a time less than 12Tg

in all cases. Though the scaling appears linear for the range of
N we have plotted, there is not sufficient data to conclude that
the scaling is truly linear over a wide range of values for N .
In Fig. 5(a) we plot the bound on the time T (Usa) required by
the semianalytic construction in units of Tg for a target error
of η � 10−4 as given by Eq. (43). In Fig. 5(b) we plot the ratio

2 3 4 5 6 7 8
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N,N 2

T
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ni
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f T

g)

FIG. 4. Time, in units of Tg , required to reach a threshold of
η � 10−4 for two families of transformations, V

(1)
N,N−1 and V

(1)
N,N−2,

where N is the highest controlled oscillator level.

of the bound on the time required by the analytic construction
of Sec. III divided by the bound on the time required for the
semianalytic construction, T (Ua)/T (Usa). The bound on the
time required for the analytic construction is calculated by
Eq. (D6). Although a large number of pulses is required for
the semianalytic construction, it is many orders of magnitude
faster than the fully analytical construction.

Since we are able to synthesize arbitrary unitaries in
dimensions up to d = 2(N + 1), we can compare our results
to the time required to synthesize the same transformations
using n qubits. For concreteness, we consider synthesizing
an arbitrary transformation in a d = 16-dimensional space
consisting of either the N = 7 case of our oscillator and spin
system or four conventional qubits.

The best known decomposition of an arbitrary n-qubit
transformations is given in [36], and for four qubits, it requires
a total of 100 CNOTs. However, this result assumes that any two
qubits may be directly coupled while often two qubits can only
be coupled via a bus qubit or oscillator degree of freedom. Thus
for any CNOT, two extra SWAP operations are needed so the total
number of two-qubit operations is closer to 300. The number
of two-qubit operations is a lower bound on the total time, and
if each two-qubit gate requires a time on the order of Tg , we
estimate the total time to implement an arbitrary four-qubit
gate with the best known gate decomposition to be bounded
by Tgate > 300Tg . Taking this estimate into account, we see
from Fig. 5(a) that when N = 7, the semianalytic approach of
this section is only longer by a small factor than the bound
on the multiqubit approach. A detailed comparison of the
multiqubit and semianalytic approach including all SWAPs,
single qubit gates, the optimum gate decomposition in our
architecture and the role of decoherence is beyond the present
scope of this paper. However, we can already conclude that
the performance of our semianalytic approach makes qudit
computing comparable with qubit implementations.

V. FULLY NUMERICAL SYNTHESIS OF CINC′

While the preceding section shows that arbitrary uni-
taries can be synthesized more rapidly with the semianalytic
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FIG. 5. (a) Bound on the time, in units of Tg , to synthesize an approximation Usa to an arbitrary target transformation U using the
semianalytic construction versus the highest controlled oscillator level N . The bound is given in Eq. (43). The semianalytic pulse sequence
replaces the most time consuming pulses of the analytic construction with the numerically optimized pulses V

(a)
nN ,sa . The time plotted is the

minimum time found to approximate U to the target error of η � 10−4. (b) Log plot of the ratio of the bound on the time required by the
analytic construction divided by the time required for the semianalytic construction, T (Ua)/T (Usa), to synthesize U to an error η � 10−4. The
time required for the analytic construction is calculated using Eq. (D6).

protocol, the time required may not be optimal. To find a
pulse sequence that performs even better, we now investigate
a fully numerical optimization where the coupling between
the spin and the oscillator is held constant while we allow
the spin detuning �(t), Rabi frequency χ (t), and phase φ(t),
to be stepwise constant during intervals of duration dt , for
a total time Tf . The values of �(t), χ (t), and φ(t) during
each interval are optimized with MATLAB’s fminunc, which
performs an unconstrained optimization of χ (t), �(t), and
φ(t). In principle, this could yield values of the Rabi frequency
and detuning which are not experimentally realistic. However,
we seed the initial random guess with χ (t),�(t) � 0.9g, and
we find optimal controls with χ (t),�(t) � 2g. Unconstrained
optimization does not result in χ (t),�(t)  g because that
would effectively decouple the spin and the oscillator, making
it impossible to synthesize general unitary transformations.
For each dt and Tf , 20 optimizations are performed, and the
pulse sequence with the highest fidelity is chosen. As a test
case, the gate we have optimized is

CINC′ = | ↓〉〈↓ | ⊗
N∑

n=0

|n〉〈n| + | ↑〉〈↑ | ⊗
N∑

n=0

|n ⊕ 1〉〈n|.
(44)

This gate increases the oscillator level by 1, modulo N + 1,
conditional on the spin being s =↑. As we will see in Sec. VI,
this gate can be used to construct two qudit gates. The fidelity
of the optimized gate Uf n with the target gate U is

F = 1

[2(N + 1)]2
|Tr{U †

f nU}|2. (45)

For small errors, the gate fidelity can be related to the error
defined above by

F = 1 − 2η. (46)

The optimizations have to be performed within a finite
subspace and to ensure we can perform the optimizations in
a reasonable amount of time, we keep this subspace as small
as possible, and we penalize the leakage of population out of
the computational space. In practice, we divide the simulated
subspace into three regions given by N < Npad < Nopt . The
highest oscillator level in the computational space is N and the
largest oscillator level we use in the optimization is Nopt . We
pad the calculation with a subspace lying above N but below
Npad + 1 and any population that leaks into this subspace is
not penalized. On the other hand, we penalize any population
that leaks into the levels lying above Npad during the course of
the evolution. We can calculate the population which leaks out
of Npad during the course of the evolution and average over
all states in the computational space |ψ〉,

L =
P∑
j

dt

∫
dψ ||PLUf n(tj ) |ψ〉 ||2, (47)

where P is the total number of pulses, Uf n(tj ) is the total
evolution after the j th subpulse, and PL is the projector onto
the subspace which we wish to penalize,

PL =
Nopt∑

Npad+1

|n〉〈n|. (48)

The integral over |ψ〉 can be simplified [37], so the leakage is

L =
P∑
j

1

2(N + 1)(2N + 3)
(Tr{M(tj )M(tj )†}+|Tr{M(tj )}|2),

(49)

where

M(tj ) = PCUf n(tj )†PLUf n(tj )PC. (50)
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FIG. 6. Numerically optimized control pulses used to synthesize
CINC′ for the N = 2, dt = 0.5Tg , and Tf = 20Tg case.

Then the optimized quantity is

CFN = 1 − F + wL. (51)

After finding a pulse sequence which minimizes CFN we
calculate the system’s evolution in a larger subspace, Ncheck >

Nopt , and recalculate the gate fidelity to ensure that using
only a finite number of oscillator levels does not effect the
calculation. We have found empirically that w = 100 ensures
that the leakage out of the computational space is sufficiently
small that when we recalculate the fidelity in the larger space,
it is still high enough.

In Fig. 6 we plot the controls for the N = 2, dt = 0.5Tg ,
and Tf = 20Tg case. Although we perform an unconstrained
optimization, we see in Figs. 6(a) and 6(b) that neither χ nor
� require values that are large compared to g, as anticipated.
Beyond that, there is no real structure to the controls, as is
typical when they have been numerically optimized.

In Fig. 7(a) we plot the fidelity, F versus time for N =
2,3, with time in units of the vacuum Rabi period Tg . We
perform the optimizations for two different subpulse lengths,
dt = 0.5Tg and dt = Tg . We use Npad = N + 3, Nopt = N +
5, and Ncheck = 4Nopt . With dt = 0.5Tg we achieve errors on
the order of 10−4 with tens of pulses for both N = 2 and

N = 3, substantially shorter than the semianalytic approach,
cf. Fig. 5.

VI. TWO MODE CONTROL

In this section, we extend our results to cover arbitrary
quantum gates between qudits stored in the modes of different
harmonic oscillators. We consider the system described by
Eq. (1), so that each oscillator is coupled to a central spin. In
this case, it is more convenient to take the computational space
to consist of the first n = 0 . . . N levels of each oscillator. Then
if there are m oscillators, the size of the quantum computer’s
Hilbert space is (N + 1)m. Our controls are once again the
time-dependent χ , φ, �, gk , and βk . For simplicity, we assume
only a single gk �= 0 at a time, so that only one oscillator is
coupled to the central spin, and we optimize χ , φ, and �.
Although the oscillators are never directly coupled, we can
use the central spin as a bus to synthesize multiqudit gates,
using the gates developed in previous sections.

In analogy to qubits, multiqudit gates can be synthesized
from a universal gate set. Along with arbitrary single qudit
gates, the two-qudit CINC gate is sufficient to synthesize
arbitrary multiqudit gates [21], where CINC is defined as

CINC =
N−1∑
n1=0

|n1〉〈n1| ⊗
N∑

n2=0

|n2〉〈n2|

+ |N〉〈N | ⊗
N∑

n2=0

|n2 ⊕ 1〉〈n2|, (52)

where |n1〉 and |n2〉 are the energy levels of the first and second
oscillator, respectively. The action of CINC is similar to that of
CINC′, with the target qudit’s level increased by 1 modulo N

if the control is in |N〉. Because we have already shown we
can synthesize arbitrary single qudit gates, showing that we
can synthesize the two-qudit CINC is sufficient to prove we can
synthesize arbitrary multiqudit gates.

In fact, we can synthesize CINC by using the spin as a bus
between the two oscillators. We first define

BUS =
N−1∑
n=0

P (2)
n + σx,N + W, (53)

where W acts on the h
(2)
N+1 ⊕ h

(2)
N+2 ⊕ . . . subspace. Thus,

assuming the central spin is initialized to spin down, the
two-qudit CINC can be synthesized from

BUS
†
2sCINC′

s1BUS2s = CINC12 ⊗ | ↓〉〈↓ | + W↑ ⊗ | ↑〉〈↑ |,
(54)

where the form of W↑ is unimportant. In the above notation
Mab is meant to indicate that the control is system a and the
target is b, where {a,b} = {1,2,s} is the first qudit, second
qudit, and central spin. Thus, BUS2s couples the spin and the
second oscillator, while CINC′

s1 couples the spin and the first
oscillator. To ensure that only one oscillator couples to the spin
we assume that g1 = 0 while we synthesize BUS2s and g2 = 0
while we synthesize CINC′

s1
We have seen in the previous section how to synthesize

CINC′
s1, which acts between the first qudit and the spin. Since

BUS2s is a particular U (2), we can synthesize it with the
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FIG. 7. (Color online) Fidelity vs time in units of Tg for N = 2,3. In panel (a), we plot the fidelity of CINC′, which couples a single oscillator
to the spin. The coupling strength between the spin and the oscillator is equal to the maximum Rabi frequency for the entire sequence. The
spin’s Rabi frequency, phase, and detuning are piecewise constant for subpulse durations of either dt = 0.5Tg or dt = Tg and the values during
each subpulse are numerically optimized. In panel (b), we plot the fidelity of CINC, which couples two qudits stored in separate oscillators.
The gate is decomposed into CINC′ and BUS as in Eq. (54). The spin couples to one oscillator at a time, and is used as a bus between the two
oscillators. We use CINC′ as optimized in Sec. V and BUS is optimized using the methods of Sec. IV B. The fidelities of the two gates are so
similar to one another because BUS is synthesized with a very high fidelity. However, a finite time is required to synthesize BUS, so CINC requires
more time than CINC′.

following sequence:

BUS2s ≈
M∏

m=1

Ũ (2)(gmax,�m,0,dt), (55)

where Ũ (2) is taken to operate between the spin and second
oscillator. As in Sec. V, we choose to work with a constant
pulse width dt and numerically optimize �m using the same
procedure used to synthesize V

(a)
n,N ,sa in Sec. IV B. For each N

and dt , after the optimization we choose the pulse sequence
which achieves an error below ε(2) � 10−4 with the fewest
number of pulses. Finally, we synthesize BUS

†
2s with

BUS
†
2s ≈

1∏
m=M

Ũ (2)(gmax, − �m,π,dt), (56)

where the order of the product has been reversed, so that the
Mth pulse is applied first, and we use the same detunings �m

used to synthesize BUS. Since �m is one of our controls, we
are free to reverse its sign, and β = π effectively reverses
the sign of the coupling between the oscillator and the
spin.

We plot the gate fidelity vs the total time to synthesize the
two-qudit CINC in units of Tg in Fig. 7(b) for N = 2,3 and for
dt = 0.5Tg,Tg . Each data point represents a different number
of pulses used to synthesize CINC′

s1, while for each N and dt ,
BUS2s is uniquely specified as described above. Because we
have chosen to synthesize BUS2s with a relatively high fidelity,
the fidelity of CINC and CINC′

s1 are quite close. On the other
hand, BUS2s takes a finite time to synthesize, so the time to

synthesize the two-qudit CINC is somewhat longer than the
time to synthesize CINC′

s1. We see that once again for both
N = 2,3 we are able to achieve infidelities on the order of
10−4. In conclusion, because the two-qudit CINC is universal
for qudit quantum computation, we have shown that we can
synthesize arbitrary multiqudit gates.

VII. SUMMARY

We have studied qudit quantum computation in the Jaynes-
Cummings model. Our qudits consist of the first N levels of
a harmonic oscillator and our controls consist of the coupling
between the oscillator and a spin-1/2 system as well as
the drive of the spin. Beginning with these simple controls,
we showed that arbitrary rotations within distinct two level
subspaces are possible. Using these arbitrary rotations, along
with the state preparation scheme of Law and Eberly [1], we
designed a protocol to synthesize arbitrary single qudit gates
using only resonant interactions between the oscillator and
spin. While the analytic protocol is sufficient to provide a
proof of principle that resonant interactions can be used to
synthesize arbitrary transformations, it was not necessarily
optimal in the time it required. However, we were able to
use numerical optimization to reduce the time required to
synthesize arbitrary transformations. A comparison between
the semianalytic routine and qubit-based approaches showed
comparable times between the two, while our semianalytic
protocol had the advantage of requiring fewer multimode
interactions. Furthermore, because the optimized interactions
are relatively simple, the semianalytic approach can be used
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with relatively large N . Although the semianalytic approach
provides a substantial speedup over the analytic protocol, it
is still not necessarily optimal. To speed up the synthesis of
qudit transformations even further, we numerically optimized
all aspects of the controls, without making any analytic
simplifications. Because of the need to control leakage,
this approach is limited to smaller N , but can reach high
fidelities in a time an order of magnitude shorter than the
semianalytic approach. Finally, we have shown that extending
these protocols to synthesize two-mode gates with high fidelity
in a short time is possible.
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APPENDIX A: SYNTHESIS OF U (2)

Our goal is to show that transformations of the form Eq. (13)
are sufficient to synthesize more general transformations of the
form Eq. (14). We cannot synthesize U (2) exactly, so instead
we will synthesize an approximation, U (2)

a with an error

E′(2) = ∣∣∣∣PC

(
U (2) − U (2)

a

)
PC

∣∣∣∣, (A1)

where ||M|| =
√

Tr{M†M}. We will also bound the time
needed to synthesize U (2) in terms of the qudit dimension,
N + 1, and the desired error E′(2). Our method is largely based
on [38], so we present their results for completeness.

1. Pulse sequence

We begin by breaking the transformation in Eq. (14) up into
its constituent Euler angles,

U (2) = V1V2V3, (A2)

where

V1 =
N+1∏
n=0

eiαn1σx,n/2, (A3a)

V2 =
N+1∏
n=0

eiαn2σy,n/2, (A3b)

V3 =
N+1∏
n=0

eiαn3σx,n/2, (A3c)

are the three Euler rotations with n dependent rotation
angles. By construction, α0k = 0, so we are only dealing with
N + 1 distinct subspaces. We can perform a discrete cosine
transform on the rotation angles [39],

αnk√
n

=
N∑

l=0

akl cos

(
π

(
n + 1

2

)
l

N + 1

)
. (A4)

The Euler rotations may then be written

Vk =
N∏

l=0

Wkl, (A5)

where

W1l =
N+1∏
n=0

eia1l

√
n cos[π(n+1/2)l/(N+1)]σx,n/2, (A6)

W2l =
N+1∏
n=0

eia2l

√
n cos[π(n+1/2)l/(N+1)]σy,n/2, (A7)

W3l =
N+1∏
n=0

eia3l

√
n cos[π(n+1/2)l/(N+1)σx,n]σx,n/2. (A8)

Then Wkl corresponds to the lth term in the Fourier series of
the kth Euler rotation. Thus we have reduced the problem of
synthesizing the transformations of Eq. (14), whose depen-
dence on the harmonic oscillator level n is arbitrary, to the
problem of synthesizing rotations around the x or y axis for
which the n dependence is of the form

√
n cos(π(n+1/2)l

N+1 ).
To show that the Fourier terms may be synthesized, we

begin with a sequence of pulses of the form Eq. (13),

ta =
N+1∏
k=0

e−idφ′√kσx,k/2
N+1∏
l=0

e−idφ′√lσy,l/2

×
N+1∏
m=0

eidφ′√mσx,m/2
N+1∏
n=0

eidφ′√nσy,np /2

≈
N+1∏
n=0

e−i n dφ σz,n/2. (A9)

Where dφ = dφ′2 is small enough the above approximation
holds. Repeating this procedure Q times allows us to generate
larger rotations around the z axis,

Ta = tQ ≈
N+1∏
n=0

e−i n φ σz,n/2, (A10)

where φ/Q = dφ and φ is not necessarily small. For Eq. (A10)
to hold, Q must be sufficiently large and we will determine how
large below. If we choose φ = 2πl/N , then we can synthesize,

wa,kl1

= T †
a Ũ2

(
gmax,0,

lπ

N + 1
,
dθkl

gmax

)
Ta

≈
N+1∏
n=0

e−idθkl

√
n{cos[π(n+1/2)l/(N+1)]σx,n−sin[π(n+1/2)l/(N+1)]σy,n}/2,

(A11a)

wa,kl2

=TaŨ2

(
gmax,0, − lπ

N + 1
,
dθkl

gmax

)
T †

a

≈
N+1∏
n=0

e−idθkl

√
n{cos[π(n+1/2)l/(N+1)]σx,n+sin[π(n+1/2)l/(N+1)]σy,n}/2.

(A11b)

For dθkl sufficiently small, we then have

wa,kl1wa,kl2 ≈
N+1∏
n=0

e−i2dθkl

√
n cos[π(n+1/2)l/(N+1)]σx,n/2. (A12)
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Repeating the above sequence P times allows us to synthesize
the net transformation,

Wa,kl = (wa,kl1wa,kl2)P ≈
N+1∏
n=0

e−iαkl

√
n cos[π(n+1/2)l/(N+1)]σx,n/2,

(A13)
where dθkl = αkl/2P . For P sufficiently large, we have
Wa,kl ≈ Wkl . Since this shows we can generate arbitrary terms
in the Fourier expansion of the Euler angles which define the
rotation in Eq. (14), we have proven that we can synthesize
arbitrary transformations of the form Eq. (14).

2. Relating P and Q to errors synthesizing U (2)

In this section, we relate the error in synthesizing U (2) to
P and Q. This relation will allow us to discuss the tradeoff
between the accuracy and time with which we synthesize U (2)

in the next section. Direct calculations show us that if

T =
N+1∏
n=0

e−i n φ σz,n/2, (A14)

then the error in synthesizing Ta is

ε′
T = ||PC(T − Ta)PC || (A15a)

� 4(2π )3/2(N + 1)5/2

√
Q

, (A15b)

where we have neglected terms of order (N+1)3

Q
and smaller.

Furthermore, the error in synthesizing any particular Wkl is

ε′
Wkl

= ||PC(Wkl − Wa,kl)PC ||
� P

∣∣∣∣PC

(
W

1/p

kl − wa,kl1wa,kl2
)
PC

∣∣∣∣. (A16)

If we define

wkl1

= T †Ũ2

(
gmax,0,

lπ

N + 1
,
dθkl

gmax

)
T

=
N+1∏
n=0

e−idθkl

√
n{cos[π(n+1/2)l/(N+1)]σx,n−sin[π(n+1/2)l/(N+1)]σy,n}/2,

(A17a)

wkl2

= T Ũ2

(
gmax,0, − lπ

N + 1
,
dθkl

gmax

)
T †

=
N+1∏
n=0

e−idθkl

√
n{cos[π(n+1/2)l/(N+1)]σx,n+sin[π(n+1/2)l/(N+1)]σy,n}/2,

(A17b)

then the error in wa,klj is

ε′
wa,klj

= ||PC(wklj − wa,klj )PC ||. (A18)

Since ε′
wa,kl1

≈ ε′
wa,kl2

we can bound ε′
Wkl

ε′
Wkl

� P
[∣∣∣∣PC

(
W

1/p

kl − wkl1wkl2
)
PC

∣∣∣∣ + 2ε′
wa,kl1

]
. (A19)

Furthermore,

ε′
wa,klj

� 2ε′
T , (A20)

and

∣∣∣∣PC

(
W

1/p

kl − wkl1wkl2
)
PC

∣∣∣∣ �
√

2

(
2π

P
(N + 1)

)2

, (A21)

where we have neglected terms of order (N+1)5/2

P 3 and smaller.
Then

ε′
Wkl

� P

[√
2

(
2π

P
(N + 1)

)2

+ 16
(2π )3/2(N + 1)5/2

√
Q

]
.

(A22)

Now we relate the errors in the individual Fourier terms of
the Euler angles, Wa,kl , to the errors in U (2)

a ,

E′(2) � 3(N + 1) max
k,l

||PC(Wkl − Wkl,a)PC ||. (A23)

Since the bound on ||PC(Wkl − Wkl,a)PC ||, Eq. (A22), is
independent of k and l, we have

E′(2) � 3P

[√
2(N + 1)3

(
2π

P

)2

+ 16
(2π )3/2(N + 1)7/2

√
Q

]
.

(A24)

3. Time to synthesize U (2)

Let T (M) be the time to synthesize a transformation M ,
then

T (U (2)
a ) � 3(N + 1) max

kl
T (Wa,kl). (A25)

From Eqs. (A13) and (A11) we see that

T (Wa,kl) = 4PT (Ta). (A26)

The time to synthesize Ta is bounded by T (Ta) � 4Tg

√
Q

2π
so

that T (Wa,kl) = 16√
2π

P
√

QTg , where Tg = 2π
g

. Then

T (U (2)
a ) � 48√

2π
P

√
QTg(N + 1). (A27)

We are free to choose P and Q, but comparing Eqs. (A24)
and (A27), we see that there is a tradeoff between minimizing
E′(2) and T (U (2)). For most cases, we have a target accuracy,
E′(2), and we would like to minimize the time required to
reach that accuracy. We do so by first choosing P and Q so
that equality holds in Eq. (A24), which gives

Q = 18432π3(N + 1)7P 4

[12
√

2π2(N + 1)3 − E′(2)P ]2
. (A28)

Plugging this value for Q into Eq. (A27) and finding the value
of P which minimizes T (U (2)

a ) gives

T (U (2)
a ) � k(2)Tg

(N + 1)10.5

E′(2)3
, (A29)

where k(2) ≈ 2.7 × 109.
There are several reasons why the scaling with N and E(a)

is so bad. The first problems arise from the approximation
used to synthesize ta . Even though ta is effectively a very
small rotation, the time to synthesize it is still proportional to
1/

√
Q. Then ta is repeated Q times to synthesize Ta and in

order for the approximation Eq. (A9) to hold, Q must be
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large, and so synthesizing Ta requires a time much larger
than Tg . To make matters worse, Ta is used to synthesize
the effectively infinitesimal pulses, wklj,a . Because wklj,a is
repeated P times to synthesize Wkl,a , we must repeat Ta . In
order for the approximation in Eq. (A12) to hold, P must
be large and because we use Ta so many times, it must
be synthesized with extremely high precision. In addition,
because T (wklj,a) is finite and wklj,a is repeated P times,
T (Wkl,a) is extremely large, which in turn forces our estimate
for T (U (2)) to be extremely large. Thus, the combination of
the approximations in Eqs. (A9) and (A12) and the finite time
required to synthesize ta conspire to generate terrible scaling
with N and E(a). We conclude by noting that u

(2)
jN is a special

case of U (2), so we have also shown in this section that we can
synthesize u

(2)
jN .

APPENDIX B: SYNTHESIS OF u(1)
jN

Next, we construct transformations of the form Eq. (25a).
We begin by noting that we have already shown that we can
synthesize transformations of the form Eq. (26a), because they
have the same form as Eq. (14). Thus to construct u

(1)
jN we can

use either Eq. (27a) or Eq. (33a), depending on whether the
torque vector of M

(1)
j has a z component.

The time required to synthesize u
(1)
jN ,a is dominated by the

time to synthesize V
(1)
nN ,a . Since the bound on T (V (1)

nN ,a) is given
by Eq. (A29) we have

T (u(1)
jN ,a) � 2k(2)Tg

(N + 1)10.5

E′(2)3
. (B1)

However, we would prefer to relate this to the accuracy
with which we synthesize u

(1)
jN ,a , ε′(1). Since the errors in

synthesizing u
(1)
jN ,a are due entirely to the errors in synthesizing

V
(1)
nN ,a , we have ε′(1) = 2E′(2), and so

T (u(1)
jN ,a) � k(1)Tg

(N + 1)10.5

ε′(1)3
, (B2)

where k(1) ≈ 4.4 × 1010.

APPENDIX C: TREATING THE OVERALL PHASE

In many cases, we are not concerned about the overall
phase of the transformation we seek to synthesize and so we
are usually interested in minimizing,

ε(a) = min
φ

∣∣∣∣PC

(
U (a) − eiφU (a)

a

)
PC

∣∣∣∣, (C1)

with a = 1,2. However neither the error in Ta or Wkl is
improved by ignoring the overall phase,

min
φ

||PC(T − eiφTa)PC ||
= ||PC(T − Ta)PC ||, (C2a)

min
φ

∣∣∣∣PC

(
W

1/p

kl − eiφwkl1wkl2
)
PC

∣∣∣∣
= ∣∣∣∣PC

(
W

1/p

kl − wkl1wkl2
)
PC

∣∣∣∣. (C2b)

As a result, ignoring the overall phase does not improve
the error or shorten the time to synthesize a pulse when

using the analytic construction of this appendix. Thus, we
can replace ε′(a) with ε(a) and the calculated times remain
unchanged. For comparison with the numerical optimization
presented later we give the time to synthesize a pulse in terms
of ε(a),

T (U (2)
a ) � k(2)Tg

(N + 1)10.5

ε(2)3
, (C3a)

T (u(1)
jN ,a) � k(1)Tg

(N + 1)10.5

ε(1)3
. (C3b)

APPENDIX D: TIME TO SYNTHESIZE ARBITRARY
TRANSFORMATIONS

Now we are ready to give the time required to synthesize an
arbitrary unitary transformation on the computational space.
In Sec. III we described how to synthesize an arbitrary
transformation U using u

(a)
jN . Since we now have a method

to synthesize u
(a)
jN ,a ≈ u

(a)
jN we can use u

(a)
jN ,a to synthesize a

transformation Ua that approximates our target transformation
U with an error bounded by δ,

min
φ

||PC(U − eiφUa)PC || � δ. (D1)

As described in Appendix B, u(1)
jN ,a is synthesized using several

u
(2)
jN ,a’s. As a result, all the errors which result in synthesizing

Ua are due to the errors in synthesizing u
(2)
jN ,a . If ga(N ) =

3N2 + 5N + 2 is the number of u
(2)
jN ,a used to construct Ua ,

then the error with which we synthesize any given u
(2)
jN ,a must

be bounded by

ε(u(2)
jN ,a) � δ

ga(N )
. (D2)

Then the total time for one of the u
(2)
jN ,a’s used to synthesize

Ua is

T (u(2)
jN ,a) � k(2)Tg

(3N2 + 5N + 2)3(N + 1)10.5

δ3
. (D3)

Finally, because the time to synthesize Ua is dominated
by the time to synthesize u

(2)
jN ,a and there are ga(N ) such

transformations needed to synthesize Ua , the total time
is

T (Ua) � k(2)Tg

(3N2 + 5N + 2)4(N + 1)10.5

δ3
. (D4)

It is also common to deal with a quantity which can be related
to the gate fidelity [40],

η = min
φ

1

4(N + 1)
||PC(U − eiφUa)PC ||2. (D5)

In terms of η the total time is

T (Ua) � kTg

(3N2 + 5N + 2)4(N + 1)9

η3/2
, (D6)

where k ≈ 3.4 × 108.
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