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Probe readout and quantum-limited measurements
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We consider the readout process on a probe made of N qubits (two-level systems) in a quantum single-parameter
estimation scheme. The parameter-dependent evolution of the probe as well as the measurements that are done
for readout are assumed to be fixed. We find the optimal initial states of the probe that will saturate the quantum
Cramér-Rao bound under these conditions. The relation between the optimal state of the N -qubit probe and that
of the one-qubit probe is obtained for both entangling and nonentangling dynamics for the probe qubits. We study
the limitations placed on the optimal initial state of the probe and on the achievable measurement uncertainty by
the restrictions on the readout procedure.
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I. INTRODUCTION

In modeling quantum limited measurements, in particular
single-parameter estimation, a quantum system that acts as the
probe interacts with the measured system in a way that depends
on the value of the parameter of interest [1–5]. Knowing
the change in the state of the probe that is generated by a
parameter-dependent Hamiltonian, an estimate of the value
of the parameter is obtained. However, there is scope to fall
into an infinite regression at this step in the modeling of
the measurement because, after all, knowing the state of the
probe means a measurement of the parameters that describe
the state of the probe. So the question of what or who measures
the probe, and how, is immediately brought up. Part of the
answer lies in the observation that complete knowledge about
the state of the quantum probe is not required to obtain the
value of the measured parameter. Furthermore a wide variety
of quantum limited measurement schemes can be mapped on
to one in which the quantum probe is assembled by putting
together a large number of elementary quantum systems with
low-dimensional Hilbert spaces [6]. For instance, without loss
of generality, one can assume that the probe is made up of N

two-level quantum systems or qubits [1]. The results of von
Neumann-type projective measurements [7] on to the small,
countable, set of basis states of the individual probe units
are sufficient to estimate the possibly irrational value of the
parameter of interest to any degree of accuracy. The accuracy
is dependent on the nature of the quantum probe, the number
of elementary units in it, and the number of times the probe
is applied. To avoid confusion with the measurement of the
parameter, we will refer to the measurements on the probe
itself as a readout of the probe.

The readout process is not fully understood either. This
is evidenced by several decades of discussions and literature
on topics ranging from the collapse of the wave function to
decoherence and pointer states [8,9]. However, there is not
much debate as to whether such readouts can be performed in
the laboratory or not, since it indeed is routinely done. Even
more sophisticated readouts that include positive operator
valued measures (POVMs) can be done in the laboratory,
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and they ultimately boil down to making a larger number of
projective measurements on the probe [10,11].

The motivation for this paper is the observation that not
many types of readouts are possible given the available
technology in the design of a quantum limited metrology
experiment. For instance, in precision measurements using
interferometers and light, the readout of the state of the light at
the output ports is often limited to photon counting [1,12–17].
There are several ways of using photon counting to accomplish
readouts of parameters, other than photon number, associated
with the state of the light in an interferometer, such as relative
phase, by combining known transformations of the state with
photo counts [18–20]. In particle-based metrology protocols
like Ramsey interferometry as well, the output state of the
spins or atoms is subject to either Stern-Gerlach-type or
fluorescence-type readouts [21,22].

Given the restrictions on the types of readouts that are
possible, we find the optimal input state of a quantum probe
made of many qubits for a fixed readout procedure and for
different choices for the parameter-dependent evolution of the
probe. In the next section we review the quantum Cramér-Rao
bound that forms the basis for the formulation of the problem.
In Sec. III the optimal input state for a nonentangling evolution
is found. The optimal input state for an entangling evolution
is discussed in Sec. IV followed by a discussion of our results
in Sec. V.

II. SATURATING THE QUANTUM CRAMÉR-RAO BOUND

The quantum Cramér-Rao bound [23–26] gives the theo-
retical lower bound on the measurement uncertainty in the
estimate of a single-parameter X as

δX � 1√
F(X)

� 1√
〈L2〉

, (1)

where F is the quantum Fisher information. The symmetric
logarithmic derivative operator L is defined implicitly by the
equation

1

2
(LρX + ρXL) = dρX

dX
≡ ρ ′

X. (2)

The measurement uncertainty δX is quantified using the units
corrected, root-mean-squared deviation of the estimate of X
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from its true value:

δX = Xest

|d〈Xest〉X/dX| − X.

Let a general readout on the probe be described by a POVM
with a one-parameter family of elements E(ξ ) such that∫

dξE(ξ ) = 1.

Let p(ξ |X) = tr[E(ξ )ρX] be the measured probabilities for
various outcomes of the POVM when the true value of the
measured parameter is X. As shown in Ref. [23], the quantum
Fisher information is given by

F = max
{E(ξ )}

F, (3)

where F is the classical Fisher information computed from the
probability distribution for the measurement outcomes as

F =
∫

dξ p(ξ |X)

[
d ln p(ξ |X)

dX

]2

=
∫

dξ
1

p(ξ |X)

[
dp(ξ |X)

dX

]2

.

The maximization in the Eq. (3) is over all possible readout
procedures (POVMs) on the probe. Such a maximization is
indeed a daunting task and even if it can be done, implementing
the POVM that maximizes the Fisher information, thereby
minimizing the measurement uncertainty, may, in all likeli-
hood, be impossible to implement in the laboratory. The second
inequality in (1) circumvents the maximization problem by
placing an upper bound on F in terms of the expectation
value of the square of the symmetric logarithmic derivative
operator L. This expectation value can be computed directly
from the initial state of the probe and its parameter-dependent
dynamics, independent of the readout procedure. In the context
of the current paper it is worth reprising the sequence of steps
detailed in Ref. [23] that lead to this upper bound. We have

F =
∫

dξ
1

tr[E(ξ )ρX]

[
d

dX
tr[E(ξ )ρX]

]2

,

=
∫

dξ
1

tr[E(ξ )ρX]
{tr[E(ξ )ρ ′

X]}2,

=
∫

dξ
1

tr[E(ξ )ρX]

[
1

2
tr
[
E(ξ )LρX + E(ξ )ρXL

]]2

,

=
∫

dξ
1

tr[E(ξ )ρX]
(Re{tr[ρXE(ξ )L]})2, (4)

where we have used Eq. (2), the cyclic nature of the trace and
the hermiticity of L and E(ξ ) to obtain the last equality in the
equation above. Our focus is on the case where the second
inequality in (1) is saturated. When

Im{tr[ρXE(ξ )L]} = 0, (5)

we have

F =
∫

dξ
1

tr[E(ξ )ρX]
|tr[ρXE(ξ )L]|2

=
∫

dξ

∣∣∣∣tr
[ √

ρXE(ξ )√
tr[E(ξ )ρX]

√
E(ξ )L√

ρX

]∣∣∣∣
2

. (6)

Using the Schwarz inequality, |〈x,y〉|2 � 〈x,x〉〈y,y〉 for the
trace norm, we can write an upper bound on the classical Fisher
information as

F �
∫

dξ tr

{
E(ξ )ρX

tr[E(ξ )ρX]

}
tr[E(ξ )L2ρX]. (7)

The Schwarz inequality is saturated when√
E(ξ )ρX = λξ

√
E(ξ )L√

ρX, (8)

for all ξ , where λξ are constants [see Eq. (11)] that depend
only on ξ . Assuming Eq. (8) holds, we get

F =
∫

dξ tr[E(ξ )L2ρX] = tr(L2ρX) = 〈L2〉, (9)

and the second inequality in (1) is saturated. Equations (5)
and (8) furnish the conditions on the the readout procedure
(POVM) such that a quantum probe in the initial state ρX

that undergoes the parameter-dependent evolution implicitly
contained in L will attain the quantum Cramér-Rao bound.
Multiplying Eq. (8) by

√
E(ξ ) from the left and

√
ρX from the

right we obtain

E(ξ )

(
L − 1

λξ

1

)
ρX = 0, (10)

for any ρX. The above equation is satisfied if the readout
is taken to be a set of orthogonal projectors, E(ξ ), on
to the complete set of orthonormal eigenstates of L. The
constants λξ are therefore inverses of the eigenvalues of L
with

1

λξ

= tr[E(ξ )LρX]

tr[E(ξ )ρX]
. (11)

Condition (5) implies that λξ are real.
In situations where the readout procedure is fixed due

to practical reasons or otherwise, one can now formulate
the problem of finding the optimal initial state of the probe
ρX as follows. We limit ourselves to the rather common
case where the readout is a complete set of orthogonal
projective measurements. Even if the readout is realized by
a more general POVM, we assume that a suitable Neumark
extension [10,11] has been used to reduce it to complete set of
orthonormal projectors. Given this complete set of orthogonal
projectors denoted as {|ξ 〉}, we can construct the symmetric
logarithmic derivative operator corresponding to this readout
procedure as

L =
∑

ξ

1

λξ

|ξ 〉〈ξ |.

The optimal initial state of the probe ρX for this readout
satisfies the equation

1
2 (LρX + ρXL) = ρ ′ = −i[H, ρX], (12)

assuming that the parameter-dependent evolution of the probe
is generated by the Hamiltonian

Hprobe = XH. (13)

In the following we will investigate the solutions of Eq. (12)
for two choices of H , one that entangles the probe qubits and
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one that does not. The number of probe qubits N is the resource
against which the performance of the measurement scheme
is calibrated. The discussion here is quite general and can be
applied to the case where the number of probe units itself is not
the most important resource. For instance, in interferometry
with light the circulating power in the interferometer and not
the number of photons is the crucial, limited resource [12]. In
other words, in our discussion, N is essentially a place holder
for the relevant resource for each measurement scheme, and a
mapping between the real resource and N can be found quite
easily for most quantum limited metrology schemes.

III. NONENTANGLING EVOLUTION
OF THE PROBE QUBITS

Let the parameter-independent part of the Hamiltonian in
(13) that governs the time evolution of the N -qubit probe have
the form

H =
N∑

j=1

h(j ), (14)

where h(j ) is an operator that acts only on the j th qubit. By
construction the time evolution generated by this Hamiltonian
will not lead to entanglement between the probe qubits.
Without loss of generality, using the freedom to define a
basis independently for the two-dimensional Hilbert spaces
of each of the individual qubits, we choose all the single-qubit
operators to be identical and equal to

h(j ) = 1
2σ

(j )
3 .

Once we choose to define the basis for the Hilbert space
of each qubit so that the evolution Hamiltonian is as given
above, we make the assumption that the readout procedure
is limited due to practical considerations or otherwise to
projective measurements along the states |+〉 and |−〉 for each
qubit where

|±〉 = 1√
2

(|0〉 ± |1〉). (15)

The symmetric logarithmic derivative operator for which this
readout procedure saturates the quantum Cramér-Rao bound
is then

L =
∑

j1,j2...jN

1

λj1j2...jN

|j1j2 . . . jN 〉〈j1j2 . . . jN |,

where jl = {+,−}. The optimal state of the N -qubit probe
corresponding to this dynamics and readout can now be found
by solving Eq. (12).

We first look at the case where the probe is made of a single
qubit, i.e., N = 1. In this case

L = 1

λ+
|+〉〈+| + 1

λ−
|−〉〈−|.

We write an arbitrary state of the probe as

ρX = 1
2 (1 + aiσi),

where σi , i = 1,2,3 are the Pauli matrices and the dependence
of the state on X is hidden in the dependence of the coefficients

ai on the estimated parameter. Using

|+〉〈+| = 1
2 (1 + σ1) and |−〉〈−| = 1

2 (1 − σ1),

and the anticommutation relations of the Pauli matrices we
have

1

2
{L,ρX}

= 1

4

[(
1 + a1

λ+
+ 1 − a1

λ−

)
1 +

(
1 + a1

λ+
− 1 − a1

λ−

)
σ1

+
(

1

λ+
+ 1

λ+

)
a2σ2 +

(
1

λ+
+ 1

λ+

)
a3σ3

]
(16)

and

−i[H, ρX] = − 1
2 (a2σ1 − a1σ2). (17)

Inserting Eqs. (16) and (17) into Eq. (2) we find a solution as

1

λ+
= − 1

λ−
= −a2, with a1 = 0. (18)

Since a3 does not appear in the right side of the equation, we
are free to choose its value depending on the available state
preparation procedure for the probe qubit. Using Eq. (18) we
have

L = −a2|+〉〈+| + a2|−〉〈−| = −a2σ1.

The quantum Fisher information is therefore

F = 〈L2〉 = tr
(
a2

21ρ
) = a2

2 .

The choice, a2 = ±1 maximizes F and positivity of the state
of the probe qubit now requires that a3 = 0. So we find two
possible optimal states of the one-qubit probe for the given
dynamics and readout as

ρ̃X = 1
2 (1 ± σ2). (19)

The results obtained so far are not anything new or
unexpected. In Ramsey interferometers [22,27] using atoms
with two effective states in play forming qubits, the effective
evolution of the probe units is modeled as rotations about the
σ3 axis in the Bloch sphere while the qubits themselves are
initialized along the σ1 or σ2 directions. The optimal readout
is then measurements on the individual probe qubits along
σ2 or σ1 directions, respectively. The point of the preceding
discussion is primarily to illustrate the means of obtaining
the optimal state of the probe given that the readout is
fixed.

For dynamics generated by a nonentangling Hamiltonian
of the form given in Eq. (14), it is known that the Heisenberg
limited scaling of 1/N is obtained for a “Schrödinger cat”
state that is highly entangled [3–5]. However, this assumes the
ability to do a phase kick-back operation after the parameter-
dependent evolution of the probe followed by projective
measurements in order to implement, in effect, a readout on to
a basis of entangled states. If we restrict the readout on each
probe qubit to be along the basis given in (15), then we have
to again use the approach discussed above to find the optimal
initial state of a multiqubit quantum probe.
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We briefly discuss the N = 2 case first. We have

L = 1

λ++
| + +〉〈+ + | + 1

λ+−
| + −〉〈+ − |

+ 1

λ−+
| − +〉〈− + | + 1

λ−−
| − −〉〈− − |

and

H (2) = 1
2 (σ3 ⊗ 1 + 1 ⊗ σ3).

Using the commutators and anticommutators for tensor
products of Pauli operators given in [28], and assuming
that the initial state of the two qubits, ρ

(2)
X has the generic

form

ρ
(2)
X = 1

4 (1 ⊗ 1 + aiσi ⊗ 1 + bj1 ⊗ σj + cijσi ⊗ σj ),

we obtain 16 algebraic equations (see Appendix A for
details) from Eq. (12) by equating coefficients of correspond-
ing operators. It is worth noting that the Schrödinger cat
states,

|�±〉 = 1√
2

(|00〉 ± |11〉),

with the corresponding density matrices

ρ
(2)
± = 1

4 (1 ⊗ 1 + σ1 ⊗ σ1 ± σ2 ⊗ σ2 + σ3 ⊗ σ3),

are not solutions of the equations we obtain. This again is
symptomatic of the restriction on the readout procedure we
have imposed. On the other hand it is straightforward to verify,
as is done in Appendix A, that

ρ̃
(2)
X = ρ̃X ⊗ ρ̃X

is a solution, where ρ̃X is the optimal state of the single-qubit
probe obtained in Eq. (19). We find that

L = −2| + +〉〈+ + | + 2| − −〉〈− − |
= −σ1 ⊗ 1 − 1 ⊗ σ1,

so that

F = 〈L2〉 = 2〈1 ⊗ 1 + σ1 ⊗ σ1〉 = 2 = 4〈�2H (2)〉.
Generalizing to N qubits we again find that

ρ̃
(N)
X = ρ̃⊗N

X

is a solution of Eq. (12) with

1

λj1j2···jN

= 1

λj1

+ 1

λj2

+ · · · + 1

λjN

, jl = {+,−}.

Detailed proofs of these results are given in Appendices A 1
and A 2. Significantly, we see that 〈L2〉 scales as N rather than
as N2. So one does not reach the Heisenberg limited scaling
of 1/N for the linear, nonentangling, parameter-dependent
dynamics of the quantum probe.

The main point of the preceding discussion on a particular
example of nonentangling dynamics is to highlight the fact that
with a restricted readout procedure, it might not be possible
to go beyond the shot-noise-limited scaling of 1/

√
N for

the measurement uncertainty even if the ability to initialize
the quantum probe in arbitrary entangled quantum states is
available. In other words, for implementing quantum limited

measurements that beat the shot noise limit, we see that
devising ways of doing possibly complicated readouts can
be as important as control over the initial state of the quantum
probe and its dynamics.

IV. ENTANGLING DYNAMICS

Now let us consider entangling dynamics for the probe
qubits generated by

H (N) = 1
2σ⊗N

3 . (20)

Note that this Hamiltonian does not belong to the family
of nonlinear Hamiltonians discussed in Refs. [29,30] that
leads to measurement schemes in which the uncertainty
scales as 1/Nk or 1/Nk−1/2 with respect to N depend-
ing on whether the initial state of the probe is entangled
or not.

The readout procedure in this case is also the same as before
with independent measurements of the individual qubits along
the |±〉 axis. However, despite this restriction ρ̃⊗N

X is not,
in general, a solution to Eq. (12). In fact, for the entangling
Hamiltonian in Eq. (20) one can show that (see Appendix B)
if ρ̃

(2d)
X for d = 1,2, . . . is not a solution of the same equation

giving the optimal state of a quantum probe made of 2d (even
number of) qubits.

For N = 2, it is still worthwhile to find the optimal state
even if it cannot be ρ̃X ⊗ ρ̃X. One possible solution for
Eq. (12) is the state

ρ̃
(2)
X = 1

4 (1 ⊗ 1 + c11σ1 ⊗ σ1 + c23σ2 ⊗ σ3 + c32σ3 ⊗ σ2).

(21)

This state is pure when c11 = c23 = c32 = 1. However, for
this state 〈L2〉 = 1, indicating that it does not attain the
1/N scaling for the measurement uncertainty expected for
the N -qubit probe. In fact the restriction that the qubits are
measured independently means that even with two qubits, the
measurement uncertainty is not improved compared to the
single-qubit probe. The solution to Eq. (12) obtained in (21)
is not unique either. For instance, another solution is obtained
immediately from the state above by changing the signs of
c23 and c32 which in turn swaps 1/λ++ and 1/λ−−. For larger
N one can solve the system of algebraic equations generated
from Eq. (12) by equating the coefficients of corresponding
operators to find one or more optimal initial states of the probe
that saturate the quantum Cramér-Rao bound for the entangling
dynamics.

Rather than solving for the optimal state on a case-by-case
basis, it is more useful to pursue solutions of the form ρ̃⊗N

X

even though we have ruled out such solutions for even N . For
odd N we can show that ρ̃⊗N

X is a solution of Eq. (12) with the
λ given by

1

λj1j2...jN

= iN+3

λj1λj2 · · · λjN

,

where 1/λjl
are the eigenvalues of L for the N = 1 case. The

proof of this result is rather technical and long and is given
in Appendix C. This is not a very useful result because 1/λjl

have values ±1 and so 1/λj1,j2...jN
= ±1 for odd N . A simple

computation shows that then L2 = 1 and so 〈L2〉 = 1. In other

022330-4



PROBE READOUT AND QUANTUM-LIMITED MEASUREMENTS PHYSICAL REVIEW A 87, 022330 (2013)

words, no advantage is obtained in having N qubits in the
probe rather than one if the N are initialized in the state ρ̃⊗N

X .
Even with the entangling evolution, in a real experiment, if the
ability to initialize and readout the probe in states that are not
simple tensor products is not available, then the reduction
in measurement uncertainty promised by quantum limited
metrology is wiped out.

V. CONCLUSION

A general quantum limited measurement for estimating
a single parameter can be thought of having three stages.
There is a preparation stage in which the quantum system
that is acting as the probe of the measured parameter is
initialized in a particular quantum state. The second stage is
the parameter-dependent evolution of the quantum probe, and
the last stage is the readout of the probe. The advantages of
using specific, often entangled, initial states of the quantum
probe was explored extensively during the initial phase of the
development of the theory and implementation of quantum
limited measurement schemes [4,5,31–34]. How the dynamics
influences the measurement uncertainty was explored more
recently [3,29,30,35].

This paper is focused on the third stage of a quantum
metrology scheme when considerations, practical or
otherwise, limit the types of readout that can be done on the
quantum probe. This analysis is done in the limited context of
qubit-based metrology schemes. Extensions to other quantum
limited measurement schemes including interferometry with
squeezed states, NOON states, for example, may also be
considered. We see that arbitrary state preparations and
dynamics might not be particularly useful in delivering an
improved measurement uncertainty if there are limitations on
the readout. For instance, in the case of the N -qubit probe
evolving under a nonentangling Hamiltonian, the Schrödinger
cat state turns out not to be the optimal state because of
the restriction that the readout is limited to independent
measurements on each of the N qubits. In the case of the
entangling dynamics we see that when the initial state of
the probe is a product state then with the same restriction as
before on the readout, the performance of the measurement
scheme is no better than what can be done with a single-qubit
probe.
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APPENDIX A: NONENTANGLING HAMILTONIAN

For two qubits, Eq. (12) leads to 16 equations connecting
λ++, λ+−, λ−+ and λ−− to the 15 coefficients ai , bj , and
cij defining the state of the probe. These are obtained by
equating the coefficients of operators of the form σα ⊗ σβ ,

α,β = 0, . . . ,4 with σ0 ≡ 1. Using the notation

κ±±± =
(

1

λ++
± 1

λ+−
± 1

λ−+
± 1

λ−−

)
,

the equations we get are

K+++ + K+−−a1 + K−+−b1 + K−−+c11 = 0,

K−+− + K−−+a1 + K+++b1 + K+−−c11 = −4b2,

K+−− + K+++a1 + K−−+b1 + K−+−c11 = −4a2,

K−−+ + K−+−a1 + K+−−b1 + K+++c11 = −4c12 − 4c21,

K+++b2 + K+−−c12 = 4b1,

K+−−b2 + K+++c12 = 4c11 − 4c22,

K+++a2 + K−+−c21 = 4a1,

K−+−a2 + K+++c21 = 4c11 − 4c22,

K+++a3 + K−+−c31 = 0,

K−+−a3 + K+++c31 = −4c32,

K+++b3 + K+−−c13 = 0,

K+−−b3 + K+++c13 = −4c23,

K+++c22 − K−−+c33 = 4c12 + 4c21,

K+++c23 + K−−+c32 = 4c13,

K−−+c23 + K+++c32 = 4c31,

K+++c33 − K−−+c22 = 0. (A1)

For the particular case in which

ρ
(2)
X = ρ̃X ⊗ ρ̃X = 1

4 (1 ⊗ 1 + σ2 ⊗ 1 + 1 ⊗ σ2 + σ2 ⊗ σ2),

the nontrivial equations among Eqs. (A1) are

K+++ = K−−+ = 0, K−+− = K+−− = −4.

From these equations we get

1

λ++
= − 1

λ−−
= −2

and

1

λ+−
= − 1

λ−+
= 0

as a possible solution. Note that in this case,

1

λjk

= 1

λj

+ 1

λk

, j, k = {+,−}.

1. N qubits

In Ref. [23], an alternate expression for the symmetric
logarithmic derivative operator is obtained as

L(O) =
∑

pj +pk �=0

2

pj + pk

Ojk|j 〉〈k|; Ojk = 〈j |O|k〉,

where O is the operator on which L acts. We write the optimal
single-qubit state as

ρ̃X =
∑

j

pj |j 〉〈j |.
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In our particular example the basis in which ρ̃X is diagonal is
given by the vectors, |i〉 = (|0〉 + i|1〉)/√2 and |ī〉 = (|0〉 −
i|1〉)/√2. In the remainder we want to use the result F =
〈L2(ρ ′)〉, also obtained in Ref. [23]. For the single-qubit probe
with evolution generated by H = σ3/2 we have

ρ ′
jk = −i〈j |[H, ρ̃X]|k〉 = − i

2
(pk − pj )〈j |σ3|k〉

and

L(ρ ′) = −i
∑
jk

pk − pj

pj + pk

〈j |σ3|k〉|j 〉〈k|,

with the sum extending over all j , k such that pj + pk �= 0. If
the readout procedure corresponds to projective measurements
with elements

En = |θn〉〈θn|,
we have

tr[ρEnL(ρ ′)] = −i
∑
jk

pk

pk − pj

pk + pj

〈j |σ3|k〉〈k|θn〉〈θn|j 〉

and

tr[ρEn] =
∑

j

pj |〈j |θn〉|2.

This gives us

1

λn

= −i

∑
jk pk

pk−pj

pk+pj
〈j |σ3|k〉〈k|θn〉〈θn|j 〉∑

l pl|〈l|θn〉|2 .

The N -qubit state tensor product state can be written as

ρ
(N)
X =

∑
j1,j2...jN

pj1pj2 · · · pjN
|j1j2 · · · jN 〉〈j1j2 · · · jN |,

while the Hamiltonian corresponding to nonentangling evolu-
tion on the N qubits is

H = 1
2 (σ3 ⊗ 1⊗(N−1) + · · · + 1⊗(N−1) ⊗ σ3).

From ρ ′ = −i[H, ρ], and denoting the string j1j2 . . . jN as 	j ,
we have

ρ ′
	j 	k = −i〈 	j |[H, ρ]|	k〉

= − i

2

N∑
l=1

pj1pj2 . . . pkl
. . . pjN

〈jl|σ3|kl〉
∏
n�=l

δjnkn

+ i

2

N∑
l=1

pj1pj2 . . . pjl
. . . pjN

〈jl|σ3|kl〉
∏
n�=l

δjnkn

= − i

2

N∑
l=1

(pkl
− pjl

)〈jl|σ3|kl〉
∏
m�=l

pjm
δjmkm

;

using the above, we obtain

L(ρ ′) = −i

N∑
l=1

∑
j1,...,jl ,...jN ,kl

pkl
− pjl

pjl
+ pkl

〈jl|σ3|kl〉

× |j1, . . . jl, . . . jN 〉〈j1, . . . kl, . . . jN |.

Assuming that the readout procedure consists of projective
measurements corresponding to the operators,

E	n = |θn1θn2 · · · θnN
〉〈θn1θn2 · · · θnN

|,
we have

tr[ρE	nL(ρ ′)]

= −i

N∑
l=1

∑
j1,...,jl ,...jN ,kl

pjl

pjl
− pkl

pjl
+ pkl

〈jl|σ3|kl〉〈jl|θnl
〉

〈θnl
|kl〉

∏
m�=l

pjm
|〈jm|θnm

〉|2

= −i

N∑
l=1

⎛
⎝ ∑

{jm}m�=l

∏
m�=l

pjm
|〈jm|θnm

〉|2
⎞
⎠

×
⎛
⎝∑

jlkl

pjl

pjl
− pkl

pjl
+ pkl

〈jl|σ3|kl〉〈jl|θnl
〉〈θnl

|kl〉
⎞
⎠ ,

where {jm}m�=l stands for j1, . . . ,jl−1,jl+1, . . . ,jN . Similarly
we have

tr(E	nρ)

=
∑

j1...jN

∏
m

pjm
|〈jm|θnm

〉|2

=
⎛
⎝ ∑

{jm}m�=l

∏
m�=l

pjm
|〈jm|θnm

〉|2
⎞
⎠

⎛
⎝∑

jl

pjl
|〈jl|θnl

〉|2
⎞
⎠ .

So the eigenvalues of L(ρ ′) for the N -qubit probe undergoing
nonentangling evolution is

1

λ	n
=

N∑
l=1

∑
jlkl

pjl

pjl
−pkl

pjl
+pkl

〈jl|σ3|kl〉〈jl|θnl
〉〈θnl

|kl〉∑
jl

pjl
|〈jl|θnl

〉|2

=
N∑

l=1

1

λnl

. (A2)

2. L for nonentangling dynamics

Using the expression for 1/λ	n from Eq. (A2) and the fact
that corresponding to the optimal state of the one-qubit probe,
the eigenvalues of L are ∓1, we can write the symmetric
logarithmic derivative operator on the N -qubit probe as

L = −N | + · · · +〉〈+ · · · + | + · · · + N | − · · · −〉〈− · · · − |.
(A3)

Using |+〉〈+| = (1 + σ1)/2 and |−〉〈−| = (1 − σ1)/2 we get

L = − 1

2N

N∑
r=0

(N − 2r)[Ĉ(1 + σ1)⊗(N−r) ⊗ (1 − σ1)⊗r ],

where r is the number of |−〉〈−| projectors in each term in Eq.
(A3) and Ĉ is a shorthand indicating the sum of all terms that
are tensor products of N − r factors of (1 + σ1) and r factors
of (1 − σ1).

Once the sum is distributed over the tensor product, we
get terms with N − q factors that are 1 and q σ1 with
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q = 0,1, . . . ,N . Now consider one such term with fixed
positions for 1 and σ1. We first focus on the sign of each
one of such terms with fixed locations for 1 and σ that come
from the various terms in the expression for L. If out of the
q factors of σ1, an odd number s of them come from the r

(1 − σ1) factors then the term, as a whole is negative. Now,
out of the total q factors of σ1 we can pick s of them in qCs

ways. Now, out of the N − q factors of 1, r − s of them have
to come from the (1 − σ1) terms. These r − s factors can be
picked in N−qCr−s ways. The remaining 1 and σ1 come from
the (1 + σ1) terms. The number of terms with N − q 1 and
q σ1 at fixed locations is NCr . From this we have to subtract
twice the number of such terms with negative signs to obtain
the total number of terms of this kind as

NCr − 2
min(r,q)∑
s=1,3,···

N−qCr−s
qCs.

We have for all q � 0

−
N∑

r=0

(N − 2r)NCr = −N2N + 2N

N−1∑
r=0

N−1Cr = 0.

Hence

L = 2

2N

N∑
q=1

N∑
r=0

min(r,q)∑
s=1,3,···

(N − 2r) N−qCr−s
qCs

×{Ĉ1⊗(N−q) ⊗ σ
⊗q

1 }.
For q = 1 the summation in the L reduces to

2
N∑

r=1

(N − 2r) N−1Cr−1 = −2N .

Now for any q > 1, we have

N∑
r=1

min(q,r)∑
s=1,3,···

(N − 2r)N−qCr−s
qCs

= N

N∑
r=1

min(q,r)∑
s=1,3,···

N−qCr−s
qCs

− 2(N − q)
N∑

r=1

min(q,r)∑
s=1,3,···

N−q−1Cr−s−1
qCs

− 2q

N∑
r=1

min(q,r)∑
s=1,3,···

N−qCr−s
q−1Cs−1. (A4)

To compute the sums in the equation above, we use
the following results: For q > 1,

∑q

i=1,3,···
qCi = 2q−1 and∑q−1

i=0,2,···
q−1Ci = 2q−2. Equation (A4) becomes

N∑
r=1

min(q,r)∑
s=1,3,···

(N − 2r) N−qCr−s
qCs

= N

q∑
i=1,3,···

qCi

N−q∑
j=0,1,···

N−qCj

− 2(N − q)
q∑

i=1,3,···

qCi

N−q∑
j=0,1,···

N−qCj

− 2q

q−1∑
i=0,2,···

q−1Ci

N−q−1∑
j=0,1,···

N−q−1Cj = 0.

Thus the symmetric logrithmic derivative for an N -qubit probe
evolving under a nonentangling Hamiltonian is

L = −{Ĉ1⊗(N−1) ⊗ σ1}.

APPENDIX B: ENTANGLING HAMILTONIAN

When the parameter-dependent evolution is generated by
the entangling Hamiltonian, σ⊗N

3 /2, and we consider an initial
state of the probe of the form ρ̃⊗N

X , we have

ρ ′ = − i

2
[(σ3ρ)⊗N − (ρσ3)⊗N ].

Now,

ρ ′
	j,	k = − i

2

∏
l

〈jl|σ3ρ|kl〉 + i

2

∏
l

〈jl|ρσ3|kl〉

= − i

2

∏
l

pjl
〈jl|σ3|kl〉 + i

2

∏
l

pjl
〈jl|σ3|kl〉,

and using the above, we obtain

L(ρ ′) = −i
∑
{jl ,kl}

∏
l pkl

− ∏
l pjl∏

l pkl
+ ∏

l pjl

∏
l

〈jl|σ3|kl〉

× |j1,j2, . . . jN 〉〈k1,k2, . . . kN |
and

tr[ρE	nL(ρ ′)] = −i
∑
{jl ,kl}

∏
l pkl

( ∏
i pkl

− ∏
i pjl

)
∏

l pkl
+ ∏

l pjl

×
∏

l

〈jl|σ3|kl〉〈kl|θnl
〉〈θnl

|jl〉. (B1)

We also have

tr(E	nρ) =
∑
{jl}

∏
l

pjl
|〈jl|θnl

〉|2. (B2)

We get 1/λ	n by dividing the right-hand side of Eq. (B1) by
that of Eq. (B2). Note that the denominator in (B2) is real
and so is the first part of each term in the double sum in
(B1). So the product term

∏
l〈jl|σ3|kl〉〈kl|θnl

〉〈θnl
|jl〉, has to

be pure imaginary for 1/λ	n to be real as required for saturating
the bound on the Fisher information as discussed in Sec. II.
However, each term in this product comes form each qubit in
the probe. So if we assume that each qubit in the probe is in
the optimal state ρ̃X corresponding to the N = 1 state, then
for each qubit 〈j |σ3|k〉〈k|θn〉〈θn|j 〉 has to be pure imaginary
so that again, the bound is saturated as assumed. This implies
that when N is even, then λ	n are all purely imaginary, and so
the tensor product state ρ̃⊗N

X is not the optimal state of the
probe corresponding to the entangling dynamics and readout
procedure that we are considering when N is even.
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1. Optimal state of a two-qubit probe

Using the same notation as in Appendix A, Eq. (12) reduces
to the following 16 algebraic equations:

K+++ + K+−−a1 + K−+−b1 + K−−+c11 = 0,

K−−+ + K−+−a1 + K+−−b1 + K+++c11 = 0,

K+−− + K+++a1 + K−−+b1 + K−+−c11 = −4c23,

K−+− + K−−+a1 + K+++b1 + K+−−c11 = −4c32,

K+++a3 + K−+−c31 = 0,

K+++c22 − K−−+c33 = 0,

K+++b2 + K+−−c12 = 4c31,

K+++a2 + K−+−c21 = 4c13,

K−+−a3 + K+++c31 = −4b2, (B3)

K+++b3 + K+−−c13 = 0,

K+−−b3 + K+++c13 = −4a2,

K+++c33 − K−−+c22 = 0,

K+++c21 + K−+−a2 = 0,

K+++c12 + K+−−b2 = 0,

K+++c32 + K−−+c23 = 4b1,

K+++c23 + K−−+c32 = 4a1.

In this case, as noted earlier it is easy to verify that ρ̃
(2)
X =

ρ̃X ⊗ ρ̃X does not give any solution for 1/λn. Solving these
equations for the variables ai, bj , and cij and applying in the
general form of ρ for two qubits we get the optimal initial
state for the two-qubit probe. Multiple solutions are allowed,
and for maximizing 〈L2〉 we look for pure state solutions. One
pure state solution may be obtained by setting all ai , bj , and
cij to zero except for c11 = 1 and c23 = c32 = ±1, which then
leads to

1

λ++
= − 1

λ−−
= −1 and

1

λ+−
= 1

λ−+
= c,

where c can be any real number, including 0.

APPENDIX C: 1/λ FOR ODD N

Starting from Eq. (B1) by that of Eq. (B2) we find
the eigenvalues of L(ρ ′) for an N -qubit probe undergoing
entangling evolution as

1

λ	n
=

−i
∑

{jl ,kl}
∏

l pkl
(
∏

i pkl
−∏

i pjl
)∏

l pkl
+∏

l pjl∑
{jl}

∏
l pjl

|〈jl|θnl
〉|2

×
∏

l

〈jl|σ3|kl〉〈kl|θnl
〉〈θnl

|jl〉. (C1)

The optimal single-qubit state ρ̃X is diagonal in the eigenbasis
{|i〉, |ī〉} of the σ2 operator, and so we can write it as

ρ̃X = pi |i〉〈i| + pī |ī〉〈ī|,
so that |jl〉,|kl〉 = {|i〉, |ī〉}. As before the readout operators,
|θnl

〉〈θnl
| are given by |+〉〈+| and |−〉〈−|. Using the inner

products, 〈i|±〉 = (1 ∓ i)/2, 〈ī|±〉 = (1 ± i)/2, 〈i|+〉〈+|ī〉 =

−i/2, and 〈i|−〉〈−|ī〉 = i/2 we get for any choice of θn,

∑
{jl}

∏
l

pjl
|〈jl|θnl

〉|2 = 1

2N
(pi + pī)

N . (C2)

Since 〈i|σ3|i〉 = 〈ī|σ3|ī〉 = 0 and 〈i|σ3|ī〉 = 1, only terms
with 	j = 	̄k contribute to the expression for ρ ′

	j 	k and hence to

L(ρ ′) and 1/λn as well. Consider a single term in the double
sum over {jl, kl} in the numerator of Eq. (C1), where

| 	j〉 = |i,i, . . . ,i,ī〉 and |	k〉 = |ī,ī, . . . ,ī,i〉.
In this term we have the factor∏

l

〈jl|θnl
〉〈θnl

|kl〉 = ∓ i

2
· ∓ i

2
· · · ∓ i

2
· ± i

2

= iN

2N
(∓ · ∓ · · · ∓ ·±).

In the double sum over {jl, kl} in Eq. (C1), there will be NC1

terms each having N − 1 (∓) terms and one (±) term. In
general, there will be NCr terms each having N − r (∓) terms
and r (±) terms. When E	n and hence θnl

is fixed, then every
term with N − r ∓ terms and r ± terms has the same sign, and
so they can all be grouped together. We represent these terms
that are grouped together as {∓ · · · ∓︸ ︷︷ ︸

N−r

± · · · ±︸ ︷︷ ︸
r

}, since the group

is labeled by r . Using this notation and Eq. (C2), we have

1

λ	n
= Q

p0
N − pN

0

p0
N + pN

0

NC0p
0
N {∓ ∓ · · · ∓}

+Q
p1

N−1 − pN−1
1

p1
N−1 + pN−1

1

NC1p
1
N−1{∓ ∓ · · · ∓ ±}

+ · · ·
+Q

pr
N−r − pN−r

r

pr
N−r + pN−r

r

NCrp
r
N−r{∓ · · · ∓ ± · · · ±}

+ · · ·
−Q

pr
N−r − pN−r

r

pr
N−r + pN−r

r

NCN−rp
N−r
r {± · · · ± ∓ · · · ∓}

− · · ·
−Q

p1
N−1 − pN−1

1

p1
N−1 + pN−1

1

NCN−1p
N−1
1 {± ± · · · ± ∓}

−Q
p0

N − pN
0

p0
N + pN

0

NCNpN
0 {± ± · · · ±},

where Q = −iN+1

(pi+pī )
N and pr

N−r = (pi)N−r (pī)
r . Now consider

the first and last terms of the sum as a pair:

A1 = Q
p0

N − pN
0

p0
N + pN

0

NC0p
0
N {∓ ∓ · · · ∓}

−Q
p0

N − pN
0

p0
N + pN

0

NCNpN
0 {± ± · · · ±}. (C3)

Since N is odd, for a given choice of E	n, {∓ ∓ · · · ∓} and
{± ± · · · ±} have opposite signs. Hence, Eq. (C3) reduces to

A1 = ±Q
(
NC0p

0
N − NCNpN

0

)
.
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Similarly, we can pair up the remaining terms. Since for even
and odd r

Q
pr

N−r − pN−r
r

pr
N−r + pN−r

r

NCrp
r
N−r{∓ · · · ∓ ± · · · ±}

for any E	n has opposite signs, we get

1

λ	n
= ± iN+3 (pi − pī)

N

(pi + pī)
N

.

The sign of λ	n depends on the choice of E	ns. Using 1/λnl
=

±(pi − pī)/(pi + pī), we see that for any odd N ,

1

λ	n
= iN+3

λn1λn2 · · · λnN

.

Generalizing the above result, the best initial state for any
2n(2m + 1) number of qubits can be obtained as ρ = ρ

⊗(2m+1)
2n ,

where m,n = 0, 1, 2, . . . and ρ2n is the best initial state of 2n

qubits.
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