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All unitaries having operator Schmidt rank 2 are controlled unitaries
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We prove that every unitary acting on any multipartite system and having operator Schmidt rank equal to 2 can
be diagonalized by local unitaries. This then implies that every such multipartite unitary is locally equivalent to a
controlled unitary with every party but one controlling a set of unitaries on the last party. We also prove that any
bipartite unitary of Schmidt rank 2 is locally equivalent to a controlled unitary where either party can be chosen
as the control, and at least one party can control with two terms, which implies that each such unitary can be
implemented using local operations and classical communication (LOCC) and a maximally entangled state on
two qubits. These results hold regardless of the dimensions of the systems on which the unitary acts.
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I. INTRODUCTION

Unitary gates are essential for quantum information pro-
cessing, hence it is important to find simple ways to implement
them. In this paper we consider unitaries acting on P systems,
where P � 2.1 Generally, methods for implementing a given
unitary are discussed in two different scenarios: local and
nonlocal. In the local scenario, the given unitary acting on P

systems is decomposed as a product of simpler unitaries, each
of which may act on any number of systems. In the nonlocal
scenario, many different parties at remote locations could
share some ancillary quantum state that may be entangled, and
they do local operations and classical communication (LOCC)
to implement the desired unitary. This paper is developed
for the nonlocal scenario, but it applies to gate decompo-
sition in the local scenario as well; see the remarks in the
conclusion.

A common approach is to express unitaries using a sum of
product operators:

U =
∑

j

Aj ⊗ Bj ⊗ Cj ⊗ · · · ⊗ Rj , (1)

where Aj , Bj , etc. are local operators on the respective parties.
A simple expansion would help us find ways to implement U ,
but to judge what is a simple expansion there are at least
two different criteria. The first is to use a numeric measure:
for example, the Schmidt rank [1], defined as the smallest
possible number of product operators that can be summed to
obtainU . The second is to see whether the local operators in the
expansion are simple. A set of mutually orthogonal projectors
would qualify under this criterion. If the expansion on one
party involves only such projectors, then U is a controlled
unitary. Another simple type of local operators is discussed in
Ref. [2]. In this paper we find a connection between the two
criteria: all Schmidt rank-2 multipartite unitaries are equivalent
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1We assume that the dimension of the Hilbert space of each system

remains unchanged after the action of the unitary.

to controlled unitaries under local unitaries. The result of the
bipartite case is slightly stronger, see Theorem 6 below. Our
result can be viewed as a structure theorem for the class of
Schmidt rank-2 nonlocal unitaries. It characterizes what these
unitaries are in terms of product-operator expansions. Since
we have solved the simplest nontrivial case of Schmidt rank
2, the next goal would be to characterize nonlocal unitaries of
higher Schmidt rank. The forms of expansions in Ref. [2] may
help toward this goal.

Amongst the various types of nonlocal unitaries, controlled
unitaries are in some ways most easily understood. In the
bipartite case, they are one of the few classes of unitaries
for which their capacity to create entanglement between
the parts is relatively well understood [3], and significant
progress has been made toward understanding their entan-
glement cost; that is, the amount of entanglement that is
required to implement them without bringing the various parts
together in a single laboratory [4,5]. (The result of [5] also
applies to some other classes of unitaries not yet completely
characterized.) Controlled unitaries also play an important
role in quantum information theory, being one constituent in
commonly used gate sets that are universal [6] for quantum
computation [7], as well as being instrumental in the creation
of graph states and cluster states [8], which find wide
use in quantum communication protocols [9] and quantum
computation.

Perhaps the simplest controlled unitary is the controlled
NOT on two qubits A and B,

UCNOT = |0〉A〈0| ⊗ I (B) + |1〉A〈1| ⊗ σ (B)
x , (2)

where I (B) is the identity operator and σ (B)
x = |0〉B〈1| +

|1〉B〈0| is the usual Pauli operator, both acting on system B.
If system A starts out in the |0〉A state, the state of the full AB

system is unchanged, whereas if the initial state of A is |1〉A,
that system is unchanged, but the B system is “flipped.” This
notion is generalized to provide a definition of a controlled
unitary, one for which if the input state of one system is a state
in a given orthogonal basis, say the standard basis {|j 〉A} as in
the previous example, then that state is unchanged and unitary
Wj is performed on the remaining system, which may itself
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be multipartite,

U =
dA∑

j=1

|j 〉A〈j | ⊗ Wj. (3)

Since it is easy for the controlling party to perform local
unitaries on her system both before and after the action of
U , we want to allow for this possibility. Then, every unitary U
for which there exist local unitaries U (A), V (A) such that

(U (A) ⊗ I (B))U(V (A)† ⊗ I (B)) =
dA∑

j=1

|j 〉A〈j | ⊗ Wj, (4)

will be referred to as “locally equivalent” to a controlled
unitary with party A controlling. This definition can be
generalized in an obvious way to the case where multiple
parties are controlling when U acts on three or more parties,
but we will require that the controlling parties each control
locally, such as in

U =
∑
j,k

|j 〉A〈j | ⊗ |k〉B〈k| ⊗ Wjk. (5)

We will refer to a unitary acting on P parties as “fully
controlled” if P − 1 of the parties can act as controls. Our
main result is the following theorem:

Theorem 1. Every nonlocal unitary having Schmidt rank
equal to 2 is locally equivalent to (i) a fully controlled unitary,
and to (ii) a diagonal unitary.

Note that (i) and (ii) are generally inequivalent without the
Schmidt rank-2 assumption. The statement (ii) implies (i) with
complete generality according to Lemma 2 below, but not the
other way around. For the special case of two qubits, however,
(i) and (ii) are each equivalent to the unitary having Schmidt
rank 2, and therefore are equivalent to each other. The result
(i) for two qubits was previously obtained in Ref. [10].

In the next section, we provide a series of results that are
then used in Sec. II B to prove Theorem 1. Then, in Sec. III and
for a unitary of any Schmidt rank operating on any number of
parties, we provide a sufficient condition for when that unitary
is locally equivalent to a controlled unitary, a condition that
also tells us which party or parties can act as a control.

II. MAIN RESULTS

In this section we prove the result that every nonlocal
unitary of Schmidt rank equal to 2 is locally equivalent to
a controlled unitary. We start out by proving a series of results
that are then used to prove our main theorem.

A. Preliminaries

We begin with the following lemma:
Lemma 2. A nonlocal unitary U = ∑

j Aj ⊗ Bj , here
written in a Schmidt expansion across the A|B cut with B

itself possibly a multipartite system, is locally equivalent to
a controlled unitary with party A controlling if and only if
the set of operators {Aj } has a simultaneous singular value
decomposition.

Proof. By saying that a set of operators {Aj } has a
“simultaneous singular value decomposition,” we mean every
operator in that set can be diagonalized by the same pair

of unitaries, U (A) and V (A). In other words, U (A)AjV
(A)† is

diagonal for every j . To prove the “if” part of this lemma,
write U (A)AjV

(A)† = ∑dA

k=1 ajk|k〉A〈k|, from which we have
that

(U (A) ⊗ I (B))U(V (A)† ⊗ I (B))

=
∑

j

U (A)AjV
(A)† ⊗ Bj =

∑
j

dA∑
k=1

ajk|k〉A〈k| ⊗ Bj

=
dA∑

k=1

|k〉A〈k| ⊗
⎛
⎝∑

j

ajkBj

⎞
⎠ , (6)

which indeed shows that this is a controlled unitary with A

controlling.
To prove the converse, if U is locally equivalent to a

controlled unitary with A controlling, then ∃ U (A), V (A)

unitaries such that

(U (A) ⊗ I (B))U(V (A)† ⊗ I (B)) =
dA∑

k=1

|k〉A〈k| ⊗ Wk. (7)

If U = ∑
j Aj ⊗ Bj is a Schmidt expansion, then the {Bj }

satisfy Tr(B†
l Bj ) = δjl , which implies from

∑
j

U (A)AjV
(A)† ⊗ Bj =

dA∑
k=1

|k〉A〈k| ⊗ Wk, (8)

that for each l,

U (A)AlV
(A)† =

dA∑
k=1

blk|k〉A〈k|, (9)

where blk = Tr(B†
l Wk). This completes the proof. �

The next lemma will also be useful.
Lemma 3. Given r maps {Ri} from input spaceHin to output

space Hout such that the set of r2 operators {R†
i Rj } spans

a two-dimensional space containing the identity operator I ,
then there exist unitaries U, V such that URiV

† is diagonal
for every i.

The proof is given in the Appendix.
We will also use a result from Ref. [11] that tells us

when a sum of product operators can be equal to a product
operator. This will be of use here, since we will be considering
expansions of nonlocal unitaryU in terms of product operators,
so that the unitary condition, I = U†U , will appear as a sum
of product operators that is equal to the product operator, I .

Theorem 4. [11] Given a set of product operators acting
on two parties, {Mk = M

(1)
k ⊗ M

(2)
k }Nk=1, if there exists a set

of nonzero coefficients, {ck}, such that the linear combination
S = ∑N

k=1 ckMk has Schmidt rank rs = 1 and so is also a
product operator, then

δ1 + δ2 � N + 1, (10)

where δα is the dimension of the space spanned by operators
{M (α)

k }Nk=1.
The connection between this theorem and Lemma 3 is

seen by considering k as the composite index (i,j ), and
M

(α)
k = R

(α)†
i R

(α)
j . Since our aim is to analyze nonlocal

unitaries, we will consider the case where S in this theorem is
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the identity operator so that with U = ∑
i R

(1)
i ⊗ · · · ⊗ R

(P )
i ,

{Mk} provides a product expansion of U†U = I .
We need one more lemma in order to prove our main

theorem. This result is well known, but if the reader is
interested in seeing a short proof, it can be found in Ref. [11].

Lemma 5. If operators {M (α)
j }Nj=1 span a space of dimen-

sion δα , then with M
(β)
j �= 0 ∀ j (β �= α), operators {M (α)

j ⊗
M

(β)
j }Nj=1 span a space of dimension no less than δα .

B. Proof of Theorem 1

The proof of Theorem 1 follows directly from the results
of the previous section. A unitary of Schmidt rank 2 acting on
P parties can be written

U = M
(1)
1 ⊗ M

(2)
1 ⊗ · · · ⊗ M

(P )
1

+M
(1)
2 ⊗ M

(2)
2 ⊗ · · · ⊗ M

(P )
2 , (11)

with M
(α)
j an operator acting on party α, and U will satisfy

I = U†U

=
2∑

i,j=1

M
(1)†

i M
(1)
j ⊗ M

(2)†

i M
(2)
j ⊗ · · · ⊗ M

(P )†

i M
(P )
j . (12)

Let us first discuss the case that no terms on the right-hand
side of Eq. (12) vanish. Then this expression is a sum of
four product operators equal to a product operator, so that by
Theorem 4, it must be that for any bipartite split A|B of the
P parties, the spans of the corresponding operators on the
two sides satisfy δA + δB � 5. This implies that no more than

one party’s set of operators {M (α)†

i M
(α)
j } can span a space of

dimension exceeding two. This can be seen as follows: suppose
parties α and β each have spans of dimension at least three.
Consider a bipartite split where party α is in part A and β is
in part B. By Lemma 5, δA � 3 and δB � 3, contradicting the
above-stated requirement from Theorem 4 that the sum of these
cannot exceed 5. Hence, for all parties but one, the spans have
dimension no greater than two. If for a given party α, δα = 1,
we must have M

(α)
1 ∝ M

(α)
2 , and both these operators must be

proportional to the same unitary. In this case, party α can just
perform that unitary, which is uncorrelated to the actions on
the other parties, and party α need not be considered further
in the analysis. Then, we can just start over by considering
a “reduced” U that only operates on the remaining parties.
Alternatively, one may view party α as controlling, with the
unitary that acts on the remaining parties being independent of
the input on α. If, on the other hand, δα = 2, then by Lemma
3, there exist unitaries U (α), V (α) acting on party α such that
U (α)M

(α)
1 V (α)† and U (α)M

(α)
2 V (α)† are both diagonal, and this

is true for every α for which δα = 2. This is seen by partially
tracing out all parties but one in Eq. (12), revealing that the

spans of operators {M (α)†

i M
(α)
j } contain the identity operator,

and then the conditions of Lemma 3 are met for each party
having δα = 2. Hence for all parties but one, there exist local
unitaries to diagonalize the M

(α)
j operators on that party. For

each such party, there exists a set of orthogonal projectors
such that the two diagonalized M

(α)
j are linear combinations

of these projectors; see the proof of Lemma 2. Hence, all

parties but one can act as controls simultaneously; that is,
U is “fully controlled.” In the expansion of U using these
projectors on P − 1 parties, the operators on the remaining
party are unitaries, and since U is of Schmidt rank 2, these
unitaries span a space of dimension two. Denote by V1 and
V2 two of these unitaries that form a basis of this space.
These become I and V

†
1 V2 when U is multiplied by V

†
1 on

that party. Then, V
†

1 V2 can be diagonalized under a unitary
similarity transform, which does not alter the identity I , hence
I and V

†
1 V2 can be diagonalized simultaneously. Therefore,

all the local operators (unitaries) in the expansion of U on that
last party can be simultaneously diagonalized, since they are
all linear combinations of V1 and V2. Therefore U is locally
equivalent to a diagonal unitary. This completes the proof of
our main theorem for the case that there are no vanishing terms
in Eq. (12).

The remaining case is that some terms in Eq. (12)
vanish, which only happens if for one party, say the first,
M

(1)†
1 M

(1)
2 = 0 = M

(1)†
2 M

(1)
1 . If the corresponding operator

products vanished for more than one party, then with Lemma 5,
Eq. (12) could not satisfy Theorem 4. This is because for
a bipartite split A|B with A including only party 1 and
B being all the rest, we have δA = 2 (because M

(1)†
1 M

(1)
1

and M
(1)†
2 M

(1)
2 cannot be proportional to each other while

summing to the identity when M
(1)†
1 M

(1)
2 = 0) implying from

Theorem 4 that δB � N + 1 − δA = 1, as N = 2. Therefore,
when M

(1)†
1 M

(1)
2 = 0 = M

(1)†
2 M

(1)
1 , M

(α)
j is proportional to a

unitary for j = 1, 2 and α �= 1, and

(
I (1) ⊗ M

(2)†
1 ⊗ M

(3)†
1 · · · ⊗ M

(P )†
1

)
U

= cM
(1)
1 ⊗ I (2) ⊗ · · · ⊗ I (P )

+M
(1)
2 ⊗ M

(2)†
1 M

(2)
2 ⊗ · · · ⊗ M

(P )†
1 M

(P )
2 , (13)

for some constant c. Since M
(α)†
1 M

(α)
2 is proportional to a

unitary for every α �= 1, we can find unitaries U (α) such that
U (α)M

(α)†
1 M

(α)
2 U (α)† is diagonal ∀ α �= 1. Then, by Lemma

2, all other parties can control the first, and the argument at
the end of the last paragraph for U being locally equivalent
to a diagonal unitary still applies, completing the proof of
Theorem 1.

C. The bipartite case

We will now show the following:
Theorem 6. Any bipartite unitary of Schmidt rank 2 is

locally equivalent to a controlled unitary where either party
can be chosen as the control, and at least one party can control
with two terms.

For example, if the first party controls with two terms, then
up to local unitaries

U = P1 ⊗ W1 + P2 ⊗ W2, (14)

where P1 and P2 are orthogonal projectors.
Proof. Given Theorem 1, it only remains to prove the claims

that either party can control and that one of them can control
with two terms. Assuming Theorem 1 shows that it is the first
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party that can control, then

(U (1) ⊗ I (2))U(V (1)† ⊗ I (2)) =
d1∑

k=1

|k〉〈k| ⊗ Wk. (15)

SinceU has Schmidt rank 2, it must be that the span of unitaries
{Wk}d1

k=1 has dimension exactly equal to 2. Choose ordering of
the standard basis states on the first party’s space such that
W1, W2 are linearly independent. Then,

Wk = μk1W1 + μk2W2. (16)

Inserting this into Eq. (15), we find

(U (1) ⊗ I (2))U(V (1)† ⊗ I (2)) =
d1∑

k=1

|k〉1〈k| ⊗
2∑

j=1

μkjWj

=
2∑

j=1

(
d1∑

k=1

μkj |k〉1〈k|
)

⊗ Wj

:=
2∑

j=1

Aj ⊗ Wj. (17)

Since Wk is unitary so that W
†
k Wk = I (2), then from Eq. (16)

we find that for every k,

0 = μk1μ
∗
k2I

(2) − (1 − |μk1|2 − |μk2|2)W †
1 W2

+μ∗
k1μk2(W †

1 W2)2. (18)

First let us assume that the coefficients in this quadratic
equation for unitary W

†
1 W2 do not all vanish. Then when

diagonalized, it becomes a quadratic equation for the eigen-
values of this unitary. Since all eigenvalues satisfy the same
quadratic equation, which has exactly two distinct solutions,
this means that W

†
1 W2 has exactly two distinct eigenvalues

(which is why the quadratic equation cannot have only one
distinct solution, since W

†
1 W2 �∝ I (2)), and then with P1,P2

orthogonal projectors onto the degenerate subspaces of W
†
1 W2,

thus providing a decomposition of the identity on the second
party’s space, I (2) = P1 + P2, we have

W
†
1 W2 = λ1P1 + λ2P2, (19)

and

(U (1) ⊗ W
†
1 )U(V (1)† ⊗ I (2))

= A1 ⊗ (P1 + P2) + A2 ⊗ (λ1P1 + λ2P2)

= Q1 ⊗ P1 + Q2 ⊗ P2, (20)

with Qj = (A1 + λjA2) unitaries. Therefore, either party can
control, and the second party can control with two terms.

We still need to consider the case that all coefficients in
the quadratic (18) vanish. Then for each k, either μk1 = 0
and |μk2| = 1 or μk2 = 0 and |μk1| = 1. In either case, we can
multiply Eq. (17) by the diagonal unitary D = ∑

k μ∗
km|k〉1〈k|,

with m = 1 or 2 chosen so that each diagonal element is

nonzero, to obtain

(DU (1) ⊗ I (2))U(V (1)† ⊗ I (2))

=
2∑

j=1

(
d1∑

k=1

|μkj |2|k〉1〈k|
)

⊗ Wj = P1 ⊗ W1 + P2 ⊗ W2.

(21)

In this case, the first party can control with two terms.
Multiplying this expression on the left by I (1) ⊗ W

†
1 and then

performing a unitary similarity transformation on the second
party to diagonalize W

†
1 W2, we see by Lemma 2 that the second

party can also control, completing the proof. �
Theorem 6 has the following corollary:
Corollary 7. Any Schmidt rank-2 bipartite unitary can be

implemented using a maximally entangled state on two qubits
and LOCC.

We omit the proof because this corollary follows directly
from the results of Ref. [2], which also provides a simple pro-
tocol. Let us just offer a remark on whether this entanglement
cost of 1 ebit is optimal: while it is shown in Ref. [5] that it is
impossible to deterministically implement any Schmidt rank-2
bipartite unitary using a Schmidt rank-2 partially entangled
state and LOCC, it may be possible by using a partially
entangled state of Schmidt rank greater than 2 with less than
1 ebit of entanglement, see the example in Ref. [5]. Hence the
optimal entanglement cost is not always 1 ebit.

III. DISCUSSION: UNITARIES OF HIGHER
SCHMIDT RANK

It is not difficult to find unitaries that are not controlled, and
one need only go to Schmidt rank-3 to find simple examples.
One such example, which acts on three parties, is

U = 1√
3

(I ⊗ I ⊗ I + iX ⊗ X ⊗ X + iZ ⊗ Z ⊗ Z), (22)

where X and Z are Hermitian unitaries that anticommute with
one another: XZ + ZX = 0. For such operators, no unitaries
U, V exist such that UV †, UXV †, UZV † are all diagonal
(because this would require that V †U commutes with both
X and Z, and that UXV † commutes with UZV †; together
these commutation relations imply that X commutes with Z).
A common example of operators satisfying these conditions is
the usual Pauli operators σx, σz. Another well-known example,
this time on a bipartite system and having Schmidt rank of 4,
is the SWAP operator on two qubits,

U = 1
2 (I ⊗ I + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz). (23)

Of course, it is certainly also possible for unitaries of
higher Schmidt rank to be controlled unitaries. Following the
arguments presented in the previous sections, we can give a
sufficient condition that any given unitary is locally equivalent
to a controlled unitary. Write unitary U as a sum of product
operators,

U =
N∑

j=1

M
(1)
j ⊗ M

(2)
j ⊗ · · · ⊗ M

(P )
j , (24)
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so that

I = U†U

=
N∑

i,j=1

M
(1)†
i M

(1)
j ⊗ M

(2)†
i M

(2)
j ⊗ · · · ⊗ M

(P )†
i M

(P )
j . (25)

If for any given α, operators {M (α)†
i M

(α)
j } span a two-

dimensional space, Lemma 3 tells us that {M (α)
i }Nj=1 can all

be simultaneously diagonalized by local unitaries U (α), V (α).
By Lemma 2, we then have that each such party can act as
a control for this unitary. Therefore, the following theorem
holds:

Theorem 8. Given nonlocal unitary U = ∑
M

(1)
j ⊗ · · · ⊗

M
(P )
j acting on P parties and having any Schmidt rank, if for

any given α, operators {M (α)†
i M

(α)
j } span a two-dimensional

space, that party can act as a control for U , and this is true for
every such party.

IV. CONCLUSIONS

We have shown that every nonlocal multipartite unitary
having Schmidt rank equal to 2 is locally equivalent to a fully
controlled unitary with all parties but one acting as a control. In
the bipartite case we get a stronger result: any bipartite unitary
of Schmidt rank 2 is locally equivalent to a controlled unitary
where either party can be chosen as the control, and at least
one party can control with two terms, which implies that such
unitary can be implemented using LOCC and a maximally
entangled state on two qubits. We also provided a sufficient
condition for when a nonlocal unitary on any number of parties
is locally equivalent to a controlled unitary, and this condition
allows one to identify which, if any, parties can act as controls.

As mentioned in the Introduction, our main results can be
applied to the gate decomposition (quantum circuit design) of
unitaries that act on several systems in the same laboratory.
For example, the bipartite result would imply that any unitary
acting on systems A and B with Schmidt rank 2 can be
expressed as U = (U (A)

1 ⊗ U
(B)
1 )Q(U (A)

2 ⊗ U
(B)
2 ), where U

(A)
j

and U
(B)
j are local unitaries on A or B, and Q is a controlled

unitary.
A natural extension of the work presented in this paper on

unitaries of Schmidt rank-2 would be to characterize higher
Schmidt rank nonlocal unitaries in terms of product operator
expansions, beginning with multipartite unitaries of small
Schmidt rank. Such studies may help us better understand the
entanglement cost of implementing nonlocal unitaries using
LOCC protocols.
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APPENDIX: PROOF OF LEMMA 3

Since the identity operator lies in the two-dimensional span
of operators {R†

i Rj }, there exist indices K, L such that for all
i,j , R

†
i Rj lies in the span of {I,R†

KRL}. In particular, we can
write

R
†
i RL = μiI + νiR

†
KRL ∀ i. (A1)

Suppose we fix K and seek L such that ∃ i for which μi �= 0.
If this is impossible, then

R
†
i Rj = ν̂ijR

†
KRj ∀ i,j . (A2)

However, this means

I =
∑
i,j

αijR
†
i Rj = R

†
K

∑
i,j

αij ν̂ijRj , (A3)

which implies that RK is full rank, and then with j = K in
(A2), we have that every Ri is proportional to RK . This is
impossible given that {R†

i Rj } spans a two-dimensional space,
so for each K there exists a choice of L such that μi �= 0 for
at least one i in (A1), and we immediately see that RL is full
rank. Hence R−1

L exists, and from (A1) we have

R
†
i = μiR

−1
L + νiR

†
K ∀ i. (A4)

Setting i = L and choosing unitaries U, V such that URLV † is
diagonal, we see that URKV † is also diagonal, unless νL = 0.
If νL �= 0, then by (A4), URiV

† is diagonal for all i, and we
are finished.

Suppose now that there is no choice of K, L such that
νL �= 0. Then ∃ L such that νL = 0, and this implies that RL =√

μLWL with WL unitary and μL �= 0. Then, from (A1)
√

μLR
†
i WL = μiI + νi

√
μLR

†
KWL ∀ i, (A5)

and if RK is proportional to a unitary, we can choose unitary
V such that V R

†
KWLV † is diagonal, in which case V R

†
i WLV †

is diagonal ∀ i and choosing U = V W
†
L, we are done.

Finally, consider the case that there is no choice of K, L

such that νL �= 0 and RK is not proportional to a unitary. Then,
R

†
KRK is not proportional to the identity operator, and we can

write

R
†
i Rj = μij I + νijR

†
KRK ∀ i, j . (A6)

We still have L such that RL = √
μLWL, as above. Then,

√
μLR

†
i WL = μiLI + νiLR

†
KRK ∀ i. (A7)

Choosing unitary V so that V R
†
KRKV † is diagonal, we then

have that V W
†
LRiV

† is diagonal ∀ i. Choosing U = V W
†
L

completes the proof. �
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