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Low-overhead constructions for the fault-tolerant Toffoli gate
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We present two constructions for the Toffoli gate which substantially reduce resource costs in fault-tolerant
quantum computing. The first contribution is a Toffoli gate requiring Clifford operations plus only four T =
exp(iπσ z/8) gates, whereas conventional circuits require seven T gates. An extension of this result is that adding
n control inputs to a controlled gate requires 4n T gates, whereas the best prior result was 8n. The second
contribution is a quantum circuit for the Toffoli gate which can detect a single σ z error occurring with probability
p in any one of eight T gates required to produce the Toffoli gate. By postselecting circuits that did not detect an
error, the posterior error probability is suppressed to lowest order from 4p (or 7p, without the first contribution)
to 28p2 for this enhanced construction. In fault-tolerant quantum computing, this construction can reduce the
overhead for producing logical Toffoli gates by an order of magnitude.
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I. INTRODUCTION

Fault-tolerant quantum computing is the effort to design
quantum-information processors which are resilient to suf-
ficiently small (but nonzero) probability of failure in any
individual component [1,2]. Enhanced reliability comes at
the cost of redundancy, and recent study in this area has
focused on minimizing the overhead, or additional resource
costs, associated with converting a perfect quantum operation
into a form compatible with error correction [3–5]. This work
focuses on the Toffoli gate, which appears in both reversible-
classical and quantum logic and which may be defined as
UToffoli|x,y,z〉 = |x,y,z ⊕ xy〉, with x, y, and z being binary
variables. Unlike many quantum gates, the quantum Toffoli
gate has a classical analog, so it is favored as a building
block for importing more complex classical operations, such
as binary arithmetic, into quantum algorithms like Shor’s
factoring algorithm [4,6,7] and quantum simulation [4,8,9].
For these reasons, the Toffoli gate is critically important
to quantum computing in general, and improvements in the
design of the Toffoli gate make the realization of large-scale
quantum computation more tractable.

Several researchers have studied circuit constructions for
the Toffoli gate. The most often cited implementation is
probably the one on page 182 of Ref. [2], which may have been
derived from Ref. [10]. As can be seen in Ref. [2], the Toffoli
gate is decomposed into smaller quantum gates, each of which
can be made fault tolerant by conventional means [1]. The
most nettlesome of these is the T = exp(iπσ z/8) gate, which
is much more expensive in both time and space resources to
produce [3,4,11–16]; notably, the Toffoli circuit in Ref. [2]
uses seven T gates. In fact, Ref. [10] contains a construction
nearly identical to one derived here (we use four T gates),
except for an undesirable (−1) phase on one output state
(we show how to correct this with modest effort). However,
“complete” implementations of the Toffoli gate without a
phase error have used seven T gates in the literature to
date. Amy et al. [17] studied classical search methods for
decomposing gates like the Toffoli gate into fault-tolerant
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primitives, and Selinger [18] investigated circuit constructions
with particular emphasis on T -gate count and depth, where
the latter metric allows parallel T gates on different qubits.
We use Selinger’s work as our starting point, as we turn his
almost-Toffoli gate into a proper Toffoli gate, using four T

gates and some quantum teleportation. Finally, the importance
of this topic has attracted the attention of other researchers, and
Eastin [19] has independently discovered equivalent results.

This paper presents two important results. First, Sec. II
describes how to implement the Toffoli gate with only four T

gates and Clifford-group operations [2,20]. Second, Sec. III
introduces a Toffoli construction requiring eight T gates that
can detect an error in any single T gate. This circuit is an
important development for fault-tolerant quantum computing,
because it relaxes the requirements on high-fidelity T gates that
are expensive to produce; however, the circuit is probabilistic,
and we discuss its proper usage. Section IV presents some
analysis of the resource costs and error rates for these circuits.
The paper concludes with a brief discussion of the impact these
results have on large-scale quantum computing.

II. TOFFOLI GATE USING JUST FOUR T GATES

In most fault-tolerant quantum computing architectures,
the most difficult quantum gates to produce are non-Clifford
gates [12]. The Hadamard gate H = (1/

√
2)(σx + σ z), the

phase gate S = exp(iπσ z/4), and the CNOT gate are generators
for the Clifford group, as any gate in this group can be
produced by combinations thereof, up to a global phase that we
ignore. However, at least one gate outside the Clifford group is
required for universal quantum computing [2]. The T gate is
often selected because it is the easiest to produce; however, as
we explain below, “easy” is relative, and this gate is still quite
expensive in computing resources.

The choice of T gate as the non-Clifford operation that
enables universal quantum computing is motivated by the set
structure {Cn} studied by Gottesman and Chuang [20]. C1 is
the Pauli group, C2 is Clifford group, and Cn ≡ {U |UC1U

† ⊆
Cn−1}. For example, this means that a frame transformation by
some gate U in C3 maps Pauli operators to the Clifford group.
As shown in Ref. [20], elements of C3 can be implemented
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using teleportation, with conditional by-product operators that
are in the Clifford group. Thus, when Clifford gates are natively
available in error correction, elements of C3 are the most
convenient choice of non-Clifford gates to enable universality.
The T gate is in C3 (as are other rotations by angle π/4 on
the Bloch sphere), which explains why it is often selected to
complete universality [3,4,11–16].

In most quantum codes, including the surface code [21],
non-Clifford gates are produced using an ancilla state that is
injected into the circuit [2,20]. As this ancilla is produced
in a faulty manner, it must be purified through magic-state
distillation [12,14]. The handful of rounds of state distillation
required to distill input states, where each has error probability
p in the range 10−2–10−4, to reach the roughly 10−12 error rates
required for quantum algorithms [3,4,22] are considerably
expensive, such that a single T gate requires about 50× the
circuit volume (product of qubits and time steps) of a CNOT

gate or an H gate [4,5], making its production the dominant
cost among fault-tolerant gate primitives. This poses an issue
for quantum computing, as very many T gates in the form of
Toffoli gates are required for typical quantum algorithms like
integer factoring or quantum simulation. The first Toffoli gate
construction we present uses four T gates instead of seven,
thereby reducing the overhead due to state distillation.

Let us denote the Toffoli� gate as the operation in Fig. 1(a),
which requires four T gates and was introduced by Selinger
[18]. Toffoli and Toffoli� gates differ only by a controlled-S†

gate between the control qubits x and y. Beginning with the
Toffoli� gate, we need only an ancilla qubit, a phase gate S, and
teleportation to implement the exact Toffoli gate, as shown in
Fig. 1(b). We first apply the Toffoli� gate using the same con-
trols as the desired Toffoli gate but with an ancilla |0〉 as the tar-
get. The erroneous controlled-S† is corrected by a simple S gate
applied to the ancilla. Afterwards, the CNOT and measurement
teleport the doubly conditional NOT operation encoded in the
ancilla to the target qubit of the desired Toffoli gate. The
measurement result determines whether a corrective gate of
controlled-σ z, which is in the Clifford group, is required to
correct a (−1) phase resulting from measurement back-action.
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FIG. 1. A circuit construction for a Toffoli gate using four T gates.
(a) The Toffoli� circuit by Selinger [18] that is almost a Toffoli gate,
with the difference being the controlled-S† operation. (b) Our circuit
combines the Toffoli� circuit with a phase correction and teleportation
to produce an exact Toffoli gate. The measurement is in the σ z basis,
and the double vertical lines indicate that the controlled-σ z correction
is conditioned on the measurement result being |1〉.

One can readily verify that only four T gates are required in
this procedure [2,20]. Note that the inverse gate T † requires
the same ancilla-based teleportation circuit as T , so these gates
are equivalent in state-distillation cost and construction.

The construction in Fig. 1(b) can also be used to add
control-qubit inputs to an existing controlled-G gate, where G

is any unitary. Replace the CNOT in Fig. 1(b) with controlled-G
(targeting however many qubits G acts on), and the result is
controlled-controlled-G. By iterating this procedure, one can
add n controls to controlled-G using 4n T gates. The best prior
result required 8n T gates [18].

III. ERROR-DETECTING TOFFOLI CIRCUIT

Whereas the previous section reduced the number of T

gates needed to make a Toffoli circuit, this section addresses
the resource-cost problem differently by making each T gate
less expensive. The cost of a T gate scales inversely with
the probability p of it having an undetected error, with a
relationship where the circuit volume (qubits × gates) is
O(poly[log(1/p)]). We introduce a new Toffoli gate that can
detect an error in any one of eight T gates. As a result,
the effective error probability of the Toffoli gate is 28p2

instead of 4p (we only consider the lowest nonvanishing order
throughout this paper since p � 1). Even though twice as
many T gates are needed, they can tolerate larger error rates,
so they are substantially less expensive to produce than would
otherwise be necessary.

The error-detecting Toffoli circuit is rather simple to derive.
It consists of two Toffoli� gates acting on a target qubit
which is in a bit-flip code [2], as shown in Fig. 2. The gate
with reversed triangles is the inverse operation (Toffoli�)†.
Importantly, the controlled-S and controlled-S† gates acting on
the same qubits x and y are inverse operations, so they cancel.
A logically equivalent decomposition into T gates is shown
in Fig. 3; this circuit is convenient for analyzing how errors
propagate. The correspondence is achieved by placing T gates
on ancilla qubits with the aid of CNOT gates [18]. We assume
that |0〉 preparation, H , CNOT, and measurement operations
are perfect, because fault-tolerant error correction for these
processes is economical compared to T gates. A single σ z

error in any of the T gates will necessarily propagate to the
syndrome measurement for this bit-flip code, as indicated by
the red dashed lines. Upon such an event, all of the qubits are
discarded. Note that σx errors, if present, do not propagate
anywhere since they commute with the CNOT gates; they have
no effect on the Toffoli gate.

The circuit in Fig. 3 must be discarded upon a detected
error event, which happens with probability 8p. If this circuit
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FIG. 2. An error-detecting Toffoli gate. The measurement is in
the σ z basis, and obtaining result |1〉 indicates an error was detected,
so the qubits should be discarded.
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FIG. 3. (Color online) An error-detecting Toffoli gate. The red
dashed lines indicate how any single σ z error will propagate to the
readout qubit. The measurement is in the σ z basis, and obtaining
result |1〉 indicates an error was detected, so the qubits should be
discarded. As long as the ancilla qubits are initialized perfectly to |0〉
and the CNOT and H gates have no errors, then only σ z errors in the
T gates matter, as σ x errors cannot propagate to data qubits. If the
probability of a σ z error in each T gate is an independent, identically
distributed (i.i.d.) Bernoulli(p), then the success probability is 1 − 8p

and the a posteriori error probability is 28p2, to lowest order in p.

is connected by entanglement to other qubits in a quantum
algorithm, all qubits must be discarded, and the algorithm fails.
To avoid this scenario, one can produce a Toffoli ancilla [2].
If the circuit fails because of a detected error, then the qubits
are discarded, but no far-reaching damage occurs since this
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FIG. 4. Proper use of an error-detecting Toffoli ancilla. All
measurements are in the σ z basis. The ancilla-production circuit in
the box in the upper left corner is probabilistic. A measurement
result of |1〉 indicates the circuit failed, in which case the qubits are
discarded. Because the Toffoli ancilla is not coupled to any other
part of the quantum computation, its production can be repeated
until success. The subsequent CNOT gates and measurements teleport
data qubits through the Toffoli gate encoded in the ancilla (cf.
p. 488 of Ref. [2]). Clifford-group gates are applied conditional
on measurements showing outcome |1〉, as indicated by the parallel
double lines.

faulty circuit is not entangled to any data qubits. Conditional
on the circuit succeeding, the ancilla is teleported into data
qubits to enact a Toffoli gate, using only Clifford gates and
measurement, as shown in Fig. 4. Using a representative value
for the T -gate error such as p = 10−8 (we consider such
a scenario in Sec. IV), the failure probability for preparing
the Toffoli ancilla is a modest 8 × 10−8, which negligibly
increases the number of times such preparation circuits must
be repeated.

IV. RESOURCE ANALYSIS

Comparing resource costs between the naive Toffoli gate
using seven T gates and our construction using four gates is
straightforward. The latter requires about half the resources of
the former, under our assumption that T gates are the dominant
cost. There is also a modest improvement in the Toffoli error
rate (7p becomes 4p). However, in fault-tolerant quantum
computing, this result is likely overshadowed by the error-
detecting construction.

Doubling the number of T gates from four to eight
to achieve O(p2) Toffoli error rate is usually the correct
decision. The reason is that this approach is more economical
than increasing the accuracy of the T gates through further
magic-state distillation (or other fault-tolerant procedures [2]).
Bravyi and Haah [15] present a conjecture in the context of
magic-state distillation, stating that to produce one magic state
with error O(p2) requires at least two input states with error
p; hence, increasing T -gate accuracy to O(p2) will require
at least twice as many circuit resources, and in all practical
cases known to this author, the overhead factor is larger than
2 (an example case is considered below). Moreover, there
is no known protocol which saturates this bound. Multilevel
distillation comes arbitrarily close as p → 0, but this limiting
case is not always relevant for finite p, and multilevel protocols
require large and complex circuits [16].

Under conditions relevant to quantum computing, the
error-detecting Toffoli gate in Fig. 3 can reach the low error
rates required for quantum algorithms with one less round of
state distillation, leading to as much as an order-of-magnitude
reduction in the resources required to produce a fault-tolerant
Toffoli gate. For example, suppose that we wish to produce
a Toffoli gate with an error probability below 10−12. We
presume the “raw” T -gate ancilla has a σ z error probability
of 10−2. Using the results in Ref. [14], the simple Toffoli
gate would require four T gates distilled to p = 10−15 using a
hybrid scheme of one round of Bravyi-Kitaev (BK) distillation
and two rounds of Meier-Eastin-Knill (MEK) distillation, at
an average total cost of 1744.8 raw states. Conversely, the
error-detecting Toffoli gate would require just one round each
of BK and MEK distillation circuits for each of the eight T

gates distilled to p = 10−8, for a total average cost of 697.6 raw
states. The resource savings factor is 2.5×, just in terms of the
number of undistilled states needed for distillation. In practice,
the resource savings is amplified by another factor of about 2×
because one less round of distillation is needed (fewer gates
means smaller circuit volume). Reference [22] estimates that
each additional round of BK distillation increases total circuit
volume by a factor of 3×, although this specific factor may
be lower for other protocols like MEK that have a different
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“scaling exponent” [15,16]. Additionally, the state-distillation
subcircuits for the error-detecting Toffoli gate can use weaker
error correction (i.e., lower code distance) than the same
preparation circuits for the simple Toffoli, which translates
to fewer qubits and gates at the hardware level [22]. Relative
to the Toffoli circuit using seven T gates, there is an additional
savings factor of 7/4. Therefore, the error-detecting circuit
reduces total overhead for non-Clifford gates by up to an order
of magnitude in this representative example.

It is also noteworthy that if “raw” T gates can be produced
with an error rate of p = 10−4, then the error-detecting Toffoli
has a posterior error probability of approximately 3 × 10−7.
This would enable modest quantum computations using about
106 Toffoli gates, such as the multiplication of two 1000-bit
numbers, without the need for resource-intensive magic-state
distillation.

V. CONCLUSIONS

The Toffoli gate is a ubiquitous operation in quantum
computing, as it plays a key role in many quantum algorithms.

However, quantum computers that realize these algorithms
are still out of reach. In the meantime, engineering a system
capable of large-scale, fault-tolerant quantum computation de-
mands that quantum computer architects minimize computing
resource costs in terms of execution time and machine size.
The constructions in this paper substantially reduce the circuit
volume for the fault-tolerant Toffoli gate when one considers
how expensive each non-Clifford gate T is to produce. In
the case of the error-detecting Toffoli gate, the resource
savings is an order of magnitude in a representative example
with a T -gate error of p = 0.01. The improved fault-tolerant
Toffoli gate brings large-scale quantum computing closer to
realization.
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