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We discuss particle entanglement in systems of indistinguishable bosons and fermions, in finite Hilbert spaces,
with focus on operational measures of the entanglement of particles. We show how to use von Neumann entropy,
negativity, and entanglement witnesses in these cases, proving interesting relations. We obtain analytic expressions
to quantify the entanglement of particles in homogeneous D-dimensional Hamiltonians with certain symmetries.
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I. INTRODUCTION

The notion of entanglement, first noted by Einstein,
Podolsky, and Rosen [1], is considered one of the main
features of quantum mechanics, and became a subject of
great interest in the last few years due to its primordial
role in quantum computation and quantum information [2–5].
Despite being widely studied in systems of distinguishable
particles, entanglement been given less attention in the case
of indistinguishable ones. In this case the space of quantum
states is restricted to symmetric (S) or antisymmetric (A)
subspaces, depending on the bosonic or fermionic nature of the
system.

Entanglement of indistinguishable systems is much subtler
than that of distinguishable ones, and there has been distinct
approaches to its treatment, which consist essentially in the
analysis of the correlations under two different aspects: the
correlations genuinely arising from the entanglement between
the particles (which we will call hereafter as “entanglement
of particles”) [6–8], and the correlations arising from the
entanglement between the modes of the system (“entanglement
of modes”) [9–11]. These two notions of entanglement are
complementary, and the use of one or the other depends
on the particular situation under scrutiny. For example,
the correlations in eigenstates of a many-body Hamiltonian
could be more naturally described by particle entanglement,
whereas certain quantum information protocols could prompt
a description in terms of entanglement of modes.

Zanardi [9] as well as Wiseman and Vaccaro [10] associate
a Fock space to the the several distinguishable modes of
a system of indistinguishable particles, which allows one
to employ all the tools commonly used in distinguishable
quantum systems. This notion is formalized in terms of
commuting subalgebras of observables by Benatti et al. [11].
In this work we will deal with the notion of entanglement of
particles [6–8], which calls for different tools. Several notions
for the entanglement of particles have been proposed in the
literature, which agree in some respects, but differ in others.
According to Eckert et al. [6], who base their analysis in
the characterization of the useful correlations in systems of
indistinguishable particles as opposed to correlations arising
purely from their statistics, the pure states with no “quantum
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correlations” (in agreement with the authors, who use this
term instead of entanglement of particles) are those described
by a single Slater determinant for fermions, or a single
Slater permanent formed out of a single one-particle state
in the bosonic case. Li et al. [8] base their analysis on the
resolution of the state in a direct sum of single-particle states.
Gihardi and Marinatto [7] relate the notion of entanglement
of quantum systems composed of two identical constituents
to the impossibility of attributing a complete set of properties
to both particles. It is important to note that these different
definitions agree in the fermionic case, showing that the
correlations generated by mere antisymmetrization of the
state due to indistinguishability of their particles do not truly
constitute entanglement; or equivalently, states described by
a single Slater determinant, which are eigenstates of the free
fermions Hamiltonian (single-particle Hamiltonian), have no
entanglement between their particles. On the other hand, such
definitions may disagree with each other in the bosonic case.
Entanglement of indistinguishable fermions is far simpler than
that of indistinguishable bosons. The definitions by Li et al. [8]
and Gihardi and Marinatto [7], although distinct, result in the
same set of pure bosonic states without entanglement, which
is greater than that defined by Eckert et al. [6]. Interestingly,
as in the fermionic case, the former set corresponds to the
eigenstates of the free-boson Hamiltonian, which is expected
not to possess entanglement.

Once one has opted for a certain notion for the entanglement
of particles, the next step is to devise a method to calculate it.
There are some interesting operational measures such as the
Slater concurrence [6] for two fermions or bosons of dimen-
sions A(H4 ⊗ H4) and S(H2 ⊗ H2); the von Neumann en-
tropy of the single-particle reduced state for pure states of two
particles [8,12]; and the linear entropy of the single-particle
reduced state of N -fermion pure states [13]. In a previous
work [14], we showed how to calculate optimal entanglement
witnesses for indistinguishable fermions, and introduced a
new operational measure. With our witnesses we can calculate
the generalized robustness of entanglement for systems with
arbitrary number of fermions, with single-particle Hilbert
space of arbitrary dimension. Interestingly, in the case of two
fermions with a four-dimensional single-particle Hilbert space,
the generalized robustness coincides with the Slater concur-
rence. All these measures have limitations, either conceptual or
computational, and should be considered complementary. The
quantification of entanglement of particles for general states,
fermionic or bosonic, remains an open problem.
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In this work, as a natural extension of [14], we will show
how to calculate entanglement witnesses for the bosonic
case, but they will not be optimal due to some subtleties of
the unentangled bosonic states. We will show that functions
of the purity of the single-particle reduced state quantify
entanglement for pure states, with the caveat that for some
special known values, the quantifier is inconclusive for bosons.
This extends previous results by Paskauskas and You [12] and
Plastino et al. [13]. We will also see that a simple shift in
the well-known negativity [Neg(ρ) = ‖ρTi ‖1 − const.] [15]
results in a quantifier for the entanglement of particles in
bosons and fermions. Finally, in the context of entanglement in
many-body systems [4,5,16], we will analyze homogeneous D-
dimensional Hamiltonians with certain symmetries by means
of the von Neumann entropy of the single-particle reduced
state.

This paper is organized as follows. In Sec. II we consider
the entanglement of particles in fermionic states, showing how
the purity of the single-particle reduced state can be used as a
measure for pure states, and the negativity for the general case.
In Sec. III the same analysis is made for bosons. In Sec. IV we
discuss entanglement witnesses in bosonic systems. In Sec. V
we make some remarks about the different measures for the
entanglement of particles, and discuss how they compare for
pure states with single-particle Hilbert space with the smallest
dimension, proving some relations. In Sec. VI we show how to
use the tools presented in the previous sections in the context
of entanglement in many-body systems. In the Appendix,
we prove the expressions for the negativity of bosons and
fermions. We conclude in Sec. VII.

II. FERMIONS

Systems of indistinguishable particles have a more concise
description in the second quantization formalism. Therefore
we introduce operators with the following anticommutation
relations:

{f †
i ,f

†
j } = {fi,fj } = 0, {fi,f

†
j } = δij . (1)

f
†
i and fi are the fermionic creation and annihilation operators,

respectively, such that their application on the vacuum state
(|0〉) creates or annihilates a fermion in state i. The vacuum
state is defined such that that fi |0〉 = 0. As mentioned in the
Introduction, the different definitions for the entanglement of
particles agree with each other in the fermionic case, in the
sense that the set of unentangled states can be defined as
follows.

Fermionic state without particle entanglement: A fermionic
state σ ∈ B(A(Hd

1 ⊗ · · · ⊗ Hd
N )) has no particle entanglement

if it can be decomposed as a convex combination of Slater
determinants, namely,

σ =
∑

i

pi ai†
1 · · · ai†

N |0〉〈0| ai
N · · · ai

1,
∑

i

pi = 1, (2)

where ai†
k = ∑d

l=1 ui
kl f

†
l ({ai†

k } is a set of orthonormal
operators in the index k), Ui is a unitary matrix of dimension

dN , and {f †l } is an orthonormal basis of fermionic creation
operators for the space of a single fermion (Hd ). Note

that unentangled pure states are single Slater determinants.
The single-particle reduced states (σr(Sl1) ) of a single Slater
determinant have a particularly interesting form and stand
for the pure states in the “N -representable” reduced space
(single-particle reduced space respective to the antisymmetric
space of N fermions) [17].

Single-particle reduced fermionic state without particle
entanglement: Given a pure fermionic state without parti-
cle entanglement, i.e., a single Slater determinant, |ψ〉 =
a
†
φ1

a
†
φ2

· · · a†
φN

|0〉, where {a†
φi

} are orthonormal, we have the
equivalence

σr(Sl1) ≡ 1

N

N∑
i=1

a
†
φi

|0〉〈0|aφi
⇐⇒ |ψ〉 = a

†
φ1

a
†
φ2

· · · a†
φN

|0〉,

(3)

where σr(Sl1) = Tr1 · · · TrN−1(|ψ〉〈ψ |) is the single-particle
reduced state (Tri is the partial trace over particle i). Therefore,
if σ is a mixed unentangled state, its single-particle reduced
state in the N-representable reduced space is

σr ≡ Tr1 · · · TrN−1(σ ) =
∑

i

piσ
i
r(Sl1)

. (4)

Now, aware of Eq. (3), it is straightforward to conclude
that shifted positive semidefinite functions of the purity of
the single-particle reduced state can be used to measure
the entanglement of particles of a pure fermionic state,
a result similar to that obtained by Paskauskas and You
[12] or Plastino et al. [13]. Using, for example, the von
Neumann entropy S(ρ) = Tr(−ρ ln ρ), we see that S(ρr =
Tr1 · · · TrN−1(|ψ〉〈ψ |)) � S(σr(Sl1) ) = ln N , and thus a measure
E for the entanglement of particles of a pure fermionic state
can be defined as a shifted von Neumann entropy of the
single-particle reduced state.

Shifted von Neumann entropy of entanglement for pure
states:

E(|ψ〉〈ψ |) = S(ρr ) − ln N. (5)

The case of pure states is easy due to the unique form of
the unentangled single-particle reduced states [Eq. (3)], which
is no longer the case for mixed states [Eq. (4)]. Though
not obvious, but straightforward to prove as we show in the
Appendix, we can measure the entanglement of particles of
mixed fermionic states by the following shifted negativity.

Shifted negativity:

Neg(ρ) =
{

‖ρTi ‖1 − N if ‖ρTi ‖1 > N,

0 otherwise,
(6)

where Ti is the partial transpose over the ith particle, and ‖.‖1 is
the trace norm. If ρ is a single Slater determinant, its trace norm
is N , and it is smaller in the case of an unentangled mixed state,
as shown in the Appendix. Note, however, that we do not know
if there are entangled fermionic states whose negativity is null.
It is easy to check that as expected, the particle entanglement is
nonincreasing under one-particle symmetric operations (local
symmetric operations), as shown in our previous work [14].
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III. BOSONS

As in the previous section, we introduce operators to
describe the bosonic system in the second quantization
formalism. The operators satisfy the usual commutation
relations

[b†i ,b
†
j ] = [bi,bj ] = 0, [bi,b

†
j ] = δij , (7)

where b
†
i and bi are the bosonic creation and annihilation

operators, respectively, such that their application on the
vacuum state (|0〉) creates or annihilates a boson in state i.
The vacuum state is defined such that bi |0〉 = 0. The different
notions of particle entanglement in bosons diverge from each
other, resulting in two distinct sets of unentangled states.

Bosonic pure state with no particle entanglement: A
bosonic pure state |ψ〉 ∈ S(Hd

1 ⊗ · · · ⊗ Hd
N ) without particle

entanglement can be written as

Definition 1. |ψ〉 =
No∏
i=1

(b†φi
)nφi |0〉√
(nφi

!)
, (8)

Definition 2. |ψ〉 = 1√
N !

(b†φ)N |0〉, (9)

where b
†
φi

= ∑d
k=1 uik b

†
k ({b†φi

} is a set of orthonormal opera-
tors in the index i), U is a unitary matrix of dimension dNo, No

is the number of distinct occupied states, and nφi
is the number

of bosons in the state φi . Unentangled mixed states are those
that can be written as convex combinations of unentangled
pure states. We clearly see that the set of states without particle
entanglement according to definition 1 includes the set derived
from definition 2, since the latter is a particular case of the
former, with No = 1.

On the one hand, definition 2 mirrors the case of dis-
tinguishable particles. Therefore one can use the entropy of
the one-particle reduced state S(ρr ) and the usual negativity
‖ρTi ‖1 − 1 to quantify the entanglement. On the other hand,
the problem is delicate for definition 1, since the equivalence
between pure states without particle entanglement and the
single-particle reduced states is no longer uniquely defined by
the analog of Eq. (3). The shifted negativity given by Eq. (6) is
still valid, but now we do know that there are entangled states
with ‖ρTi ‖1 < N . The entropy of the one-particle reduced
state gives information about particle entanglement, but as
a quantifier it must be better understood. We know that an
unentangled bosonic pure state, according to Eq. (8), has the
following one-particle reduced state:

σr (φi,φj ) = 1

N
Tr

(
b
†
φj

bφi
|ψ〉〈ψ |) =

{
1
N

nφi
, if φi = φj

0, otherwise,
(10)

σr = 1

N

No∑
i=1

nφi
b
†
φi

|0〉 〈0| bφi
,

where σr (φi,φj ) is a matrix element of σr . The entropy of the
one-particle reduced state assumes the special values

S(σr ) = −
No∑
i=1

(nφi

N

)
ln

(nφi

N

)
. (11)

Note that 0 � S(σr ) � ln N , and therefore when S(ρr ) > ln N ,
the pure state ρ is entangled. The pure state is also entangled if

S(ρr ) is not one of the values given by Eq. (11). Take for exam-
ple the case of two bosons: we have either No = 1,nφi

= 2 and
thus S(σr ) = 0, or No = 2,nφi

= 1 and S(σr ) = ln 2. Given an
arbitrary pure state ρ of two bosons, if S(ρr ) = 0 we can say
with certainty that the state has no particle entanglement, but
if S(ρr ) = ln 2 we cannot conclude anything, because either
a state with no particle entanglement, e.g., |ψ〉 = b

†
φi

b
†
φj

|0〉,
or an entangled one, e.g., |ψ〉 = 1√

3
(cib

†
φi

b
†
φi

+ cjb
†
φj

b
†
φj

+
ckb

†
φk

b
†
φk

) |0〉, with ci,j,k ∈ R, and S(ρr ) ⊂ (0, ln 3], could have
the same von Neumann entropy for the one-particle reduced
state.

IV. WITNESSED ENTANGLEMENT

In this section we present a bosonic entanglement witness.
Although it is analogous to the fermionic entanglement witness
we introduced in a previous work [14], it is not optimal due to
the complicated structure of the unentangled bosonic states.

A Hermitian operator W is an entanglement witness for
a given entangled quantum state ρ [18] if its expecta-
tion value is negative for the particular entangled quantum
state [Tr(Wρ) < 0], while it is non-negative on the set of
nonentangled states S [∀ σ ∈ S, Tr(Wσ ) � 0]. We say
that Wopt is the optimal entanglement witnesses (OEW)
for ρ, if

Tr(Woptρ) = min
W∈M

Tr(Wρ), (12)

where M represents a compact subset of the set of entangle-
ment witnesses W . With OEWs we can quantify entanglement
E(ρ) by means of an appropriate choice of the set M [19]:

E(ρ) = max[0, − min
W∈M

Tr(Wρ)]. (13)

In the fermionic case [14], restricting the witness operators to
the antisymmetric space {W = AWA†}, the constraint {W �
A} defines the fermionic generalized robustness RF

g ; while
the constraint {Tr(W ) = Da}, where Da is the antisymmetric
N -particle Hilbert space dimension, defines the fermionic
random robustness RF

r ; and the constraint {Tr(W ) � 1} de-
fines the fermionic robustness of entanglement RF

e . These
quantifiers correspond to the minimum value of s (s � 0),
such that

σ = ρ + sϕ

1 + s
(14)

is an unentangled state [according to Eq. (2)], where ϕ can be
entangled or not in the case of RF

g , is unentangled in the case
of RF

e , and is the maximally mixed state A/Da in the case
of RF

r .
The method for obtaining the OEW in the fermionic case

is based on semidefinite programs (SDPs) [20], which can be
solved efficiently with arbitrary accuracy. Now we will mimic
the procedure for constructing W presented in [14], and try to
obtain the generalized robustness for bosonic states. Consider
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the following SDP:

minimize Tr(Wρ)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑d
iN−1=1 · · · ∑d

i1=1

∑d
j1=1 · · · ∑d

jN−1=1

(
cN−1∗
iN−1

· · · c1∗
i1

c1
j1

· · · cN−1
jN−1

WiN−1···i1 j1···jN−1

)
� 0,

∀ ck
i ∈ C, 1 � k � (N − 1), 1 � i � d,

SWS† = W,

W � S,

(15)

where d is the dimension of the single-particle Hilbert
space, S is the symmetrization operator, WiN−1···i1 j1···jN−1 =
biN−1 · · · bi1 W b

†
j1

· · · b†jN−1
∈ B(Hd ) is an operator acting on

the space of one boson, and {b†l } is an orthonormal basis of
bosonic creation operators. The notation W � S means that
(S − W ) � 0 is a positive semidefinite operator. The optimal
W obtained by this program is an entanglement witness, but it
cannot be optimal, as we now discuss.

For an arbitrary bosonic unentangled state σ , the semipos-
itivity condition Tr(Wσ ) � 0 is equivalent to

〈0| bNbN−1 · · · b1 W b
†
1 · · · b†N−1b

†
N |0〉 � 0, (16)

for all orthonormal sets of creation operators {b†k}. This
condition is taken into account in the second and third lines
of Eq. (15) by means of the semipositivity of the operator
bN−1 · · · b1 W b

†
1 · · · b†N−1. Therefore, the entanglement wit-

ness W will not detect bosonic entangled states of the form
b
†
1 · · · b†N−1b̃

†
N |0〉, where b̃

†
N is not orthogonal to b

†
k , a problem

which does not arise in the fermionic case due to the Pauli
exclusion principle. In numerical tests, we noticed that the
quality of W improves with the increase of the single-particle
Hilbert space dimension.

V. MEASURES INTERRELATIONS

In this section we highlight the relationship among the
measures of particle entanglement for fermionic and bosonic
pure states in the smallest dimension, A(H4 ⊗ H4) and
S(H2 ⊗ H2), respectively. While the fermionic case resembles
that of distinguishable qubits, the bosonic case is more intricate
due to the structure of the unentangled states.

For pure states of distinguishable qubits, ρ = |ψ〉〈ψ | ∈
B(H2 ⊗ H2), the following equivalence is well known for gen-
eralized robustness Rg(ρ), robustness of entanglement Re(ρ),
random robustness Rr (ρ), Wooters concurrence CW (ρ), neg-
ativity Neg(ρ), and entropy of entanglement E(ρ) [21–24]:

Rg(ρ) = Re(ρ) = 1
2Rr (ρ) = CW (ρ) = Neg(ρ) ∝ E(ρ).

(17)

Recall that E(ρ) is the Shannon entropy of the eigenval-
ues (λ,1 − λ) of the reduced one-qubit state, and CW =
2
√

λ(1 − λ).

For pure two-fermion states, ρ = |ψ〉〈ψ | ∈ B(A(H4 ⊗
H4)), we have found similar relations:

RF
g (ρ) = RF

e (ρ) = 2
3R

F
r (ρ) = CF

S (ρ) = 1
2 Neg(ρ) ∝ E(ρ).

(18)

Note that Neg(ρ) and E(ρ) are the shifted measures. The
relations between robustness and Slater concurrence were
observed numerically by means of optimal entanglement
witnesses [14], and now we prove them. Based on the
Slater decomposition |ψ〉 = ∑

i zia
†
2i−1a

†
2i |0〉, where a

†
i =∑

k Uikf
†
k , we can write the following optimal decomposition

[viz. Eq. (14)]:

σopt = 1

1 + t
(ρ + tφopt), (19)

φopt = 1

2
(a†

1a
†
3|0〉〈0|a3a1 + a

†
2a

†
4|0〉〈0|a4a2). (20)

Now we show that when t = CF
S (ρ), σopt is unentangled and

in the border of the uncorrelated states. We know that the
Slater concurrence of the state is invariant under unitary local
symmetric maps 	. We can always choose 	 so that the single-
particle modes {a†

i } are mapped into the canonical modes
{f †

i } [25]. Therefore 	σopt → σ ′
opt = 1

1+t
(|ψ ′〉〈ψ ′| + tφ′

opt),

where |ψ ′〉 = ∑
i zif

†
2i−1f

†
2i , and φ′

opt = 1
2 (f †

1 f
†
3 |0〉〈0|f3f1 +

f
†
2 f

†
4 |0〉〈0|f4f2).

The Slater concurrence of σ ′
opt is given by CF

S (σ ′
opt) =

max(0,λ4 − λ3 − λ2 − λ1), where {λi}4
i=1 are the eigenval-

ues, in nondecreasing order, of the matrix
√

σ ′
optσ̃

′
opt, with

σ̃ ′
opt = (KUph)σ ′

opt(KUph)†, K being the complex conjugation
operator, and Uph the particle-hole transformation. Consider
the following matrix:√

σ ′
optσ̃

′
opt

=
√

1

(1 + t)2
[ρ ′ρ̃ ′ + t(ρ ′φ̃′

opt + φ′
optρ̃

′) + t2φ′
optφ̃

′
opt]. (21)

Note that σ ′
opt,ρ

′,φ′
opt and their pairs are all real matrices. With

the aid of Eqs. (19) and (20), it is easy to see that ρ ′φ̃′
opt =

φ′
optρ̃

′ = 0, and φ′
optφ̃

′
opt = 1

2φ′
opt, and that ρ ′ρ̃ ′ is orthogonal

to φ′
optφ̃

′
opt. Thus Eq. (21) reduces to√

σ ′
optσ̃

′
opt = 1

(1 + t)

(√
ρ ′ρ̃ ′ + t√

2

√
φ′

opt

)
. (22)
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The eigenvalues of
√

ρ ′ρ̃ ′ are easily obtained by means of
its Slater decomposition, and the only non-null eigenvalue is

given by CF
S (ρ ′).

√
φ′

opt has just two non-null eigenvalues,

which are equal, given by 1√
2

[viz. Eq. (20)]. Therefore

the eigenvalues of the Eq. (21) are 1
(1+t) (C

F
S (ρ ′), t

2 , t
2 ,0), and

according to the definition of the Slater concurrence it follows
directly that CF

S (σ ′
opt) = 0 if and only if t � CF

S (ρ ′).
We end this section by considering pure two-boson states,

ρ = |ψ〉〈ψ | ∈ B(S(H2 ⊗ H2)). We have the following rela-
tions, which can be easily verified:

CB
S (ρ) = Neg(ρ)def.2 ∝ E(ρ)def.2. (23)

In considering the measures corresponding to definition 1
of unentangled states [Eq. (8)], we see that they are related
differently, since the negativity will always be zero for such
states (‖ρTi ‖1 � 2). This is due to the use of the upper limit
in Eq. (A10) (viz. Appendix). We could, however, instead of
using this upper limit, obtain analytically the values of ‖ρTi ‖1

corresponding to the unentangled pure states, which would be
equal to ‖ρTi ‖1 = 1 or 2, and perform a similar analysis to that
made for the S(ρr )def.1 in Eq. (11). Thus it would be possible to
relate the negativity and the entropy of entanglement according
to definition 1. We see therefore that the relations between the
distinct measures are similar to the distinguishable case when
we consider definition 2 [Eq. (9)] of particle entanglement,
possessing some discrepancies when we consider definition 1.

VI. HOMOGENEOUS D-DIMENSIONAL HAMILTONIAN

Given the easy computability of the entanglement measures
presented above, in particular the negativity and functions of
the purity of the single-particle reduced state, in this section we
employ them to quantify entanglement of particles in many-
body systems, described by homogeneous Hamiltonians with
certain symmetries.

Consider the Hamiltonian of a D-dimensional lattice, with
N indistinguishable particles of spin 
, LD sites (with the
closure boundary condition, L + 1 = 1), and the orthonormal
basis {c†�iσ ,c�iσ } of creation and annihilation operators for the

particles in that lattice, where �i = (i1,..,iD) is the spatial
position vector, and σ = −
,(−
 + 1), . . . ,(
 − 1),
 is the
spin in the direction Ŝz. If the eigenstates are degenerate, we
can use the negativity to quantify their entanglement, and
if the eigenstates are nondegenerate, we can also use any
function of the purity of their reduced state as a quantifier.
For example, the purity function, i.e., Tr(ρ2

r ), is lower than
1/N if (if and only if, in the case of fermions) the state
is entangled. Thus we can define the measure E based on
the purity function as E(|ψ〉〈ψ |) = max{0, 1

N
− Tr(ρ2

r )}. If,
however, the Hamiltonian has some symmetries, it is possible
to obtain an analytic expression for the particle entanglement
of their eigenstates according to the von Neumann entropy
of its single-particle reduced state. Let the Hamiltonian be
homogeneous, and with the properties (1) their eigenstates
are nondegenerate and (2) the Hamiltonian commutes with the
spin operator Sz (thus Sz and the Hamiltonian share the same

eigenstates), if ρ is one of its eigenstates, we have then

Tr
(
c
†
�iσ c �j σ̄ ρ

) = Tr
(
c
†
(�i+�δ)σ

c( �j+�δ)σ̄ ρ
)
, (24)

Tr
(
c
†
�iσ c �j σ̄︸ ︷︷ ︸
σ �=σ̄

ρ
) = 0, ∀ i,j, (25)

where Eq. (24) follows from the translational invariance
property of the quantum state due to the homogeneity of the
Hamiltonian, while Eq. (25) follows directly from condition
(2). By condition (1) of nondegeneracy and the results of the
previous sections, we know that the von Neumann entropy of
the single-particle reduced state can be used as a quantifier of
the particle entanglement. Let us calculate it.

We know that matrix elements of the reduced state are
given by ρr (�iσ, �j σ̄ ) = 1

N
Tr(c†�j σ̄

c�iσ |ψ〉〈ψ |) and, according to

Eq. (25), subspaces of the reduced state with different spin σ

are disjoint. We can therefore diagonalize the reduced state
in these subspaces separately. Equation (24) together with the
boundary condition fix the reduced state to a circulant matrix.
More precisely, for the unidimensional case (D = 1), given
the subspace with spin σ and {c†iσ }Li=1, the reduced state is
given by the following L × L matrix:

ρσ
r = 1

N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0 x1 · · · xL−2 xL−1

xL−1 x0 x1 xL−2
... xL−1 x0

. . .
...

x2
. . .

. . . x1

x1 x2 · · · xL−1 x0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (26)

xδ = 〈
c
†
(k+δ)σ ckσ

〉
, (27)

x0 = 〈
c
†
kσ ckσ

〉 = nkσ =︸︷︷︸
Eq.(24)

niσ = Nσ

L
, (28)

where Nσ = ∑L
j=1 njσ . The terms xδ can be obtained in

several ways, e.g., directly from one-particle Green’s function,
by computational methods like quantum Monte Carlo, or by
the Density Matrix Renormalization Group method (DMRG).
The eigenvalues {λσ

j }Lj=1 of the circulant matrix are given

by λσ
j = ∑L−1

k=0 xkw
k
j , where wj = exp 2πij

L
. Thus the particle

entanglement of that eigenstate can be calculated from S(ρr ) =
− ∑

j,σ λσ
j ln λσ

j .
For higher dimensions, given the subspace of a single

particle with spin σ and {c†�iσ }LD

i=1, the characteristic vector of
its circulant matrix (e.g., the matrix first line) is given by

[D = 2] :

�vc = ([x00 · · · x(L−1)0] [x01 · · · x(L−1)1]

· · · [x0(L−1) · · · x(L−1)(L−1)]), (29)
[D = 3] :

�vc = (
v2D

z=0 v2D
z=1 · · · v2D

z=(L−1)

)
, (30)

where v2D
z=l = ([x00l · · · x(L−1)0l][x01l · · · x(L−1)1l] · · · [x0(L−1)l

· · · x(L−1)(L−1)l]) is the characteristic vector of the plane
z = l, and xδxδyδz

= 〈c†(l+δx )(m+δy )(n+δz)σ c(lmn)σ 〉. Thus, the
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eigenvalues {λσ
j }LD

j=1 of the reduced state are given by

[D = 2] : λσ
j =

L−1∑
l,m=0

xlmwl+mL
j , (31)

[D = 3] : λσ
j =

L−1∑
l,m,n=0

xlmnw
l+mL+nL2

j , (32)

where wj = exp 2πij

LD . If we wished to obtain the particle
entanglement according to the purity function, as presented
in the beginning of this section, we would easily obtain the
following expression:

E(|ψ〉〈ψ |) = max

{
0,

1

N
− LD

N2

∑
�δ,σ

∣∣〈c†
(�i+�δ)σ

c�iσ
〉∣∣2

}
(33)

for any fixed spatial position vector �i. Note, however, that
although the calculation of the purity function is simple
even for the case of a general Hamiltonian, since it is
just the sum over the one-particle Green’s function 〈c†�i ¯̃σ

c�kσ 〉
[note that Tr(ρ2

r ) = 1
N2

∑
�i,�k,σ,̃σ |〈c†�i ¯̃σ

c�kσ 〉|2] and thus does not
require the diagonalization of the single-particle reduced state,
the measure according to the von Neumann entropy can
be more interesting, given its wide application in quantum
information theory.

VII. CONCLUSION

Entanglement of distinguishable particles is related to the
notion of separability, i.e., the possibility of describing the
system by a simple tensor product of individual states. In
systems of indistinguishable particles, the symmetrization
or antisymmetrization of the many-particle state eliminates
the notion of separability, and the concept of entanglement
becomes subtler. If one is interested in the different modes (or
configurations) the system of indistinguishable particles can
assume, it is possible to use the same tools employed in systems
of distinguishable particles to calculate the entanglement of
modes. On the other hand, if one is interested in the genuine
entanglement between the particles, as discussed in the present
work, one needs new tools. In this case, we have seen that
entanglement of particles in fermionic systems is simple, in
the sense that the necessary tools are obtained by simply
antisymmetrizing the distinguishable case, and one is led
to the conclusion that unentangled fermionic systems are
represented by convex combinations of Slater determinants.
The bosonic case, however, does not follow straightforwardly
by symmetrization of the distinguishable case. The possibility
of multiple occupation implies that a many-particle state of
Slater rank one in one basis can be of higher rank in another
basis. This ambiguity reflects on the possibility of multiple
values of the von Neumann entropy for the one-particle
reduced state of a pure many-particle state. Aware of the
subtleties of the bosonic case, we have proven that a shifted
von Neumann entropy and a shifted negativity can be used to
quantify entanglement of particles. Motivated by previous re-
sults with fermionic optimal entanglement witnesses, we have
proven relations for robustness of entanglement and Slater
concurrence for two-fermion systems with a four-dimensional
single-particle Hilbert space, in particular showing that the

generalized robustness and the Slater concurrence coincide
for pure states. We have shown that the bosonic entanglement
witness analogous to the fermionic entanglement witness is
not optimal, due to the possibility of multiple occupation
in the former case. Nonetheless, numerical calculations have
shown that the bosonic witness improves with the increase of
the single-particle Hilbert space dimension. Finally, we have
illustrated how the tools presented in this article could be useful
in analyzing the properties of entanglement in many-body
systems, obtaining in particular analytic expressions for the
entanglement of particles according to the von Neumann
entropy of the single-particle reduced state in homogeneous
D-dimensional Hamiltonians.

Though we have not studied quantum correlations beyond
entanglement, we mention that the quantumness or nonclassi-
cality of states of indistinguishable particles can be reduced to
the calculation of bipartite entanglement between the main
system and an ancilla, following the activation protocol
introduced by Piani et al. [26]. In this case, besides the usual
symmetrization of operations to preserve indistinguishability,
one must be more careful with the phraseology, because a
system of indistinguishable particles cannot be classical. We
will defer this discussion to a future work.
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APPENDIX: NEGATIVITY IN FERMIONIC AND BOSONIC
STATES

In this appendix we calculate the trace norm of the partial
transpose of an uncorrelated fermionic or bosonic state, i.e.,
‖σTi ‖1 = Tr[(σTi ,σ T

†
i )

1
2 ], thus proving the shifted negativity

[Eq. (6)]. We do so by the explicit diagonalization of the
operator (σTi σ T

†
i ). Consider first the case of a fermionic or

bosonic pure state σ = |ψ〉〈ψ |, as given by Eqs. (2) and (8),
which can be rewritten as

σ = C
∑
ππ ′

επεπ ′Pπ |φ1φ2 · · ·φN 〉 〈φN · · · φ2φ1| Pπ ′ , (A1)

with |ψ〉 = √
C

∑
π επPπ |φ1φ2 · · ·φN 〉, where φi,φj are ei-

ther equal or orthonormal, Pπ are the permutation oper-
ators, επ is the permutation parity (ε = ±1 for fermions,
ε = 1 for bosons), and C = (N !)−1 for fermions or C =
[N !

∏No

i=1(nφi
!)]−1 for bosons. From now on we omit the

normalization C and introduce the following notation:

Pπ |φ1 · · ·φN 〉 = |π (φ1 · · · φN )〉 = |π (φ1)π (φ2) · · · π (φN )〉 .

(A2)

Now we make the partial transpose on the first particle explicit:

σT1 =
∑
ππ ′

επεπ ′
∣∣π ′(φ1)π (φ2 · · · φN )

〉 〈π ′(φN · · · φ2)π (φ1)|,

(A3)

(σT1 )† = σT1 , (A4)
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σT1σT1 =
∑

π,π ′,π̃ ,π̃ ′
επεπ ′επ̃ επ̃ ′ |π ′(φ1)π (φ2 · · ·φN )〉

× 〈π ′(φN · · · φ2)π (φ1)|π̃ ′(φ1)π̃(φ2 · · · φN )〉
× 〈π̃ ′(φN · · · φ2)π̃(φ1)|, (A5)

σT1σT1 =
∑
π ′,π̃

επ ′επ̃ 〈π ′(φN · · ·φ2)|π̃(φ2 · · ·φN )〉 |π ′(φ1)〉

× 〈π̃ (φ1)| ⊗
∑
π,π̃ ′

επεπ̃ ′ 〈π (φ1)|π̃ ′(φ1)〉

× |π (φ2 · · · φN )〉〈π̃ ′(φN · · · φ2)|. (A6)

We analyze only the bosonic case, and the fermions follow by
setting No = N and nφi

= 1.
Consider the first line of Eq. (A6). As states φi are

not necessarily orthogonal and may be the same, we have
contributions when the permutations π ′,π̃ are equal and in
some cases even when they are different. It can be seen that
there are nk[(N − 1)!] permutations such that π ′(φ1) = φk ,
and for each of these there are

∏No

i=1(nφi
!) permutations

π̃ such that π̃ (φ1) = φk , resulting in non-null contributions
〈π ′(φN · · · φ2)|π̃(φ2 · · ·φN )〉 �= 0. If π̃ (φ1) �= φk then the con-
tribution is null 〈π ′(φN · · · φ2)|π̃(φ2 · · ·φN )〉 = 0 [simply note
that the set {π̃(φ2 · · ·φN )} always has nk states φk , whereas
{π ′(φN · · · φ2)} has only nk − 1]. The first line of Eq. (A6)
thus reduces to

No∑
k=1

nk[(N − 1)!]

[
No∏
i=1

(
nφi

!
)] |φk〉 〈φk| . (A7)

Now we analyze the second line of Eq. (A6).
This term has non-null contributions only if π (φ1) =
π̃ ′(φ1). For permutations of the type π (φ1) = π̃ ′(φ1) =
φk , the matrix |π (φ2 · · · φN )〉〈π̃ ′(φN · · · φ2)| can assume

(N−1)!
(nk−1)!

∏No
i=1,(i �=k)(nφi

!)
= nφk

(N−1)!∏No
i=1(nφi

!)
distinct combinations from the

elements of the set {π (φ2 · · · φN )}. Note that there are∏No

i=1(nφi
!) permutations of type π (φ1) = φk generating the

same “ket” |π (φ2 · · ·φN )〉 [or “bra” 〈π̃ ′(φN · · ·φ2)|]. Thus we
have∑

π,π̃ ′
επεπ̃ ′ 〈π (φ1)|π̃ ′(φ1)〉 |π (φ2 · · ·φN )〉〈π̃ ′(φN · · · φ2)|

=
[

No∏
i=1

(
nφi

!
)]2

|ψk〉〈ψk|, (A8)

where |ψk〉 = ∑
i |πi

k(φ2 · · · φN )〉, with πi
k(φ2 · · ·φN ) being

all the possible permutations such that πi
k(φ1) = φk , and

〈πi
k(φ2 · · ·φN )|πj

k (φ2 · · · φN )〉 = δij . We have then 〈ψk|ψk′ 〉 =
nφk

(N−1)!∏No
i=1(nφi

!)
δkk′ , and finally the second line of Eq. (A6) is

reduced to

No∑
k=1

[
No∏
i=1

(
nφi

!
)]2

|ψk〉〈ψk|

=
[

No∏
i=1

(
nφi

!
)]

(N − 1)!
No∑
k=1

nφk

|ψk〉〈ψk|
〈ψk|ψk〉 . (A9)

From Eqs. (A7) and (A9) and remembering to reintroduce the
normalization constant C, we obtain∥∥|ψ〉〈ψ |TA

∥∥
1 =

( ∑No

k=1
√

nφk

)2

N
� N. (A10)

The last step follows by noting that
∑No

k=1 nk = N , and thus∑No

k=1
√

nk � N . Because the trace norm is a convex function,
we can write for uncorrelated mixed states ‖ ∑

j pjσ
Ti

j ‖1 �∑
j pj‖σTi

j ‖1, and we are done.
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