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Intermodal entanglement in Raman processes
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The operator solution of a completely quantum mechanical Hamiltonian of the Raman processes is used here
to investigate the possibility of obtaining intermodal entanglement between different modes involved in the
Raman processes [e.g., pump mode, Stokes mode, vibration (phonon) mode and anti-Stokes mode]. Intermodal
entanglement is reported between (a) pump mode and anti-Stokes mode, (b) pump mode and vibration (phonon)
mode, (c) Stokes mode and vibration phonon mode, and (d) Stokes mode and anti-Stokes mode in the stimulated
Raman processes for variation of the phase angle of complex eigenvalue α1 of pump mode a. Some incidents of
intermodal entanglement in the spontaneous and the partially spontaneous Raman processes are also reported.
Further, it is shown that the specific choice of coupling constants may produce genuine entanglement among
Stokes mode, anti-Stokes mode, and vibration-phonon mode. It is also shown that the two-mode entanglement
not identified by Duan’s criterion may be identified by Hillery-Zubairy criteria. It is further shown that intermodal
entanglement, intermodal antibunching, and intermodal squeezing are independent phenomena.
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I. INTRODUCTION

Entanglement is one of the most important resources for
quantum communication and quantum information process-
ing. For example, it is well known that entanglement is
essential for teleportation, dense coding, quantum information
splitting, etc. Thus we need entangled states to perform various
important tasks related to quantum information theory. To do
so, first we need a protocol to check whether or not a state
generally mixed is entangled. This is a very important issue in
quantum information science and several inseparability criteria
have been proposed for this purpose ([1], and references
therein). In 1996, Peres [2] proposed the first inseparability
criterion based on negative eigenvalues of the partial transpose
of the composite density operator. This criterion is sufficient
and necessary for the detection of entanglement in (2 × 2)
and (2 × 3) dimensional states but is not necessary for higher
dimensional states (see [3], and references therein). Since
the pioneering work of Peres, several other inseparability
inequalities have been reported for two-mode and multimode
states [3–14]. Most of these criteria only provide sufficient
condition of inseparability. Further, these criteria may be
classified into two sets [10]: A) set of criteria which cannot be
directly tested through experiments [4,5] and B) set of criteria
which can be tested experimentally [2,3,6–10]. Experimentally
testable inequalities involve variance or higher order moments
of some observables. Since the expectation values of physical
observables can be measured experimentally, these set of
inseparability criteria can be tested experimentally.

The aim of the present work is not to study the inseparability
criteria in detail but to study the possibility of generation
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of a multipartite entangled state in two-photon stimulated
Raman processes, as depicted in Fig. 1. The scheme is
essentially a sequential double Raman process that can
produce Stokes and anti-Stokes photons that show a highly
nonclassical correlation [11] and macroscopic entanglement
in a two-photon laser [12]. To study two-mode entanglement
in two-photon Raman processes it would be reasonable to use
three criteria from set B. To be precise, we have chosen the two
criteria of Hillery and Zubairy [7,8] and the criterion of Duan
et al. [3]. Since all three of these criteria are only sufficient,
a particular criterion can detect only a subset of all sets
of entangled states. Consequently, application of a single
criterion may yield an incomplete result. This is why we have
used three experimentally testable inseparability criteria for
our investigation of intermodal entanglement in stimulated,
spontaneous, and partially spontaneous Raman processes.

Nonclassical properties of these Raman processes have
been extensively studied. Initial studies were restricted to the
short-time approximation [15–17]. But recently some of the
present authors have reported different nonclassical effects
(such as squeezing, antibunching, intermodal antibunching,
and sub-shot-noise photon number correlation) in stimulated
and spontaneous Raman processes [18–21] without using
traditional short-time approximation technique. Our solution
of Raman processes, which does not involve short-time
approximation, is found to reveal many facets of nonclassical
effects which were undetected by short-time approximation
technique. However,the possibility of observing intermodal
entanglement has not been rigorously studied so far. This
fact motivated us to study intermodal entanglement in dou-
bleRaman processes. The present investigation is relevant
for quantum communication for two reasons: first, because
entanglement is an essential resource for quantum communi-
cation and, second, because the spontaneous Raman process
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FIG. 1. (Color online) Two-photon stimulated Raman scheme.
The pump photon is converted into a Stokes photon and a phonon. The
pump photon can also mix with a phonon to produce an anti-Stokes
photon.

is reported to be useful in the realization of quantum repeaters
[22,23], which has its application in long-distance high-fidelity
quantum communication.

Here it is worthy to note that Peřinová et al. [24] have
recently studied the possibility of observing entanglement in
the Raman process using the method of invariant subspace.
They followed an independent approach and have numerically
computed the time dependence of a measure of entanglement.
Earlier, Kuznetsov et al. [25] studied entanglement in the
stimulated Raman process considering only two modes (Stokes
mode and phonon mode) and taking the pump mode as the
classical light source. Naturally Kuznetsov et al.’s work illus-
trated an incomplete scenario and failed to observe intermodal
entanglement involving the anti-Stokes mode and pump mode.
To circumvent this limitation we have used here a completely
quantum mechanical Hamiltonian. Further, Pathak, Křepelka,
and Peřina [26] have recently investigated the possibilities of
observing intermodal entanglement in Raman processes using
the same Hamiltonian but with a short-time approximated
solution. Their work is restricted by the intrinsic limitations
of the short-time approximation. Such limitations may be
circumvented by the analytical methods recently developed
by us to study the stimulated Raman scheme [18–21]. Those
methods are systematically used here and a relatively complete
scenario of intermodal entanglement in Raman processes is
presented. Interestingly, we have observed intermodal entan-
glement between (i) pump mode and anti-Stokes mode and
(ii) Stokes mode and anti-Stokes mode. These two intermodal
entanglements were not observed in earlier analytic studies
[25,26]. The beauty of the present study lies in the fact that
analytic expressions for the separability criterion are obtained
by a completely quantum mechanical treatment where all four
modes are considered quantum mechanical. If we look closely
into the methodology adopted in the earlier studies, we quickly
find that the approach adopted in the present paper is simpler
and easily extendable to other physical systems which are
described by bosonic Hamiltonians.

The paper is organized as follows. In Sec. II we describe the
Hamiltonian of spontaneous and stimulated Raman processes
and its operator solution. In Sec. III we use the solution to
show that it is possible to observe intermodal entanglement
in Raman processes. The inseparability criteria used for this
purpose are also described in this section. Finally, Sec. IV is
dedicated to conclusions and a brief summary of the results
of the present study, and we also discuss the mutual relations
among different nonclassical phenomena observed in Raman
processes.

II. MODEL HAMILTONIAN

The Hamiltonian [15–21,27] of our interest is

H = ωaa
†a + ωbb

†b + ωcc
†c + ωdd

†d

+ g(ab†c† + H.c.) + χ (acd† + H.c.), (1)

where H.c. stands for the Hermitian conjugate. Throughout
the present paper, we use h̄ = 1. The annihilation (creation)
operators a(a†), b(b†), c

(
c†

)
, and d(d†) correspond to the laser

(pump) mode, Stokes mode, vibration (phonon) mode, and
anti-Stokes mode, respectively. They obey the well-known
boson commutation relations. The quantities ωa , ωb, ωc, and
ωd correspond to the frequencies of pump mode a, Stokes
mode b, vibration (phonon) mode c, and anti-Stokes mode
d, respectively. The parameters g and χ are the Stokes and
anti-Stokes coupling constants, respectively. The coupling
constant g (χ ) denotes the strength of coupling between
the Stokes (anti-Stokes) mode and the vibrational (phonon)
mode and depends on the actual interaction mechanism. The
dimension of g and χ is that of frequency, and consequently,
gt and χt are dimensionless. Further, gt and χt are very
small compared to unity. In order to study the possibility of
intermodal entanglement, we need simultaneous solutions of
the following Heisenberg operator equations of motion for
various field operators:

ȧ = −i(ωaa + gbc + χcd), ḃ = −i(ωbb + gac†),
(2)

ċ = −i(ωcc + gab† + χa†d), ḋ = −(ωdd + χac).

The above set of coupled nonlinear differential operator
equations (2), is not exactly solvable in the closed analytical
form under weak pump conditions. But when the pump is very
strong the operator a can be replaced by a c number and the
above set of equations (2), can be solved exactly [17]. In order
to solve these equations under weak pump approximation we
use the perturbative approach. Our solutions are more general
than the well-known short-time approximation. Details of the
calculations are given in our previous papers [18–21]. Here
we just note that under the weak pump approximation, the
solutions of Eq. (2) assume the following form:

a(t) = f1a(0) + f2b(0)c(0) + f3c
†(0)d(0) + f4a

†(0)b(0)d(0) + f5a(0)b(0)b†(0) + f6a(0)c†(0)c(0) + f7a(0)c†(0)c(0)

+ f8a(0)d†(0)d(0),

b(t) = g1b(0) + g2a(0)c†(0) + g3a
2(0)d†(0) + g4c

†2
(0)d(0) + g5b(0)c(0)c†(0) + g6b(0)a(0)a†(0),

c(t) = h1c(0) + h2a(0)b†(0) + h3a
†(0)d(0) + h4b

†(0)c†(0)d(0) + h5c(0)a(0)a†(0) + h6c(0)b(0)b†(0) + h7c(0)d†(0)d(0)

+h8c(0)a†(0)a(0),

d(t) = l1d(0) + l2a(0)c(0) + l3a
2(0)b†(0) + l4b(0)c2(0) + l5c

†(0)c(0)d(0) + l6a(0)a†(0)d(0). (3)
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The functions fi, gi, hi , and li are evaluated from the
dynamics under the initial conditions. In order to apply the
boundary condition, we put t = 0 in the first term in Eq. (3).
It is clear that f1(0) = g1(0) = h1(0) = l1(0) = 1 and fi(0) =
gi(0) = hi(0) = li(0) = 0 (for i = 2, 3, 4, 5, 6, 7, and 8).
Under these initial conditions the corresponding solutions
for fi(t), gi(t), hi(t), and li(t) are obtained as given in the
Appendix.

The solutions Eqs. (3) and (A1)–(A4) are valid up to the
second orders in g and χ provided the dimensionless inter-
action time gt < 1 and/or χt < 1 such that the perturbation
theory is respected. For example, f2 rises indefinitely with
an increase in time t . Clearly, the divergent nature of the
parameters fi, gi, hi , and li becomes more pronounced as

t is increased. The secular nature is a direct outcome of the
perturbation theory. In the present investigation the secular
term is not a problem since we consider a small interaction
time. A small interaction time also ensures that the damping
term contributes insignificantly. Here �ω1 = ωb + ωc − ωa

and �ω2 = ωa + ωc − ωd . Normally, the detunings �ω1 and
�ω2 are extremely small. In the present investigation, we,
however, assume that a small (nonzero) detuning is present
and hence �ω1 �= 0 and �ω2 �= 0. Here we have used
|�ω1| = 0.1 MHz and |�ω2| = 0.19 MHz. Of course, in
Eqs. (A1)–(A4) we have neglected the terms beyond the
second order in g and χ. Now we may use Eq. (3) to obtain
the temporal evolution of the number operators of various
modes as

Na(t) = |f1|2a†(0)a(0) + |f2|2b†(0)c†(0)b(0)c(0) + |f3|2c(0)d(0)†c†(0)d(0) + {f ∗
1 f2a

†(0)b(0)c(0) + f ∗
1 f3a

†(0)c†(0)d(0)

+ f ∗
1 f4a

†(0)a†(0)b(0)d(0) + f ∗
1 f5[a†(0)a(0) + a†(0)a(0)b†(0)b(0)] + f ∗

1 f6a
†(0)a(0)c†(0)c(0)

+ f ∗
1 f7a

†(0)a(0)c†(0)c(0) + f ∗
1 f8a

†(0)a(0)d†(0)d(0) + f ∗
2 f3b

†(0)c†
2
(0)d(0) + H.c.}, (4)

Nb(t) = |g1|2b†(0)b(0) + |g2|2a†(0)c(0)a(0)c†(0) + {g∗
1g2b

†(0)a(0)c†(0) + g∗
1g3b

†(0)a2(0)d†(0) + g∗
1g4b

†(0)c†
2
(0)d(0)

+ g∗
1g5[b†(0)b(0) + b†(0)b(0)c†(0)c(0)] + g∗

1g6[b†(0)b(0) + b†(0)b(0)a†(0)a(0)] + H.c.}, (5)

Nc(t) = |h1|2c†(0)c(0) + |h2|2a†(0)b(0)a(0)b†(0) + |h3|2a(0)d†(0)a†(0)d(0) + {h∗
1h2c

†(0)a(0)b†(0) + h∗
1h3c

†(0)a†(0)d(0)

+h∗
1h4c

†(0)b†(0)c†(0)d(0) + h∗
1h5[c†(0)c(0) + c†(0)c(0)a†(0)a(0)] + h∗

1h6[c†(0)c(0) + c†(0)c(0)b†(0)b(0)]

+h∗
1h7c

†(0)c(0)d†(0)d(0) + h∗
1h8c

†(0)c(0)a†(0)a(0) + h∗
2h3a

†2
(0)b(0)d(0) + H.c.}, (6)

and

Nd (t) = |l1|2d†(0)d(0) + |l2|2a†(0)a(0)c†(0)c(0) + {l∗1 l2a(0)c(0)d†(0) + l∗1 l3a
2(0)b†(0)d†(0) + l∗1 l4b(0)c2(0)d†(0)

+ l∗1 l5c
†(0)c(0)d†(0)d(0) + l∗1 l6d

†(0)d(0)[1 + a†(0)a(0)] + H.c.}. (7)

In the following section these number operators are used to
study intermodal entanglement in Raman processes.

III. INTERMODAL ENTANGLEMENT

In order to investigate the intermodal entanglement for
various coupled modes, we assume that all photon and phonon
modes are initially coherent. In other words, the composite
boson field consisting of photons and phonon are in the initial
coherent state. Therefore, the composite coherent state arises
from the product of the coherent states |α1〉, |α2〉, |α3〉, and
|α4〉, which are the eigenkets of a, b, c, and d, respectively.
Thus the initial composite state is

|ψ(0)〉 = |α1〉 ⊗ |α2〉 ⊗ |α3〉 ⊗ |α4〉. (8)

It is clear that the initial state is separable. Now the field
operator a(t) operating on such a multimode coherent state
gives rise to the complex eigenvalue α1(t). Hence we have

a(0)|ψ(0)〉 = α1|ψ(0)〉, (9)

where |α1|2 is the number of input photons in pump mode a.

In a similar fashion we have three more complex amplitudes,
α2(t), α3(t), and α4(t), corresponding to the Stokes, vibrational
(phonon), and anti-Stokes field mode operators b, c, and d,

respectively. Clearly, for a spontaneous process, the complex
amplitudes are α2 = α3 = α4 = 0 and α1 �= 0. For a partial
spontaneous process, the complex amplitude α1 and any one
of the remaining three eigenvalues are not equal to 0, while the
other two complex amplitudes are 0. On the other hand, for a
stimulated process, the complex amplitudes are not necessarily
0. In our present investigation we consider α1 = |α1| e−iφ and
the other eigenvalues for the Stokes, vibrational (phonon), and
anti-Stokes field modes are real. The aim of the present work
is to investigate the possibility of intermodal entanglement
in spontaneous, partially spontaneous, and stimulated Raman
processes. To do so, let us begin with the investigation of
two-mode entanglement using Hillery and Zubairy’s criteria.

A. Two-mode entanglement

There are two criteria due to Hillery and Zubairy [7,8]. The
first one is

〈NaNb〉 − |〈ab†〉|2 < 0. (10)

On the other hand, the second criterion is given by

〈Na〉〈Nb〉 − |〈ab〉|2 < 0. (11)
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From here onward we refer to these criteria as the HZ-1 and
HZ-2 criteria, respectively. In addition to these two criteria, we
also use Duan’s inseparability criterion due to Duan et al. [3]:

〈�a†�a〉〈�b†�b〉 − |〈�a�b〉|2 < 0. (12)

In the criteria Eqs. (10)–(12), a and b are annihilation operators
for two arbitrary modes. They are not limited to the pump mode
and the Stokes mode.

We note that all the above criteria are only sufficient (not
necessary) for detection of entanglement. Keeping this fact in
mind, we have applied all these criteria to study intermodal
entanglement between different modes of the Raman Hamil-
tonian and have observed intermodal entanglement in various
situations.

Let us first investigate the possibility of two-mode entan-
glement in the Raman process using the HZ-1 criterion. From
Eqs. (3)–(5) and (8) we obtain

〈NaNb〉 − |〈ab†〉|2
= |f3|2|α2|2|α4|2 + |g2|2(|α1|4 − |α1|2|α2|2). (13)

Consequently, for a spontaneous Raman process Eq. (13)
reduces to

〈NaNb〉 − |〈ab†〉|2 = |g2|2|α1|4. (14)

It is clear that the right-hand side (r.h.s.) of Eq. (14) is always
positive. Hence the HZ-1 criterion does not show any signature
of intermodal entanglement between pump and Stokes modes
in the spontaneous Raman process. For a partially sponta-

neous Raman process (|α1| �= 0, |α2| �= 0, |α3| = |α4| = 0),
Eq. (13) reduces to

〈NaNb〉 − |〈ab†〉|2 = |g2|2(|α1|2 − |α2|2)|α1|2. (15)

It is clear that entanglement is possible in the partially
spontaneous Raman process only when |α2|2 > |α1|2; i.e., the
number of Stokes photons is more than the number of pump
photons, which is not the usual case. According to the HZ-1
criterion of Eq. (10), it is clear that the negative values on the
r.h.s. of Eq. (13) would indicate the presence of intermodal
entanglement between the pump mode and the Stokes mode in
the stimulated Raman process. To investigate the possibility of
intermodal entanglement in the stimulated Raman process we
have used χ = g = 105 Hz, |α1| = 10, |α2| = 8, |α3| = 0.01,
and |α4| = 1 [28]. We have plotted the r.h.s. of Eq. (13) in
Fig. 2(a), which does not show any signature of intermodal
entanglement between the pump mode and the Stokes mode
in the stimulated Raman process.

Here we would like to note that once we have an analytic
expression for the HZ-1 or HZ-2 or Duan criteria in the
stimulated Raman process, it is straightforward to study the
special cases of (i) a spontaneous Raman process, where
α2 = α3 = α4 = 0 but α1 �= 0, and (ii) a partial spontaneous
Raman process, where α1 �= 0 and any one of the other three
αi (i = 2,3, 4) is nonzero.

The same technique used in the above case is now adopted
to obtain the following equations for the study of intermodal
entanglement in the stimulated Raman process using the HZ-1
criterion:

〈NbNc〉 − |〈bc†〉|2 = |g2|2(3|α1|2|α3|2 + 3|α1|2|α2|2 + |α1|2 − |α2|2|α3|2) + |h3|2|α2|2|α4|2
+ [(h∗

1h2α1α
∗
2α

∗
3 + 2g∗

4g1α2α
2
3α

∗
4 + h2h

∗
3α

2
1α

∗
2α

∗
4 ) + c.c.], (16)

〈NaNd〉 − |〈ad†〉|2 = |f3|2(|α3|2 + |α4|4 + |α1|2|α3|2 − |α1|2|α4|2) − |l2|2(|α3|2 + |α1|2|α3|2), (17)

〈NbNd〉 − |〈bd†〉|2 = |g2|2|α1|2|α4|2 + [{l∗1 l3α
2
1α

∗
2α

∗
4 + c.c.}], (18)

〈NcNd〉 − |〈cd†〉|2 = |l2|2(2|α1|2 + 2|α1|2|α4|2 − 2|α4|2 − |α4|4 − |α3|2|α4|2) + |h2|2|α1|2|α4|2, (19)

〈NaNc〉 − |〈ac†〉|2 = |f2|2(2|α1|2 + |α1|4 + |α1|2|α3|2 − 4|α2|2 − 2|α1|2|α2|2 − 2|α2|2|α3|2) + |f3|2(|α4|2 + 3|α3|2|α4|2

+ 3|α1|2|α4|2 − |α1|2|α3|2) + [(f ∗
1 f3α

∗
1α

∗
3α4 + h∗

2h3α
∗2
1 α2α4 + f ∗

2 f3α
∗
2α

∗2
3 α4) + c.c.]. (20)

The r.h.s.’s of Eqs. (16)–(20) are plotted in Figs. 2(b)–2(f). It is interesting to note that the presence of intermodal entanglement
in the stimulated Raman process is observed between (i) the Stokes mode and the vibration (phonon) mode [Fig. 2(b)],
(ii) the pump mode and the anti-Stokes mode [Fig. 2(c)], (iii) the Stokes mode and the anti-Stokes mode [Fig. 2(d)], and (iv) the
pump mode and the vibration mode [Fig. 2(f)]. However, no signature of intermodal entanglement is observed in the other
two cases [Figs. 2(a) and 2(e)]. Further, it does not show the presence of genuine entanglement among any three modes of the
system. Interestingly, with a suitable choice of the complex eigenvalues αi it is possible to observe the signature of intermodal
entanglement using the HZ-1 criteria in a partially spontaneous Raman process in several ways but no such signature is observed
for the completely spontaneous Raman process.

Since the HZ-1 criterion is only sufficient, we might have failed to detect some intermodal entanglement. In an attempt to
detect such intermodal entanglement using the HZ-2 criterion (11), we have used Eqs. (3) and (4)–(8) to yield

〈Na〉〈Nb〉 − |〈ab〉|2 = |g2|2|α1|4 + |f3|2|α2|2|α4|2 − [(g∗
1g6 + f ∗

1 f2g
∗
1g2)|α1|2|α2|2 + c.c.] (21)
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FIG. 2. (Color online) Intermodal entanglement in the stimulated Raman process using the HZ-1 criterion. The dotted line, dash-dotted line,
and solid line represent the phase angle of the input complex amplitude α1 for φ = 0, π , and π/2, respectively. (a) Intermodal entanglement
is not observed between pump mode and Stokes mode. (b) Intermodal entanglement is observed between Stokes mode and vibration-phonon
mode for φ = π/2. (c) Intermodal entanglement is observed between pump mode and anti-Stokes mode. (d) Intermodal entanglement is
observed between Stokes mode and anti-Stokes mode for φ = 0 and π/2. (e) The signature of intermodal entanglement is not observed between
vibration-phonon mode and anti-Stokes mode. (f) Intermodal entanglement is observed between pump mode and vibration-phonon mode.

and

〈Nb〉〈Nc〉 − |〈bc〉|2 = |g2|2|α1|2|α3|2 − |h2|2(1 + |α2|2)|α1|2 + |h3|2|α2|2|α4|2 − [(h∗
1h2α1α

∗
2α

∗
3 + (h1h

∗
4 + g1g

∗
2h1h

∗
3)α2α

2
3α

∗
4

+h∗
2h3α

∗2
1 α2α4 + h∗

1h6|α2|2|α3|2 + g1g
∗
2h

∗
1h2|α1|2|α3|2) + c.c.], (22)

〈Na〉〈Nd〉 − |〈ad〉|2 = |f3|2|α4|4 − (l∗1 l6|α1|2|α4|2 + c.c), (23)

〈Nb〉〈Nd〉 − |〈bd〉|2 = |g2|2|α1|2|α4|2 − (
l∗1 l3α

2
1α

∗
2α

∗
4 + c.c

)
, (24)

〈Nc〉〈Nd〉 − |〈cd〉|2 = |h2|2|α1|2|α4|2 + |h3|2|α4|4 − (l∗1 l5|α3|2|α4|2 + c.c), (25)

〈Na〉〈Nc〉 − |〈ac〉|2 = |h2|2|α1|4 − |h3|2(|α4|2 + |α1|2|α4|2) + |f3|2|α3|2|α4|2 − [(
h∗

1h3α
∗
1α

∗
3α4 + h∗

1h8|α1|2|α3|2
+h∗

2h3α
∗2
1 α2α4 − h∗

1h5|α1|2|α3|2 + f ∗
1 f2h

∗
3h1α2α

2
3α

∗
4 + f ∗

1 f3h
∗
3h1|α3|2|α4|2

) + c.c.
]
. (26)

From the closed-form analytic expressions Eqs. (21)–(26),
it is possible to obtain the signature of intermodal entangle-
ment in various cases. Interestingly, we obtain intermodal
entanglement between Stokes mode and vibration mode for
the spontaneous Raman process. The intermodal entanglement
Eqs. (21)–(26) for stimulated Raman processes are illustrated
in Figs. 3(a)–3(f). In accordance with the HZ-2 criterion,
negative values of the ordinates indicate the signature of entan-
glement. Therefore, the intermodal entanglement is observed
in (i) Stokes mode and vibration mode, (ii) Stokes mode and
anti-Stokes mode, and (iii) pump mode and vibration mode.
However, there is no signature of intermodal entanglement

in the remaining cases for stimulated Raman processes. It
is possible to obtain intermodal entanglement for various
partially spontaneous Raman processes. However, these results
are not exhibited in the present text. It is interesting to note that
the HZ-2 criterion failed to detect intermodal entanglement
between the pump and the anti-Stokes modes. Thus the Raman
process provides a very nice example of a physical system
where it can be shown with a physical example that these
inseparability criteria are only sufficient. Still there are two
situations where we have not found the signature of intermodal
entanglement. Let us see what happens when we apply another
sufficient but not necessary criterion of inseparability.
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FIG. 3. (Color online) Intermodal entanglement in the stimulated Raman process using the HZ-2 criterion. The dotted line, dash-dotted line,
and solid line are used for the phase angle of the input complex amplitude α1 for φ = 0, π/2, and π , respectively. (a) Intermodal entanglement
is not observed between Stokes mode and pump mode. (b) Intermodal entanglement is observed between Stokes mode and vibration-phonon
mode. (c) The signature of intermodal entanglement is not observed between pump mode and anti-Stokes mode. (d) Intermodal entanglement is
observed between Stokes mode and anti-Stokes mode only for φ = π/2. (e) Intermodal entanglement is not observed between vibration-phonon
mode and anti-Stokes mode. (f) Intermodal entanglement (time dependent) is observed between pump mode and vibration-phonon mode for
φ = π/2.

Now the Duan criterion, Eq. (12), for the intermodal
entanglement can also be written as [29]

D = 〈(�u)2〉 + 〈(�v)2〉 − 2 < 0, (27)

where

û = 1√
2

[(a + a†) + (b + b†)] (28)

and

v̂ = 1

i
√

2
[(a − a†) + (b − b†)]. (29)

Using Eqs. (3), (8), and (27)–(29) we can obtain an analytic
expression for D on the left-hand side of the Duan et al.
criterion, Eq. (27).

For modes a and b,

Dab = 2
{|f3||α4|2 + |g2|2|α1|2 + 1

2 [(f1g
∗
6 + f5g

∗
1 )α1α

∗
2

+ (2f1g
∗
3 + f4g

∗
1 + f3g

∗
2 )α∗

1α4 + c.c.]
}
; (30)

for modes a and c,

Dac = 2
{|f3||α4|2 + |h2|2|α1|2 + |h3|2|α4|2 + 1

2 [(f1h
∗
5

+ f6h
∗
1 + f3h

∗
3 + f7h

∗
1 + f1h

∗
8)α1α

∗
3 ] + c.c.

}
; (31)

for modes b and c,

Dbc = 2
{|g2|2|α1|2 + |h2|2|α1|2 + |h3|2|α4|2

+ 1
2 [(g1h

∗
6 + g5h

∗
1 + g2h

∗
2)α∗

3α2] + c.c.
}
; (32)

for modes a and d,

Dad = 2
{|f3||α4|2 + 1

2 [(f1l
∗
2 + f3l

∗
1 )α∗

3

+ (2f1l
∗
3 + f4l

∗
1 + f2l

∗
2 )α∗

1α2 + f8l
∗
1α1α

∗
4 + c.c.]

}
;

(33)

for modes c and d,

Dcd = 2
{|h2|2|α1|2 + |h3|2|α4|2 + 1

2 [(2l4h
∗
1 + l2h

∗
2

+ l1h
∗
4)α2α3 + (l5h

∗
1 + l1h

∗
7)α∗

3α4 + +c.c.]
}
; (34)

and for modes b and d,

Dbd = 2
{|g2|2|α1|2 + 1

2 [(l4g
∗
1 + l2g

∗
2 + l1g

∗
4 )α2

3 + c.c.]
}
.

(35)

The right-hand sides of Eqs. (30)–(35) are plotted in
Figs. 4(a)–4(f). It is clear that intermodal entanglement is
observed only between the pump mode and the anti-Stokes
mode. The criterion is nonconclusive in all other cases. This
is so because the Duan criterion is only sufficient.
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FIG. 4. (Color online) Intermodal entanglement in the stimulated Raman process using the Duan criterion. The dotted line, dash-dotted
line, and solid line represent the phase angle of the input complex amplitude α1 for φ = 0, π/2, and π , respectively. Intermodal entanglement
is only observed between pump mode and anti-Stokes mode (c).

IV. CONCLUSIONS

We have clearly established that the stimulated Raman pro-
cess can produce intermodal entanglement. The observations
are summarized in Table I. Here it would be apt to note that
recently Pathak, Křepelka, and Peřina [26] have investigated
the possibilities of observing intermodal entanglement in
Raman processes using an approximated short-time solution.
They have identified intermodal entanglement in the pump-
phonon ac and Stokes-phonon bc modes only. However, in
addition to those two modes we have observed intermodal
entanglement in the pump-anti-Stokes ad and Stokes-anti-
Stokes bd modes too. In addition to these, we explore the
various possibilities of getting intermodal entanglement in
partial spontaneous Raman processes. In this way, our solution

is found to be more powerful compared to those of the solutions
of Raman processes under short-time approximation. Further,
the use of short-time solutions led to a monotonic nature of
the entanglement parameter as seen in Eqs. (11) and (12) in
Ref. [26]. Our solution is valid for all times and hence the
entanglement parameters are free of this particular problem,
which is generally a characteristic of short-time solutions.
Another earlier effort to study intermodal entanglement in
Raman processes, by Kuznetsov [25], was restricted to the
study of intermodal entanglement between the Stokes mode
and the vibration mode, as they considered a simplified
two-mode Hamiltonian. Thus the use of a completely quantum
mechanical description of the Raman process, our solution, and
the strategy of using more than one inseparability criterion
have helped us to obtain a relatively more complete picture

TABLE I. Relation among different nonclassical phenomena observed in the stimulated Raman process. nc, nonconclusive.

HZ-1 HZ-2 Duan Antibunching Squeezing
Intermode φ = 0 π/2 π φ = 0 π/2 π φ = 0 π/2 π [19] [18]

ab nc nc nc nc nc nc nc nc nc Possible Possible
ac Entangled Entangled Entangled nc Entangled nc nc nc nc Bunching Possible

(time dependent)
ad Entangled Entangled Entangled nc nc nc Entangled Entangled Entangled Antibunching Possible
bc nc Entangled nc Entangled nc Entangled nc nc nc Bunching Possible

(time dependent)
bd Entangled nc Entangled nc Entangled nc nc nc nc Antibunching Not possible
cd nc nc nc nc nc nc nc nc nc Bunching Possible
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of the intermodal entanglement in Raman processes. Further,
if we look at the possibilities of different kinds of nonclassi-
calities summarized in Table I (see the rows corresponding
to the ac, bc, and bd modes), then we quickly recognize
that the existence of any one of the nonclassical phenomena
does not depend on the presence of the other. To be precise,
entanglement, antibunching, and squeezing are nonclassical
phenomena but they are independent of each other. However,
the Duan criterion in the present form implies intermodal
squeezing in one of the quadrature variables, but the converse
is not true. This fact can be clearly seen in Table I, where
we note that, except in the bd mode, intermodal squeezing
is possible in all other coupled modes. However, the Duan
criterion of intermodal entanglement is satisfied only for the
ad mode.

In quantum optics, physical systems (matter-field interac-
tions) are usually described by multimode bosonic Hamil-
tonians. The procedure followed in the present work may
be applied directly to those systems to study intermodal
entanglement. It is expected that most of these systems will
show intermodal entanglement. This is so because most of
the quantum states are entangled. Separability is a very
special case. A natural question should arise at this point:
If entanglement is so common, why are we looking for
it? The answer lies in the fact that entanglement is one
of the most important resources for quantum information
processing and quantum communication but still it is not
very easy to produce useful multipartite entanglement. As
many of the quantum optical systems described by the
bosonic Hamiltonian (including the system studied here) are
experimentally achievable, useful intermodal entanglement
may be produced by them. Entanglement obtained in such
a system is expected to find application in controlled quantum
teleportation, quantum information splitting, dense coding,
direct secured quantum communication, etc. We conclude this
paper with the optimistic view that the present work will moti-
vate others to look for theoretical and experimental generation
of useful multimode entanglement in other quantum optical
systems.
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APPENDIX: PARAMETERS FOR
THE SOLUTIONS IN EQ. (3)

f1 = exp(−iωat), f2 = ge−iωa t

�ω1
(e−i�ω1t − 1),

f3 = −χe−iωa t

�ω2
(ei�ω2t − 1),

f4 = −χge−iωa t

�ω1

[
e−i(�ω1−�ω2)t − 1

�ω1 − �ω2
+ ei�ω2t

�ω2

]

− χge−iωa t

�ω2

[
e−i(�ω1−�ω2)t − 1

�ω1 − �ω2
− e−i�ω1t

�ω1

]
,

f5 = g2e−iωat

�ω2
1

(e−i�ω1t − 1) + ig2te−iωat

�ω1
, f6 = f5,

f7 = χ2e−iωa t

�ω2
2

(ei�ω2t − 1) − iχ2te−iωat

�ω2
, f8 = −f7.

(A1)

g1 = exp(−iωbt), g2 = −ge−iωbt

�ω1
(ei�ω1t − 1),

g3 = χge−iωbt

�ω2(�ω1 − �ω2)
[ei(�ω1−�ω2)t − 1]

− χge−iωbt

�ω2�ω1
(ei�ω1t − 1),

(A2)

g4 = χge−iωbt

�ω2(�ω1 + �ω2)
[ei(�ω1+�ω2)t − 1]

− χge−iωbt

�ω2�ω1
(ei�ω1t − 1),

g5 = g2e−iωbt

�ω2
1

(ei�ω1t − 1) − ig2te−iωbt

�ω1
, g6 = −g5.

h1 = exp(−iωct), h2 = −ge−iωct

�ω1
(ei�ω1t − 1),

h3 = −χe−iωct

�ω2
(ei�ω2t − 1),

h4 = χge−iωct

�ω2

[
ei(�ω1+�ω2)t − 1

�ω1 + �ω2
− ei�ω1t

�ω1

]

− χge−iωct

�ω1

[
ei(�ω1+�ω2)t − 1

�ω1 + �ω2
− ei�ω2t

�ω2

]
,

h5 = −g2e−iωct

�ω2
1

(ei�ω1t − 1) + ig2te−iωct

�ω1
, h6 = −h5,

h7 = −χ2e−iωct

�ω2
2

(ei�ω2t − 1) + iχ2te−iωct

�ω2
,

h8 = χ2e−iωct

�ω2
2

(ei�ω2t − 1) − iχ2te−iωct

�ω2
. (A3)

l1 = exp(−iωdt), l2 = χe−iωd t

�ω2
(e−i�ω2t − 1),

l3 = χge−iωd t

�ω1(�ω1 − �ω2)
[ei(�ω1−�ω2)t − 1]

+ χge−iωd t

�ω2�ω1
(e−i�ω2t − 1),

(A4)

l4 = χge−iωd t

�ω1(�ω1 + �ω2)
[e−i(�ω1+�ω2)t − 1]

− χge−iωd t

�ω2�ω1
(e−i�ω2t − 1),

l5 = iχ2te−iωd t

�ω2
+ χ2e−iωd t

�ω2
2

(e−i�ω2t − 1), l6 = l5.
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ph].
[27] D. F. Walls, Z. Phys. 237, 224 (1970).
[28] The same values of χ , g, and |αi | are used throughout the

paper (unless otherwise specified). For spontaneous and partially
spontaneous Raman processes these values of |αi | are used for
nonzero |αi |’s.

[29] S. Sivakumar, J. Phys. B 42, 095502 (2009).

022325-9

http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevA.49.52
http://dx.doi.org/10.1103/PhysRevA.62.032305
http://dx.doi.org/10.1103/PhysRevA.62.032305
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.96.050503
http://dx.doi.org/10.1103/PhysRevLett.96.050503
http://dx.doi.org/10.1103/PhysRevA.74.032333
http://dx.doi.org/10.1103/PhysRevA.81.062322
http://dx.doi.org/10.1103/PhysRevA.81.062322
http://dx.doi.org/10.1088/1367-2630/7/1/211
http://dx.doi.org/10.1103/PhysRevA.75.013820
http://dx.doi.org/10.1103/PhysRevA.75.013820
http://dx.doi.org/10.1103/PhysRevA.85.023803
http://dx.doi.org/10.1103/PhysRevA.85.023803
http://dx.doi.org/10.1103/PhysRevA.76.013809
http://dx.doi.org/10.1103/PhysRevA.85.063819
http://dx.doi.org/10.1103/PhysRevA.82.013824
http://dx.doi.org/10.1103/PhysRevLett.95.230502
http://dx.doi.org/10.1103/PhysRevLett.95.230502
http://dx.doi.org/10.1088/0305-4470/12/10/035
http://dx.doi.org/10.1088/0305-4470/12/10/035
http://dx.doi.org/10.1080/713820177
http://dx.doi.org/10.1080/713820177
http://dx.doi.org/10.1080/09500340500072984
http://dx.doi.org/10.1088/0953-4075/40/7/010
http://dx.doi.org/10.1088/0953-4075/40/7/010
http://dx.doi.org/10.1080/09500340701765782
http://dx.doi.org/10.1088/0953-4075/44/10/105503
http://dx.doi.org/10.1088/0953-4075/44/10/105503
http://dx.doi.org/10.1038/438749a
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1088/1751-8113/44/3/035303
http://dx.doi.org/10.1088/1751-8113/44/3/035303
http://dx.doi.org/10.1088/1464-4266/5/4/357
http://dx.doi.org/10.1088/1464-4266/5/4/357
http://arXiv.org/abs/arXiv:1210.3779v1
http://dx.doi.org/10.1007/BF01398635
http://dx.doi.org/10.1088/0953-4075/42/9/095502



