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We discuss how to generate entangled coherent states of four microwave resonators (a.k.a. cavities) coupled by
a three-level superconducting device (qutrit). We also show that a Greenberger-Horne-Zeilinger (GHZ) state of
four superconducting qubits embedded in four different resonators can be created with this scheme. In principle,
the proposed method can be extended to create an entangled coherent state of n resonators and to prepare a (GHZ)
state of n qubits distributed over n cavities in a quantum network. In addition, it is noted that four resonators
coupled by a coupler qutrit may be used as a basic circuit block to build a two-dimensional quantum network,
which is useful for scalable quantum information processing.
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I. INTRODUCTION

Recent progress in circuit cavity QED, in which supercon-
ducting qubits play the role of atoms in atom cavity QED,
makes it a standout among the most promising candidates
for implementing quantum information processing (QIP) [1].
Superconducting qubits, such as charge, flux, and phase
qubits, and microwave resonators (a.k.a. cavities) can be
fabricated using modern integrated circuit technology, their
properties can be characterized and adjusted in situ, they
have relatively long decoherence times [2], and various single
and multiple qubits operations with state readout have been
demonstrated [3–7]. In particular, it has been demonstrated that
a superconducting resonator provides a quantized cavity field
which can mediate long-range and fast interaction between
distant superconducting qubits [8–10]. Theoretically, it was
predicted earlier that the strong-coupling limit can readily be
realized with superconducting charge qubits [11] or flux qubits
[12]. Moreover, the strong-coupling limit between the cavity
field and superconducting qubits has been experimentally
demonstrated [13,14]. All of these theoretical and experimen-
tal progresses make circuit cavity QED very attractive for QIP.

During the past decade, many theoretical proposals have
been presented for the preparation of Fock states, coherent
states, squeezed states, the Schrödinger cat state, and an arbi-
trary superposition of Fock states of a single superconducting
resonator [15–18]. Also, experimental creation of a Fock state
and a superposition of Fock states of a single superconducting
resonator using a superconducting qubit has been reported
[19,20]. On the other hand, a large number of theoretical
proposals have been presented for implementing quantum
information transfer, quantum logical gates, and quantum en-
tanglement with two or more superconducting qubits placed in
a cavity or coupled by a resonator (usually in the form of copla-
nar transmission line) [8,11,12,21–27]. Moreover, experimen-
tal demonstration of quantum information transfer, two-qubit
gates, and three-qubit gates, as well as experimental prepara-
tion of three-qubit entanglement, have been reported with su-
perconducting qubits in a cavity [9,28–31]. However, realistic

QIP will most likely need a large number of qubits and placing
all of them in a single cavity quickly runs into many funda-
mental and practical problems such as the increase of cavity
decay rate and decrease of qubit-cavity coupling strength.

Therefore, future QIP most likely will require quantum
networks consisting of a large number of cavities, each
hosting and coupled to multiple qubits. In this type of
architecture, transfer and exchange of quantum information
will not only occur among qubits in the same cavity, but
also between different cavities. Hence, attention must be
paid to the preparation of quantum states of two or more
superconducting resonators (hereafter we use the term cavity
and resonator interchangeably), preparation of quantum states
of superconducting qubits located in different cavities, and
implementation of quantum logic gates on superconducting
qubits distributed over different resonators in a network. All of
these ingredients are essential to realizing large-scale quantum
information processing based on circuit QED. Recently, a
theoretical proposal for the manipulation and generation of
nonclassical microwave field states as well as the creation
of controlled multipartite entanglement with two resonators
coupled by a superconducting qubit has been presented [32],
and a theoretical method for synthesizing an arbitrary quantum
state of two superconducting resonators using a tunable
superconducting qubit has been proposed [33]. Moreover,
experimental demonstration of creating N -photon NOON
states (entangled states |N0〉 + |0N〉) in two superconducting
microwave resonators by using a superconducting phase qutrit
coupled to two resonators [34] and shuffling one- and two-
photon Fock states between three resonators interconnected
by two superconducting phase qubits have been reported
recently [35]. These works opened a new avenue for building
one-dimensional linear quantum networks of resonators and
qubits.

On the other hand, entanglement between the atomic
states and the coherent states of a single-mode cavity was
earlier demonstrated in experiments [36]. However, how
to create entangled coherent states between two or more
resonators, based on cavity QED, has not been reported.
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As is well known, entangled coherent states are important
in quantum information processing and communication. For
instance, they can be used to construct quantum gates [37]
(using coherent states as the logical qubits [38]), perform
teleportation [39], build quantum repeaters [40], implement
quantum key distribution [41], and entangle distant atoms
in a network [42,43]. Moveover, it was first shown [44] that
entangled coherent states can be used to test violation of Bell
inequalities.

In this paper, we propose a way for generating entangled
coherent states of four resonators using one three-level
superconducting device (qutrit) as the intercavity coupler.
This proposal operates essentially by bringing the transition
between the two higher-energy levels of the coupler qutrit
dispersively coupled to the resonator modes. In addition, we
will show how to create a Greenberger-Horne-Zeilinger (GHZ)
state of four superconducting qubits located in four different
resonators using the coupler qutrit. The GHZ states are
multiqubit entangled states of the form |00 . . . 0〉 ± |11 . . . 1〉 ,

which are useful in quantum information processing [45] and
communication [46].

Our proposal has the following advantages: (i) Only one
superconducting qutrit is needed. (ii) The operation procedure
and the operation time are both independent of the number of
resonators as well as the number of qubits in the cavities. (iii)
No adjustment of the resonator mode frequencies is required
during the entire operation. (iv) The proposed method can in
principle be applied to create entangled coherent states of n

resonators and to prepare a GHZ state of n qubits distributed
over n cavities in a quantum network, for which the operational
steps and the operation time do not increase as n becomes
larger.

This proposal is quite general, which can be applied to the
case when the coupler qutrit is a different physical system
with three levels, such as a quantum dot or a nitrogen-vacancy
(NV) center. This work is of interest because it provides a
way to generate entangled coherent states of multiple cavities
and create a GHZ entangled state of qubits distributed over
multiple cavities, which are important in quantum information
processing and quantum communication. Finally, it is interest-
ing to note that the four resonators coupled by a coupler qutrit
can be used as a basic circuit block to build a two-dimensional
quantum network, which may be useful for scalable quantum
information processing.

This paper is organized as follows. In Sec. II, we review
some basic theories of a coupler qutrit interacting with four
or three resonators. In Sec. III, we discuss how to create
four-resonator entangled coherent states. In Sec. IV, we show
a way to generate a GHZ entangled state of qubits embedded
in four cavities without measurement. In Sec. V, we give
a discussion on the possibility of using the four resonators
coupled by a coupler qutrit to build a two-dimensional quantum
network. In Sec. III–V, we give brief discussions on the ex-
perimental issues and possible experimental implementation.
A concluding summary is given in Sec. VI.

II. BASIC THEORY

Consider a superconducting qutrit A, with states |0〉, |1〉,
and |2〉, coupled to four resonators 1, 2, 3, and 4 as shown in

FIG. 1. (Color online) (a) Illustration of four resonators each
dispersively coupled with the |1〉 ↔ |2〉 transition of qutrit A. Here,
�c,i is the large detuning between the |1〉 ↔ |2〉 transition frequency
of qutrit A and the frequency ωc,i of resonator i, which satisfies
�c,i � gi (i = 1,2,3,4). (b) Illustration of three resonators each
dispersively coupled with the |1〉 ↔ |2〉 transition of qutrit A, with
�c,i � gi (i = 1,2,3). For simplicity, we here consider the case
that the |0〉 ↔ |1〉 level spacing is smaller than the |1〉 ↔ |2〉 level
spacing. This type of level structure is available in superconducting
charge qutrits or flux qutrits [27]. Alternatively, the |0〉 ↔ |1〉 level
spacing can be larger than the |1〉 ↔ |2〉 level spacing, which applies
to superconducting phase qutrits [27].

Fig. 1(a) or three resonators 1,2, and 3 as depicted in Fig. 1(b).
Suppose that the relevant mode frequency of each resonator
is coupled to the |1〉 ↔ |2〉 transition while decoupled from
transitions between other levels of the qutrit (Fig. 1). The
Hamiltonian for the whole system is given by (assuming h̄ = 1
for simplicity)

H =
m∑

i=1

ωc,ia
†
i ai + ω0

2
Sz +

m∑
i=1

gi(aiS+ + a+
i S−), (1)

where m = 4 (3) corresponds to qutrit A coupled to four (three)
resonators; S+ = |2〉 〈1| , S− = |1〉 〈2|, Sz = |2〉 〈2| − |1〉 〈1|;
ai (a†

i ) is the photon annihilation (creation) operator of
resonator i with frequency ωc,i ; ω0 is the transition frequency
between the two levels |1〉 and |2〉 of qutrit A; and gi

is the coupling constant between the resonator i and the
|1〉 ↔ |2〉 transition of qutrit A. In the interaction picture, the
Hamiltonian (1) becomes

HI =
m∑

i=1

gi(e
i�c,i t aiS+ + e−i�c,i t a+

i S−), (2)

where �c,i = ω0 − ωc,i is the detuning between the |1〉 ↔ |2〉
transition frequency ω0 of qutrit A and the ith resonator
frequency ωc,i . Suppose that (i) the |1〉 ↔ |2〉 transition of
qutrit A is dispersively coupled to the resonator i (i.e.,
�c,i � gi) (Fig. 1); and (ii) �c,i+1 − �c,i is on the same
order of magnitude as the coupling constant gi, such that the
indirect interaction between any two resonators induced by
qutrit A is negligible. Under these conditions, the Hamiltonian
(2) reduces to [47]

Heff =
m∑

i=1

g2
i

�c,i

(aia
+
i |2〉〈2| − a+

i ai |1〉〈1|). (3)
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One can see that the Stark shift terms∑m
i=1 g2

i aia
+
i |2〉 〈2| /�c,i involved in the Hamiltonian

(2) do not affect the state |1〉 of qutrit A during the evolution.
Based on the Hamiltonian (3), it is easy to see that if the

resonator i is initially in a coherent state |αi〉, the time evolution
of the state |1〉A |αi〉 of the system composed of qutrit A and
the resonator i is then described by

|1〉A|αi〉 → |1〉A|αi exp(ig2
i t/�c,i)〉, (4)

which leads to the coherent state of the ith cavity evolving from
|αi〉 to |−αi〉 when g2

i t/�c,i = π. The state |0〉A |αi〉 does not
change under the Hamiltonian (3). The result (4) presented
here will be employed for creating four-resonator entangled
coherent states as discussed in the next section.

In addition, based on the Hamiltonian (3), it is easy to find
that if the resonator i is initially in a single-photon state |1〉c,i ,
the time evolution of the state |1〉A |1〉c,i of the system is then
given by

|1〉A |1〉c,i → eig2
i t/�c,i |1〉A |1〉c,i , (5)

which introduces a phase flip to the state |1〉A |1〉c,i when the
evolution time t satisfies g2

i t/�c,i = π. Note that the states
|0〉A |0〉c,i , |1〉A |0〉c,i , and |0〉A |1〉c,i remain unchanged under
the Hamiltonian (3). This result (5) will be employed for
generating a GHZ state of four qubits distributed over four
different cavities.

It should be mentioned here that during the following
entanglement preparation, the level |0〉 of the coupler qutrit
A is not affected by the mode of each resonator. To meet
this condition, one can choose qutrit A for which the transition
between the two lowest levels |0〉 and |1〉 is forbidden due to the
optical selection rules [48], weak via increasing the potential
barrier between the two lowest levels [2,49–51], or highly
detuned (decoupled) from the cavity mode of each resonator,
which can be achieved by adjusting the level spacings of
qutrit A. Note that for superconducting devices, the level
spacings can be readily adjusted by varying external control
parameters [2,50,52].

III. CREATION OF FOUR-RESONATOR ENTANGLED
COHERENT STATES

In this section, we will show how to generate an entangled
coherent state of four resonators, give a discussion of the
fidelity of the operations, and then address issues which are
relevant to this topic.

A. Generation of four-resonator entangled coherent states

Consider a system composed of four resonators and a
superconducting qutrit A [Fig. 2(a)]. The qutrit A has three
levels shown in Fig. 1. Initially, the qutrit A is decoupled
from all resonators [Fig. 3(a)], which can be realized by a
prior adjustment of its level spacings [2,50,52]. The qutrit A

is initially prepared in the state (|0〉A + |1〉A)/
√

2 and each
resonator is initially prepared in a coherent state [16,20],
i.e., |αi〉 for resonator i (i = 1,2,3,4). To prepare the four
resonators in an entangled coherent state, we now perform the

1C

3C4C

2C
1C

3C4C

2C

A A

1

2

3

4

(a) (b)

FIG. 2. (Color online) (a), (b) Diagram of a superconducting
qutrit A (a circle at the center) coupled capacitively to four one-
dimensional coplanar waveguide resonators through C1,C2,C3,C4,
respectively. In (b), a black or gray dot in each resonator represents a
qubit. The four black-dot qubits (1,2,3,4) are first prepared in a GHZ
state, which can further be entangled with all other qubits (gray dots).
For clarity, only three qubits in each cavity are shown.

following operations:
(i) Adjust the level spacings of the qutrit A such that

the field mode for each resonator is dispersively coupled
to the |1〉 ↔ |2〉 transition (i.e., �c,i = ω21 − ωc,i � gi for
resonator i) while far off resonant with (decoupled from) the
transition between other levels of the qutrit A [Fig. 3(b)]. After
an interaction time τ , the initial state (|0〉A + |1〉A)

∏4
i=1 |αi〉 of

the whole system changes to (here and below a normalization

FIG. 3. (Color online) (a) Illustration of qutrit A decoupled from
four cavities or resonators. Here, � is the large detuning between
the |1〉 ↔ |2〉 transition frequency of qutrit A and the frequency
ωc,1 of resonator 1, which represents that the |1〉 ↔ |2〉 transition
of qutrit A is far off resonant with (decoupled from) resonator 1.
Since the frequencies ωc,1, ωc,2, ωc,3, and ωc,4 of four resonators 1,
2, 3, and 4 satisfy ωc,1 > ωc,2 > ωc,3 > ωc,4, the |1〉 ↔ |2〉 transition
of qutrit A is also far off resonant with (decoupled from) the other
three resonators 2, 3, and 4. (b) Illustration of four resonators each
dispersively coupled with the |1〉 ↔ |2〉 transition of qutrit A. Here,
�c,i is the large detuning between the |1〉 ↔ |2〉 transition frequency
of qutrit A and the frequency ωc,i of resonator i, which satisfies
�c,i � gi (i = 1,2,3,4).
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factor is omitted for simplicity)

|0〉A
4∏

i=1

|αi〉 + |1〉A
4∏

i=1

∣∣αi exp
(
ig2

i t/�c,i

)〉
. (6)

Both of the resonators and qutrit can be fabricated to have
appropriate resonator frequencies and qutrit-cavity coupling

strengths, such that g2
1

�c,1
= g2

2
�c,2

= g2
3

�c,3
= g2

4
�c,4

. Note that tun-
able coupling strength between a superconducting device and
a cavity has been proposed and demonstrated experimentally
[53–55]. For g2

i τ/�c,i = π (i = 1,2,3,4), the system then
evolves to

|0〉A
4∏

i=1

|αi〉 + |1〉A
4∏

i=1

|−αi〉 , (7)

according to Eq. (6). Here, 〈αi | − αi〉 = exp(−2|αi |2) ≈ 0
when αi is large enough.

(ii) Adjust the level spacings of the qutrit A to the original
configuration such that it is decoupled (i.e., far off resonance)
from all resonators [Fig. 3(a)]. We then apply a classical π/2
pulse (resonant with the |0〉 ↔ |1〉 transition of the qutrit A)
to transform the qutrit state |0〉A to |0〉A + |1〉A and |1〉A to
−|0〉A + |1〉A. Thus, the state (7) becomes

|0〉A
(

4∏
i=1

|αi〉 −
4∏

i=1

|−αi〉
)

+ |1〉A
(

4∏
i=1

|αi〉 +
4∏

i=1

|−αi〉
)

.

(8)
We now perform a measurement on the states of the qutrit A

in the {|0〉 ,|1〉} basis. If the qutrit A is found in the state |0〉 ,

it can be seen from Eq. (8) that the four resonators must be in
the following entangled coherent state:

N−(|α1〉 |α2〉 |α3〉 |α4〉 − |−α1〉 |−α2〉 |−α3〉 |−α4〉). (9)

Similarly, if the qutrit is found in the state |1〉 , then the four
resonators must be in the following entangled coherent state:

N+(|α1〉 |α2〉 |α3〉 |α4〉 + |−α1〉 |−α2〉 |−α3〉 |−α4〉), (10)

where N∓ are the normalization factors.
We should point out that since the level spacing between the

two levels |1〉 and |2〉 of qutrit A in Fig. 3(a) is set to be greater
than that in Fig. 3(b), qutrit A remains off resonant with any of
the four resonators during tuning the level structure of qutrit
A from Figs. 3(a) to 3(b).

It is straightforward to show that by using a superconducting
qutrit coupled to n resonators (1,2, . . . ,n) initially in the
state

∏n
i=1 |αi〉, the n-resonator entangled coherent state∏n

i=1 |αi〉 − ∏n
i=1 |−αi〉 or

∏n
i=1 |αi〉 + ∏n

i=1 |−αi〉 can be
prepared by using the same procedure given above.

B. Fidelity

Let us now give a discussion of the fidelity of the operations.
Since only the qutrit-pulse resonant interaction is used in step
(ii), this step can be completed within a very short time (e.g., by
increasing the pulse Rabi frequency), such that the dissipation
of the qutrit and the cavities is negligibly small. In this case,
the dissipation of the system would appear in the operation
of step (i) because of the qutrit-cavity dispersive interaction.
During the operation of step (i), the dynamics of the lossy

system is determined by

dρ

dt
= −i[HI ,ρ] +

4∑
i=1

κiL[ai] + {γϕ(SzρSz − ρ) + γL[S−]}

+ {γ ′
ϕ(S ′

zρS ′
z − ρ) + γ ′L[S ′

−]} + {γ ′′
ϕ (S ′′

z ρS ′′
z − ρ)

+ γ ′′L[S ′′
−]}, (11)

where HI is the Hamiltonian (2),L [ai] = aiρa
†
i − a

†
i aiρ/2 −

ρa
†
i ai/2, L[S−] = S−ρS+ − S+S−ρ/2 − ρS+S−/2,

L[S ′
−] = S ′

−ρS ′
− − S ′

+S ′
−ρ/2 − ρS ′

+S ′
−/2, and L[S ′′

−] =
S ′′

−ρS ′′
+ − S ′′

+S ′′
−ρ/2 − ρS ′′

+S ′′
−/2 (with S ′

z = |2〉 〈2| − |0〉 〈0|,
S ′′

z = |1〉 〈1| − |0〉 〈0|, S ′
− = |0〉 〈2| , and S ′′

− = |0〉 〈1|). In
addition, κi is the photon decay rate of the cavity i, γϕ and γ

are the dephasing rate and the energy relaxation rate of the
level |2〉 of qutrit A for the decay path |2〉 → |1〉 , γ ′

ϕ and γ ′
are the dephasing rate and the energy relaxation rate of the
level |2〉 of qutrit A for the decay path |2〉 → |0〉 , and γ ′′

ϕ and
γ ′′ are the dephasing rate and the energy relaxation rate of the
level |1〉 of qutrit A for the decay path |1〉 → |0〉, respectively.
The fidelity of the operations is given by

F = 〈ψid | ρ̃ |ψid〉 , (12)

where |ψid〉 is the state (8) of the whole system after the
above operations, in the ideal case without considering the
dissipation of the system during the entire operation; and ρ̃

is the final density operator of the whole system when the
operations are performed in a real situation.

A coherent state |αi〉 can be expressed as |αi〉 =
exp[−|αi |2/2]

∑∞
n=0

αn
i√
n!

|n〉 in a Fock-state basis. In our
numerical calculation, we consider the first m terms in the
expansions of |αi〉 and | − αi〉, i.e.,

|αi〉 ≈ exp[−|αi |2/2]
m∑

n=0

αn
i√
n!

|n〉 ,

(13)

| − αi〉 ≈ exp[−|αi |2/2]
m∑

n=0

(−αi)n√
n!

|n〉.

Under this consideration, the expression of the fidelity above
is modified as

F = 〈ψid | ρ̃ |ψid〉
|〈ψid | ψid〉|2

, (14)

where |ψid〉 is the state (8) in which the coherence states |αi〉
and |−αi〉 are now replaced by the states given in Eq. (13), and
the denominator |〈ψid | ψid〉|2 arises from the normalization of
the state |ψid〉 . For simplicity, we consider α1 = α2 = α3 =
α4 = α in our numerical calculation.

By defining �c,4 − �c,3 = �c,3 − �c,2 = �c,2 − �c,1 =
s�c,1, we have ωc,2 = ωc,1 − s�c,1, ωc,3 = ωc,1 − 2s�c,1,

and ωc,4 = ωc,1 − 3s�c,1. According to g2
1/�c,1 =

g2
2/�c,2 = g2

3/�c,3 = g2
4/�c,4, we have g2 = √

1 + sg1,

g3 = √
1 + 2sg1, and g4 = √

1 + 3sg1. For the choice of
γ −1

ϕ = (γ ′
ϕ)−1 = (γ ′′

ϕ )−1 = 5 μs, γ −1 = 25 μs, (γ ′)−1 =
200 μs, (γ ′′)−1 = 50 μs, κ−1

1 = κ−1
2 = κ−1

3 = κ−1
4 = 20

μs, s = 0.5, and g1/2π = 75 MHz, the fidelity versus the
parameter �c,1/g1 is shown in Fig. 4 where only eight
points are plotted and each point is based on the numerical
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FIG. 4. (Color online) Fidelity versus �c,1/g1. The parameters
used in the numerical calculation are γ −1

ϕ = (γ ′
ϕ)−1 = (γ ′′

ϕ )−1 = 5 μs,
γ −1 = 25 μs, (γ ′)−1 = 200 μs, (γ ′′)−1 = 50 μs, κ−1

1 = κ−1
2 = κ−1

3 =
κ−1

4 = 20 μs, s = 0.5, and g1/2π = 75 MHz.

calculation for α = 1.1 and m = 3. From Fig. 4, it can be seen
that a high fidelity ∼93% can be achieved when �c,1/g1 = 20.

For s = 0.5 here, we have g2/2π ∼ 92 MHz, g3 ∼ 106 MHz,
and g4 ∼ 119 MHz. Note that a coupling constant ∼220 MHz
can be reached for a superconducting device coupled to a
one-dimensional standing-wave CPW (coplanar waveguide)
transmission line resonator [29], and that T1 and T2 can be
made to be on the order of 10–100 μs for the state of art
superconducting devices at this time [56]. Without loss of
generality, assume that the |1〉 ↔ |2〉 transition frequency
of qutrit A is ν0 ∼ 10 GHz, and thus the frequencies of
cavity 1, 2, 3, and 4 are νc,1 ∼ 8.5 GHz, νc,2 ∼ 7.75 GHz,
νc,3 ∼ 7 GHz, and νc,4 ∼ 6.25 GHz, respectively [28]. For
the cavity frequencies chosen here and for the κ−1

1 ,κ−1
2 ,κ−1

3 ,

κ−1
4 used in the numerical calculation, the required quality

factors for cavities 1, 2, 3, and 4 are Q1 ∼ 1.0 × 106,

Q2 ∼ 9.7 × 105, Q3 ∼ 8.8 × 105, and Q4 ∼ 7.8 × 105,
respectively. Note that superconducting CPW transmission
line resonators with a loaded quality factor Q ∼ 106 have
been experimentally demonstrated [57,58], and planar
superconducting resonators with internal quality factors above
one million (Q > 106) have also been reported recently [59].
Our analysis given here demonstrates that preparation of an
entangled coherent state of four cavities is possible within the
present circuit cavity QED technique.

C. Discussion

Note that the level |1〉 of qutrit A has longer energy
relaxation time and dephasing time than the level |2〉 . Thus, we
focus on the level |2〉 in the following. According to [24], the
energy relaxation of the level |2〉 of qutrit A can be enhanced
via dressed dephasing of qutrit A by each resonator. For
simplicity, let us consider resonator i. The effective relaxation
rate e of the level |2〉 of qutrit A, induced due to the dressed
dephasing of qutrit A by the photons of resonator i, is given
by [60]

γe = γ

(
1 − 2ni + 1

4ncrit,i

)
+ γk,i + γ�,ini, (15)

where γ is the pure energy relaxation rate of the level |2〉
of qutrit A caused by noise environment, γk,i is the Purcell
decay rate associated with resonator i, γ�,i is the measurement
and dephasing-induced relaxation rate, ncrit,i = �2

c,i/4g2
i is the

critical photon number for resonator i, and ni is the average
photon number of resonator i. One can see from Eq. (15) that
to avoid the enhancement of the energy relaxation of the level
|2〉 (i.e., to obtain γe � γ ), the following condition

ni � γ − 4ncrit,iγk,i

4n crit,iγ�,i − 2γ
(16)

needs to be satisfied. The result (16) set an upper limit on the
average photon number of resonator i (i = 1,2,3,4).

As shown above, a measurement on the states of qutrit A is
needed during preparation of the entangled coherent states of
cavities. To the best of our knowledge, all existing proposals
for creating entangled coherent states based on cavity QED
require a measurement on the states of qubits or qutrits [61].

In the Introduction, we have given a discussion on the sig-
nificance of entangled coherent states in quantum information
processing and communication. Here, we would like to add a
few lines regarding the advantages and disadvantages that a
network of coherent states might have versus Fock states. The
advantages are as follows: when compared with Fock states,
(i) coherent states are more easily prepared in experiments,
and (ii) they are more robust against decoherence caused by
environment and thus can be transmitted over a longer distance.
The disadvantage is that both an entangled coherent state and
an entangled Fock state may suffer from strong decoherence
when the average photon number is large.

IV. ENTANGLING QUBITS EMBEDDED
IN DIFFERENT CAVITIES

In this section, we will show how to prepare a GHZ
entangled state of four qubits located at four different cavities.
We then give a discussion of the fidelity of the operations. Last,
we discuss how to prepare multiple qubits distributed over n

different cavities.

A. Preparation of GHZ states of four qubits in four cavities

Consider a system composed of four cavities coupled by a
superconducting qutrit A [Fig. 2(b)]. The qutrit A is initially
decoupled from the four cavities [Fig. 5(a)]. Each cavity hosts
a two-level qubit 1,2, 3, or 4, which is represented by a black
dot [Fig. 2(b)]. The two levels of each of qubits 1, 2, 3, and
4 are labeled as |0〉 (the ground state) and |1〉 (the excited
state). The qubits (1,2,3,4) are initially decoupled from their
respective cavities. Qutrit A and qubits (1,2,3) are initially
prepared in the state (|0〉 + |1〉) /

√
2, while qubit 4 is initially

in the state |0〉 . In addition, each cavity is initially in a vacuum
state. The operations for preparing the qubits (1,2,3,4) in a
GHZ state are listed in the following steps:

(i) Adjust the level spacings of qubits (1,2,3) to bring
the |0〉 ↔ |1〉 transition of qubit i resonant with the cavity i

(i = 1,2,3) for an interaction time ti = π/(2gr,i), such that
the state |1〉i |0〉c,i is transformed to −i |0〉i |1〉c,i , while the
state |0〉i |0〉c,i remains unchanged. Here, gr,i is the resonant
coupling constant of qubit i with cavity i. After this step, the
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FIG. 5. (Color online) (a) Illustration of qutrit A decoupled from
four cavities or resonators. Here, � is the large detuning between the
|1〉 ↔ |2〉 transition frequency of qutrit A and the frequency ωc,1 of
resonator 1, which represents that the |1〉 ↔ |2〉 transition of qutrit
A is far off resonant with (decoupled from) resonator 1. Since the
frequencies ωc,1, ωc,2, and ωc,3 of three resonators 1, 2, and 3 satisfy
ωc,1 > ωc,2 > ωc,3, the |1〉 ↔ |2〉 transition of qutrit A is also far off
resonant with (decoupled from) the other three resonators 2, 3, and 4.
In addition, �′ is the large detuning between the |1〉 ↔ |2〉 transition
frequency of qutrit A and the frequency ωc,4 of resonator 4, which
indicates that the |1〉 ↔ |2〉 transition of qutrit A is far off resonant
with (decoupled from) resonator 4. (b) Illustration of three resonators
(1,2,3) each dispersively coupled with the |1〉 ↔ |2〉 transition of
qutrit A. Here, �c,i is the large detuning between the |1〉 ↔ |2〉
transition frequency of qutrit A and the frequency ωc,i of resonator i,
which satisfies �c,i � gi (i = 1,2,3). When tuning the level spacings
of qutrit A from Fig. 5(a) to 5(b), the detuning �′ increases, thus qutrit
A remains decoupled from resonator 4. (c) Illustration of resonator
4 resonantly coupled with the |1〉 ↔ |2〉 transition of qutrit A. When
tuning the level spacings of qutrit A from Fig. 5(a) to 5(c), the detuning
� increases and thus the |1〉 ↔ |2〉 transition of qutrit A remains
decoupled from the three cavities 1, 2, and 3.

initial state of the whole system changes to [62]

3∏
i=1

[|0〉i (|0〉c,i − i |1〉c,i)
] ⊗ |0〉4 |0〉c,4 (|0〉A + |1〉A). (17)

Here and below, a normalization factor is omitted for simplic-
ity.

(ii) Adjust the level spacings of qubits (1,2,3) such that
each of these qubits is decoupled from its host cavity, and
adjust the level spacings of qutrit A to bring the |1〉 ↔ |2〉
transition of this qutrit dispersively coupled to the mode of
each of cavities 1, 2, and 3 (i.e., �c,i = ω21 − ωc,i � gi for
cavity i with i = 1,2,3), while the transition between any
other two levels of qutrit A is far off resonant with (decoupled
from) the mode of each of cavities 1, 2, 3 [Fig. 5(b)]. After an
interaction time t , the state (17) changes to{

3∏
i=1

|0〉i ⊗
[

3∏
i=1

(|0〉c,i − i |1〉c,i) |0〉A

+
3∏

i=1

(|0〉c,i − ieig2
i t/�c,i |1〉c,i) |1〉A

]}
⊗ |0〉4 |0〉c,4 . (18)

With a choice of g2
1

�c,1
= g2

2
�c,2

= g2
3

�c,3
and for g2

i τ/�c,i = π, we
obtain from Eq. (18){

3∏
i=1

|0〉i ⊗
[

3∏
i=1

(|0〉c,i − i |1〉c,i) |0〉A

+
3∏

i=1

(|0〉c,i + i |1〉c,i) |1〉A
]}

⊗ |0〉4 |0〉c,4 . (19)

(iii) Adjust the level spacings of qutrit A to its original
configuration [Fig. 5(a)] such that this qutrit is decoupled from
each cavity. Then, adjust the level spacings of qubits (1,2,3) to
bring the |0〉 ↔ |1〉 transition of qubit i resonant with the mode
of cavity i (i = 1,2,3) for an interaction time ti = π/(2gr,i),
such that the state |0〉i |1〉c,i is transformed to −i |1〉i |0〉c,i ,
while the state |0〉i |0〉c,i remains unchanged. After this step of
operation, the state (19) becomes[

3∏
i=1

(|0〉i − |1〉i) |0〉A +
3∏

i=1

(|0〉i + |1〉i) |1〉A
]

⊗ |0〉4

4∏
i=1

|0〉c,i . (20)

The result (20) shows that after this step, the qubit-qutrit
system is disentangled from the cavities but the qubits (1,2,3)
are entangled with qutrit A.

(iv) Adjust the level spacings of the qubits (1,2,3) such
that these qubits are decoupled from their cavities. Then,
adjust the level spacings of qutrit A such that the |1〉 ↔ |2〉
transition of qutrit A is resonant with the mode of cavity
4 [Fig. 5(c)]. After an interaction time tA = π/(2gr,A), the
state |1〉A |0〉c,4 is transformed to −i |0〉A |1〉c,4, while the
state |0〉A |0〉c,4 remains unchanged. Here and below, gr,A is
the resonant coupling constant of qutrit A with cavity 4,

while gr,4 is the resonant coupling constant of qubit 4 with
cavity 4. After this step, the state (20) changes to[

3∏
i=1

(|0〉i − |1〉i) |0〉c,4 − i

3∏
i=1

(|0〉i + |1〉i) |1〉c,4
]

⊗ |0〉A |0〉4

3∏
i=1

|0〉c,i . (21)

(v) Adjust the level spacings of the qubit 4 such that
this qubit is now resonant with the mode of cavity 4 for an
interaction time t4 = π/(2gr,4) to transform the state |0〉4 |1〉c,4
to −i |1〉4 |0〉c,4, while the state |0〉4 |0〉c,4 remains unchanged.
As a result, the state (21) becomes[

3∏
i=1

(|0〉i − |1〉i) |0〉4 −
3∏

i=1

(|0〉i + |1〉i) |1〉4

]

⊗ |0〉A
3∏

i=1

|0〉c,i , (22)

where |−〉i = |0〉i − |1〉i and |+〉i = |0〉i + |1〉i .
Note that after this step, the level spacings of
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qubit 4 need adjusted to have qubit 4 to be decoupled
from cavity 4.
From Eq. (22), one can see that after the above operations, the
qubits (1,2,3,4) are prepared in a GHZ state while each cavity
returns to its original vacuum state.

We should mention that because the level spacing between
the two levels |1〉 and |2〉 of qutrit A in Fig. 5(a) is set to be
greater than that in Fig. 5(b), qutrit A remains off resonant
with any of the three resonators 1, 2, and 3 during tuning the
level structure of qutrit A from Fig. 5(a) to 5(b). Also, when
tuning the level spacings of qutrit A from Fig. 5(a) to 5(b), the
detuning between the |1〉 ↔ |2〉 transition frequency of qutrit
A and the frequency of resonator 4 increases, and thus qutrit
A is decoupled from resonator 4 during the operations of steps
(i)–(iv) above.

During the above GHZ-state preparation for the four qubits
(1,2,3,4), the other qubits in each cavity, which are represented
by the gray dots in Fig. 2(b), are decoupled from the cavity
mode by prior adjustment of their level spacings.

B. Fidelity

Let us now study the fidelity of the entanglement prepa-
ration above. We note that since the resonant interactions are
used in steps (i), (iii), (iv) and (v), these steps can be completed
within a very short time (e.g., by increasing the resonant
device-cavity coupling constants), such that decoherence of
the qubits, the qutrit A, and the cavities is negligibly small.
In this case, decoherence of the system would have a negative
impact on the step (ii) of the operation due to the use of the
qutrit-cavity dispersive interaction.

By defining �c,3 − �c,2 = �c,2 − �c,1 = s�c,1, we have
ωc,2 = ωc,1 − s�c,1 and ωc,3 = ωc,1 − 2s�c,1. In addition,
according to g2

1/�c,1 = g2
2/�c,2 = g2

3/�c,3, we have g2 =√
1 + sg1 and g3 = √

1 + 2sg1. For the choice of γ −1
ϕ =

(γ ′
ϕ)−1 = (γ ′′

ϕ )−1 = 5 μs, γ −1 = 25 μs, (γ ′)−1 = 200μs,

(γ ′′)−1 = 50 μs, κ−1
1 = κ−1

2 = κ−1
3 = 20 μs, �c,1 = 10g1,

and g1/2π = 100 MHz, the fidelity versus the parameter s

is shown in Fig. 6, from which one can see that a high fidelity
∼96% can be achieved when s = 1, which corresponds to

0.5 0.6 0.7 0.8 0.9 1.0

0.935

0.940

0.945

0.950

0.955

0.960

s

FIG. 6. (Color online) Fidelity versus s. The parameters used in
the numerical calculation are γ −1

ϕ = (γ ′
ϕ)−1 = (γ ′′

ϕ )−1 = 5 μs, γ −1 =
25 μs, (γ ′)−1 = 200 μs, (γ ′′)−1 = 50 μs, κ−1

1 = κ−1
2 = κ−1

3 = 20 μs,
�c,1 = 10g1, and g1/2π = 100 MHz.

the case of g2/2π ∼ 141 MHz and g3 ∼ 173 MHz. In the
following, we consider the case of s = 1. Without loss of
generality, assume that the |1〉 ↔ |2〉 transition frequency of
qutrit A is ν0 ∼ 8.5 GHz, and thus the frequency of cavity 1,

the frequency of cavity 2, and the frequency of cavity 3
are νc,1 ∼ 7.5 GHz, νc,2 ∼ 6.5 GHz, and νc,3 ∼ 5.5 GHz,
respectively. For the cavity frequencies chosen here and for the
κ−1

1 ,κ−1
2 ,κ−1

3 used in our numerical calculation, the required
quality factors for cavities 1, 2, and 3 are Q1 ∼ 9.4 × 105,

Q2 ∼ 8.2 × 105, and Q3 ∼ 6.9 × 105, respectively. Finally,
it is noted that since only resonant interaction of qutrit A

with cavity 4 is involved during the above operations, the
requirement for cavity 4 is greatly reduced when compared
with cavities 1, 2, and 3. Our analysis given here shows that
preparation of a GHZ entangled state of four qubits located at
four cavities is possible within the present circuit cavity QED
technique.

C. Preparation of GHZ states of multiple qubits
embedded in n cavities

One can easily verify that, in principle, by using a super-
conducting qutrit coupled to n cavities, n qubits (1,2, . . . ,n)
initially in the state

∏n−1
i=1 |+〉i ⊗ |0〉n, which are respectively

located in the different n cavities, can be prepared in an entan-
gled GHZ state

∏n−1
i=1 |−〉i |0〉n − ∏n

i=1 |+〉i |1〉n by using the
same procedure described above.

Furthermore, based on the prepared GHZ state of n

qubits (1,2, . . . ,n), all other qubits (not entangled initially)
in the cavities can be entangled with the GHZ-state qubits
(1,2, . . . ,n), through intracavity controlled-NOT (CNOT) oper-
ations on the qubits in each cavity by using the GHZ-state
qubit in each cavity (i.e., qubit 1, 2, . . . , or n) as the control
while the other qubits as the targets. To see this clearly,
let us consider Fig. 2(b), where the three qubits in cavity i

(i = 1,2,3,4) are the black-dot qubit i and the two gray-dot
qubits, labeled as qubits i2 and i3 here. Suppose that the four
black-dot qubits (1,2,3,4 ) (i.e., the GHZ-state qubits) were
prepared in the GHZ state of Eq. (17), and each gray-dot
qubit is initially in the state |+〉. By performing CNOT on
various qubit pairs in each cavity, i.e., Ci,i2 and Ci,i3 on
the qubit pairs (i,i2) and (i,i3) for cavity i, one can have
all qubits in the four cavities (both black-dot and gray-dot
qubits) prepared in a GHZ state

∏4
i=1 |−〉i |−〉i2 |−〉i3 −∏4

i=1 |+〉i |+〉i2 |+〉i3. Here, Ci,i2, defined in the basis
{|+〉i |+〉i2 , |−〉i |+〉i2 , |+〉i |−〉i2 , |−〉i |−〉i2} represents a
CNOT with qubit i (the GHZ-state qubit) as the control with
qubit i2 as the target, which results in the transformation
|−〉i |+〉i2 → |−〉i |−〉i2, while it leaves the state |+〉i |+〉i2
unchanged. A similar definition applies to Ci,i3. Alternatively,
using the prepared GHZ state of n qubits (1,2, . . . ,n), one can
have all other qubits in the cavities to be entangled with the
GHZ-state qubits (1,2, . . . ,n) by performing an intracavity
multiqubit CNOT with the GHZ-state qubit (control qubit)
simultaneously controlling all other qubits (target qubits) in
each cavity [26].

Experimentally, it has been demonstrated successfully
on circuits consisting up to 128 flux qubits that crosstalk
from control circuitry can be essentially eliminated and/or
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corrected by practicing proper circuit designs and developing
corresponding multilayer fabrication processes [63]. Hence,
frequency crowding for multiple qubits in one resonator and
control of large numbers of qubits do not present a fundamental
and/or practical problem for the proposed protocol.

V. POSSIBILITY OF A TWO-DIMENSIONAL
QUANTUM NETWORK

The four resonators coupled by a coupler superconducting
qutrit may be used as a basic circuit block to build a two-
dimensional (2D) quantum network for quantum information
processing, as depicted in Fig. 7. In this network, for any two
of qubits and qutrits coupled or connected by a resonator (e.g.,
qubit a and qutrit A, qutrits A and B, and so on), quantum
operations can be performed on them directly because they can
interact with each other, mediated by their shared resonator.
In addition, for any two qubits located at different cavities
or resonators, quantum operations can be performed through
information transfer. To see this, let us consider two distant
qubits a and b in the network (Fig. 7). To perform a quantum
operation on the two qubits a and b, one can do the following.
First, (i) transfer the quantum information stored in qubit a to
the coupler qutrit D via a transfer sequence a → A → B →
C → D, (ii) perform the quantum operation on the coupler
qutrit D and qubit b, and then (iii) transfer the quantum
information of the coupler qutrit D back to qubit a through a
transfer sequence D → C → B → A → a. In this way, the
quantum operation is performed on the two distant qubits a and
b indirectly. It should be mentioned that to perform a quantum
operation on two qubits at different cavities, the intermediate
coupler qutrits (e.g., qutrits A, B, and C for the example given
here) need to be initially prepared in the ground state |0〉 as
required by quantum information transfer [e.g., this can be
seen from the state transformation (α |0〉a + β |1〉a) |0〉A →

FIG. 7. (Color online) Two-dimensional linear network of res-
onators, qubits, and qutrits. A short line represents a resonator and
each circle represents a coupler qutrit. The two red dots represent
qubits a and b. The coupler qutrits A, B, and C are used to transfer
information stored in qubit a to the coupler qutrit D. They are also
used to transfer information of the coupler qutrit D back to qubit a

after a quantum operation is performed on the coupler qutrit D and
qubit b, which interact with each other through a resonator (i.e., the
green short line).

|0〉a (α |0〉A + β |1〉A) for the information transfer from qubit
a to the coupler qutrit A).

An architecture for quantum computing based on supercon-
ducting circuits, where on-chip planar microwave resonators
are arranged in a two-dimensional grid with a qubit sitting
at each intersection, was previously proposed [64]. However,
our present proposal is different from that in the following.
For the architecture in Ref. [64], each qubit at an intersection
is coupled to two cavity modes, i.e., one cavity mode belongs
to a horizontal cavity built on the top layer, while the other
cavity mode belongs to a vertical cavity built at a second layer
at the bottom. In contrast, in our case, as shown in Fig. 7, all
resonators and coupler qutrits are arranged in the same plane,
which is relatively easy to implement in experiments.

Finally, Ref. [65] analyzes the performance of the resonator
plus zero-qubit (REZQU) architecture in which the qubits are
complemented with memory resonators and coupled via a
resonator bus. We note that in Ref. [65], the memory resonators
are coupled via a common resonator bus, while in our proposal
the cavities are coupled via a coupler qutrit. Hence, our
architecture is quite different from that in [65].

We remark that many details on possible scalability of
the protocol (including quantum error correction) need to
be addressed. However, this requires a lengthy and complex
analysis, which is beyond the scope of this work. We would
like to leave them as open questions to be addressed in future
work.

VI. CONCLUSION

We have proposed a method for creating four-resonator
entangled coherent states and preparing a GHZ state of four
qubits in four cavities by using a superconducting qutrit as the
coupler. In principle, this proposal can be extended to create
entangled coherent states of n resonators and to prepare GHZ
states of n qubits distributed over n cavities in a network, with
the same operational steps and the operation time as those
of the four-resonator case described above. This proposal is
quite general and can be applied to the case when the coupler
qutrit is a different physical system with three levels, such as
a quantum dot or a NV center. Finally, it is noted that the
structure of four resonators coupled by a coupler qutrit can
be used as a basic circuit block to build a two-dimensional
quantum network, which may be useful for scalable quantum
information processing.

ACKNOWLEDGMENTS

S. Han was supported in part by DMEA. C. P. Yang
was supported in part by the National Natural Science
Foundation of China under Grant No. 11074062, the Zhejiang
Natural Science Foundation under Grant No. Y6100098, the
Open Fund from the SKLPS of ECNU, and the funds from
Hangzhou Normal University. Q. P. Su was supported by the
National Natural Science Foundation of China under Grant
No. 11147186. S. B. Zheng was supported by the Major State
Basic Research Development Program of China under Grant
No. 2012CB921601.

022320-8



GENERATING ENTANGLEMENT BETWEEN MICROWAVE . . . PHYSICAL REVIEW A 87, 022320 (2013)

[1] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).
[2] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
[3] S. Filipp et al., Phys. Rev. Lett. 102, 200402 (2009).
[4] R. C. Bialczak et al., Nat. Phys. 6, 409 (2010).
[5] M. Neeley et al., Nature (London) 467, 570 (2010).
[6] T. Yamamoto et al., Phys. Rev. B 82, 184515 (2010).
[7] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

L. Frunzio, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 173601
(2010).

[8] C. P. Yang, Shih-I. Chu, and S. Han, Phys. Rev. A 67, 042311
(2003).

[9] J. Majer et al., Nature (London) 449, 443 (2007).
[10] L. DiCarlo et al., Nature (London) 460, 240 (2009).
[11] A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[12] C. P. Yang, Shih-I. Chu, and S. Han, Phys. Rev. Lett. 92, 117902

(2004).
[13] A. Wallraff et al., Nature (London) 431, 162 (2004).
[14] I. Chiorescu et al., Nature (London) 431, 159 (2004).
[15] F. Marquardt and C. Bruder, Phys. Rev. B 63, 054514 (2001).
[16] Y. X. Liu, L. F. Wei, and F. Nori, Europhys. Lett. 67, 941 (2004).
[17] K. Moon and S. M. Girvin, Phys. Rev. Lett. 95, 140504 (2005).
[18] F. Marquardt, Phys. Rev. B 76, 205416 (2007); M. Mariantoni

et al., arXiv:cond-mat/0509737.
[19] M. Hofheinz et al., Nature (London) 454, 310 (2008); H. Wang

et al., Phys. Rev. Lett. 101, 240401 (2008).
[20] M. Hofheinz et al., Nature (London) 459, 546 (2009).
[21] F. Plastina and G. Falci, Phys. Rev. B 67, 224514 (2003).
[22] A. Blais, A. Maassen van den Brink, and A. M. Zagoskin, Phys.

Rev. Lett. 90, 127901 (2003).
[23] J. Q. You and F. Nori, Phys. Rev. B 68, 064509 (2003).
[24] F. Helmer and F. Marquardt, Phys. Rev. A 79, 052328 (2009).
[25] L. S. Bishop et al., New J. Phys. 11, 073040 (2009).
[26] C. P. Yang, Y. X. Liu, and F. Nori, Phys. Rev. A 81, 062323

(2010).
[27] C. P. Yang, S. B. Zheng, and F. Nori, Phys. Rev. A 82, 062326

(2010).
[28] P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M.

Fink, M. Goppl, L. Steffen, and A. Wallraff, Phys. Rev. B 79,
180511(R) (2009).

[29] L. DiCarlo et al., Nature (London) 467, 574 (2010).
[30] M. Mariantoni et al., Science 334, 61 (2011).
[31] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff,

Nature (London) 481, 170 (2012).
[32] M. Mariantoni, F. Deppe, A. Marx, R. Gross, F. K. Wilhelm, and

E. Solano, Phys. Rev. B 78, 104508 (2008).
[33] F. W. Strauch, K. Jacobs, and R. W. Simmonds, Phys. Rev. Lett.

105, 050501 (2010).
[34] H. Wang et al., Phys. Rev. Lett. 106, 060401 (2011).
[35] M. Mariantoni et al., Nat. Phys. 7, 287 (2011).
[36] M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali,

C. Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev.
Lett. 77, 4887 (1996).

[37] H. Jeong and M. S. Kim, Phys. Rev. A 65, 042305 (2002).
[38] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and

S. Glancy, Phys. Rev. A 68, 042319 (2003).

[39] N. B. An, Phys. Rev. A 68, 022321 (2003).
[40] P. vanLoock, N. Lutkenhaus, W. J. Munro, and K. Nemoto, Phys.

Rev. A 78, 062319 (2008).
[41] F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902

(2002).
[42] B. Kraus and J. I. Cirac, Phys. Rev. Lett. 92, 013602 (2004).
[43] J. Lee, M. Paternostro, M. S. Kim, and S. Bose, Phys. Rev. Lett.

96, 080501 (2006).
[44] A. Gilchrist, P. Deuar, and M. D. Reid, Phys. Rev. Lett. 80, 3169

(1998); Phys. Rev. A 60, 4259 (1999).
[45] M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59, 1829

(1999).
[46] See, for many references, S. Bose, V. Vedral, and P. L. Knight,

Phys. Rev. A 57, 822 (1998).
[47] G. C. Guo and S. B. Zheng, Phys. Lett. A 223, 332 (1996);

M. J. Holland, D. F. Walls, and P. Zoller, Phys. Rev. Lett. 67,
1716 (1991).

[48] Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Phys. Rev.
Lett. 95, 087001 (2005).

[49] S. Han, J. Lapointe, and J. E. Lukens, Single-Electron Tunneling
and Mesoscopic Devices (Springer, Berlin, 1991), Vol. 31,
pp. 219–222.

[50] M. Neeley et al., Nat. Phys. 4, 523 (2008).
[51] C. P. Yang, Phys. Rev. A 82, 054303 (2010).
[52] J. Q. You and F. Nori, Phys. Today 58(11), 42 (2005).
[53] A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion, and

D. Esteve, J. Low Temp. Phys. 151, 1034 (2008).
[54] R. Harris et al., Phys. Rev. Lett. 98, 177001 (2007).
[55] S. J. Srinivasan, A. J. Hoffman, J. M. Gambetta, and A. A.

Houck, Phys. Rev. Lett. 106, 083601 (2011).
[56] J. Bylander et al., Nat. Phys. 7, 565 (2011); H. Paik et al., Phys.

Rev. Lett. 107, 240501 (2011); J. M. Chow et al., ibid. 109,
060501 (2012); C. Rigetti et al., Phys. Rev. B 86, 100506(R)
(2012).

[57] W. Chen, D. A. Bennett, V. Patel, and J. E. Lukens, Supercond.
Sci. Technol. 21, 075013 (2008).

[58] P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Steffen,
S. Filipp, and A. Wallraff, Phys. Rev. Lett. 104, 100504 (2010).

[59] A. Megrant et al., Appl. Phys. Lett. 100, 113510 (2012).
[60] M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A

77, 060305(R) (2008).
[61] E. Solano, G. S. Agarwal, and H. Walther, Phys. Rev. Lett. 90,

027903 (2003); C. C. Gerry, Phys. Rev. A 54, R2529 (1996);
G. C. Guo and S. B. Zheng, Opt. Commun. 133, 142 (1997);
S. B. Zheng, Quantum Semiclass. Opt. 10, 691 (1998); C. P.
Yang and G. C. Guo, J. Phys. B: At., Mol. Opt. Phys. 32, 3309
(1999); J. H. Guo, Commun. Theor. Phys. 41, 37 (2004); X. B.
Zou and W. Mathis, Phys. Lett. A 337, 305 (2005); M. Y. Chen
and W. M. Zhang, AIP Conf. Proc. 1074, 38 (2008).

[62] C. P. Yang and S. Han, Phys. Rev. A 73, 032317 (2006).
[63] R. Harris et al., Phys. Rev. B 81, 134510 (2010); 82, 024511

(2010); M. W. Johnson et al., Nature (London) 473, 194 (2011).
[64] F. Helmer, M. Mariantoni, A. G. Fowler, J. V. Delft, E. Solano,

and F. Marquardt, Europhys. Lett. 85, 50007 (2009).
[65] A. Galiautdinov, A. N. Korotkov, and J. M. Martinis,

arXiv:1105.3997.

022320-9

http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1103/PhysRevLett.102.200402
http://dx.doi.org/10.1038/nphys1639
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1103/PhysRevB.82.184515
http://dx.doi.org/10.1103/PhysRevLett.105.173601
http://dx.doi.org/10.1103/PhysRevLett.105.173601
http://dx.doi.org/10.1103/PhysRevA.67.042311
http://dx.doi.org/10.1103/PhysRevA.67.042311
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1103/PhysRevLett.92.117902
http://dx.doi.org/10.1103/PhysRevLett.92.117902
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02831
http://dx.doi.org/10.1103/PhysRevB.63.054514
http://dx.doi.org/10.1209/epl/i2004-10144-3
http://dx.doi.org/10.1103/PhysRevLett.95.140504
http://dx.doi.org/10.1103/PhysRevB.76.205416
http://arXiv.org/abs/arXiv:cond-mat/0509737
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1103/PhysRevLett.101.240401
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1103/PhysRevB.67.224514
http://dx.doi.org/10.1103/PhysRevLett.90.127901
http://dx.doi.org/10.1103/PhysRevLett.90.127901
http://dx.doi.org/10.1103/PhysRevB.68.064509
http://dx.doi.org/10.1103/PhysRevA.79.052328
http://dx.doi.org/10.1088/1367-2630/11/7/073040
http://dx.doi.org/10.1103/PhysRevA.81.062323
http://dx.doi.org/10.1103/PhysRevA.81.062323
http://dx.doi.org/10.1103/PhysRevA.82.062326
http://dx.doi.org/10.1103/PhysRevA.82.062326
http://dx.doi.org/10.1103/PhysRevB.79.180511
http://dx.doi.org/10.1103/PhysRevB.79.180511
http://dx.doi.org/10.1038/nature09416
http://dx.doi.org/10.1126/science.1208517
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1103/PhysRevB.78.104508
http://dx.doi.org/10.1103/PhysRevLett.105.050501
http://dx.doi.org/10.1103/PhysRevLett.105.050501
http://dx.doi.org/10.1103/PhysRevLett.106.060401
http://dx.doi.org/10.1038/nphys1885
http://dx.doi.org/10.1103/PhysRevLett.77.4887
http://dx.doi.org/10.1103/PhysRevLett.77.4887
http://dx.doi.org/10.1103/PhysRevA.65.042305
http://dx.doi.org/10.1103/PhysRevA.68.042319
http://dx.doi.org/10.1103/PhysRevA.68.022321
http://dx.doi.org/10.1103/PhysRevA.78.062319
http://dx.doi.org/10.1103/PhysRevA.78.062319
http://dx.doi.org/10.1103/PhysRevLett.88.057902
http://dx.doi.org/10.1103/PhysRevLett.88.057902
http://dx.doi.org/10.1103/PhysRevLett.92.013602
http://dx.doi.org/10.1103/PhysRevLett.96.080501
http://dx.doi.org/10.1103/PhysRevLett.96.080501
http://dx.doi.org/10.1103/PhysRevLett.80.3169
http://dx.doi.org/10.1103/PhysRevLett.80.3169
http://dx.doi.org/10.1103/PhysRevA.60.4259
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevA.57.822
http://dx.doi.org/10.1016/S0375-9601(96)00753-0
http://dx.doi.org/10.1103/PhysRevLett.67.1716
http://dx.doi.org/10.1103/PhysRevLett.67.1716
http://dx.doi.org/10.1103/PhysRevLett.95.087001
http://dx.doi.org/10.1103/PhysRevLett.95.087001
http://dx.doi.org/10.1038/nphys972
http://dx.doi.org/10.1103/PhysRevA.82.054303
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1007/s10909-008-9774-x
http://dx.doi.org/10.1103/PhysRevLett.98.177001
http://dx.doi.org/10.1103/PhysRevLett.106.083601
http://dx.doi.org/10.1038/nphys1994
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevLett.109.060501
http://dx.doi.org/10.1103/PhysRevLett.109.060501
http://dx.doi.org/10.1103/PhysRevB.86.100506
http://dx.doi.org/10.1103/PhysRevB.86.100506
http://dx.doi.org/10.1088/0953-2048/21/7/075013
http://dx.doi.org/10.1088/0953-2048/21/7/075013
http://dx.doi.org/10.1103/PhysRevLett.104.100504
http://dx.doi.org/10.1063/1.3693409
http://dx.doi.org/10.1103/PhysRevA.77.060305
http://dx.doi.org/10.1103/PhysRevA.77.060305
http://dx.doi.org/10.1103/PhysRevLett.90.027903
http://dx.doi.org/10.1103/PhysRevLett.90.027903
http://dx.doi.org/10.1103/PhysRevA.54.R2529
http://dx.doi.org/10.1016/S0030-4018(96)00459-2
http://dx.doi.org/10.1088/1355-5111/10/5/007
http://dx.doi.org/10.1088/0953-4075/32/14/302
http://dx.doi.org/10.1088/0953-4075/32/14/302
http://dx.doi.org/10.1016/j.physleta.2005.02.012
http://dx.doi.org/10.1063/1.3037132
http://dx.doi.org/10.1103/PhysRevA.73.032317
http://dx.doi.org/10.1103/PhysRevB.81.134510
http://dx.doi.org/10.1103/PhysRevB.82.024511
http://dx.doi.org/10.1103/PhysRevB.82.024511
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1209/0295-5075/85/50007
http://arXiv.org/abs/arXiv:1105.3997



