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Achieving steady-state entanglement of remote micromechanical oscillators
by cascaded cavity coupling
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In this paper, we propose a scheme for generating steady-state entanglement of remote micromechanical
oscillators in unidirectionally coupled cavities. For the system of two mechanical oscillators, we show that when
two cavity modes in each cavity are driven at red- and blue-detuned sidebands, respectively, a stationary two-mode
squeezed vacuum state of the two mechanical oscillators can be generated by the cascaded cavity coupling. The
degree of squeezing is controllable by adjusting the relative strength of the pump lasers. Our calculations also
show that the achieved mechanical entanglement is robust against thermal fluctuations. For the case of multiple
mechanical oscillators, we find that steady-state genuine multipartite entanglement can also be built up among
the remote mechanical oscillators. The present scheme does not require nonclassical light input or conditional
quantum measurements, and it can be realized with current experimental technology.
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I. INTRODUCTION

Besides the fundamental research interest in quantum
physics [1], realizing quantum effects of macroscopic objects
is crucial for potential applications in ultrahigh-precision
measurements and quantum information processing [2–4].
Thanks to the recent achievements in ground-state cooling
of micromechanical oscillators via optomechanical coupling
[5–8], the emerging field of cavity optomechanics as an inter-
face between mechanical systems and optical field has become
a unique platform to study quantum behavior of macroscopic
mechanical systems [9–16]. Using well-established quantum
optical techniques, optomechanics holds the promise to effec-
tively prepare and manipulate nonclassical mechanical states.

Several schemes have been proposed to establish entan-
glement between a mechanical element and the driven cavity
field or between vibrating membranes or end mirrors [17–21]
by optomechanics. Especially, remote entanglement between
two micromechanical oscillators in separated cavities via in-
jecting squeezed light or conditional quantum measurements is
investigated [22–24]. Also, it was shown that weak mechanical
entanglement between two distant optomechanical oscillators
can possibly be achieved merely by optomechanical coupling
[25]. The entanglement of remote mechanical elements is of
importance for constructing long-distance quantum communi-
cation networks [26].

On the other hand, generating quantum states by quantum-
reservoir engineering has attracted a lot of attention recently. In
this approach, the interaction between system and environment
is engineered in such a way that the system relaxes into
a desired state. The resulting quantum states are steady,
independent of initial conditions, and, most importantly, robust
against incoherent noise. To date, several schemes have been
proposed to prepare entangled states of atomic systems by
quantum dissipation [27–33], and moreover, the dissipative
creation of steady-state entanglement between two separated
atomic ensembles has been experimentally realized [34].
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In this paper, we consider the generation of steady-state
entanglement of remote micromechanical oscillators (mem-
branes) by cascaded cavity coupling. We at first investigate
the entanglement between two micromechanical membrane
oscillators in a cascaded cavity system. In each cavity, a
membrane oscillator is coupled to two nondegenerate cavity
modes via parametric and beam-splitter-like interactions by
driving the relevant cavity modes on blue- and red-detuned
sidebands, respectively. For negligible mechanical damping,
we find that the cavity dissipation can pull the two distant
mechanical oscillators into a stationary two-mode squeezed
vacuum. It is also shown that the two-mode entanglement
is robust against thermal fluctuations when one takes into
account the mechanical damping. We then extend the two-
mode mechanical model to the case of multiple mechanical
oscillators in an array of cascaded cavities. We show that in
this system genuine multipartite steady-state entanglement can
be built up among the remote mechanical oscillators via the
cascaded cavity coupling.

The remainder of this paper proceeds as follows. In Sec. II,
the model of a two-cascaded-cavity optomechanical system
is introduced and the steady-state entanglement between the
mechanical oscillators is investigated in detail. In Sec. III, we
extend the previous model to the case of multiple mechanical
oscillators in an array of unidirectionally coupled cavities and
discuss the generation of multipartite entanglement among
multiple mechanical oscillators. Finally, we give the conclu-
sion in Sec. IV.

II. ENTANGLEMENT OF TWO MECHANICAL
OSCILLATORS

A. Model and equations

As shown schematically in Fig. 1, we investigate a system
consisting of two identical optical cavities connected by
unidirectional coupling [35]. In each cavity, two driven cavity
modes are coupled to a vibrating membrane via radiation
pressure [36,37]. The role of the membranes could also be
played by other mechanical systems such as trapped clouds of
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FIG. 1. (Color online) (a) Schematic setup of two-cascaded-
cavity optomechanical system. In each cavity, two cavity modes are
driven by red- and blue-detuned lasers, respectively, and the output
quantum fluctuations from the first cavity are directed to the second
cavity to drive the corresponding cavity modes. (b) Frequencies of the
pumps and cavity modes; dashed arrows represent the unidirectional
coupling between the cavity modes.

ultracold atoms [38]. After removing the carrier photons with
filters, the output quantum fluctuations from the first cavity
are directed to the second cavity to drive the corresponding
cavity modes. With the light fields rotating at their driving
frequencies, the Hamiltonian of the system is given by

H =
∑
j=1,2

[δaj
a
†
j aj + δbj

b
†
j bj + ωmj

c
†
j cj

+ (g̃aj
a
†
j aj + g̃bj

b
†
j bj )(cj + c

†
j )

+ i(Eaj
a
†
j − E∗

aj
aj ) + i(Ebj

b
†
j − E∗

bj
bj )], (1)

where aj (a†
j ) and bj (b†j ) (j = 1,2) are annihilation (creation)

operators for the cavity modes and cj (c†j ) for the mechanical
modes of the vibrating membranes of frequencies ωmj

in
each cavity. The cavity-laser detunings δzj

= ωzj
− νzj

(z =
a,b), with ωzj

being the cavity resonant frequencies and νzj

the corresponding driving frequencies. The optomechanical
couplings are denoted g̃zj

and the amplitudes of the driving
lasers |Ezj

| = √
2Pzj

κ̃zj
/h̄νzj

, where Pzj
are the powers of the

pump lasers and κ̃zj
the cavity loss rates of the left cavity

mirrors.
We expand the quantum operators as oj = ōs

j + δoj , where
ōs

j are the steady-state classical amplitudes and δoj the
corresponding quantum fluctuation operators. By taking into

account cavity losses and mechanical damping, the classical
amplitudes are obtained as z̄s

j = Ezj
/(κzj

+ i�zj
) and c̄s

j =∑
z g̃zj

|z̄s
j |2/(ωmj

+ iγmj
), where �zj

= δzj
+ 2g̃zj

Re(c̄s
j ) and

κzj
are the cavity loss rates from the output mirrors on the

right of the cavities, and γmj
are the mechanical damping

rates. Note that here we have assumed the cavity loss rates
κzj

� κ̃zj
such that losses from the left cavity mirrors can be

neglected. For intense driving fields we have |ōs
j |2 � 〈δo†j δoj 〉

and Hamiltonian (1) can be linearized. Then by dropping
the symbol “δ′′ in the fluctuation operators for simplicity of
notation, the resulting Langevin equations of motion for the
quantum fluctuations of the cavity and mechanical modes are
obtained as

ȧj = −(κaj
+ i�aj

)aj − igaj
(cj + c

†
j ) +

√
2κaj

ain
j (t),

ḃj = −(κbj
+ i�bj

)bj − igbj
(cj + c

†
j ) +

√
2κbj

bin
j (t),

ċj = −(γmj
+ iωmj

)cj − igaj
(aj + a

†
j ) − igbj

(bj + b
†
j )

+
√

2γmj
cin
j (t), (2)

where the effective optomechanical coupling gzj
=

|z̄s
j |g̃aj

(z = a,b). The noise operators ain
1 (t) and bin

1 (t) describe
the vacuum inputs to the first cavity and satisfy nonzero
correlations 〈ain

1 (t)ain†
1 (t ′)〉 = δ(t − t ′) and 〈bin

1 (t)bin†
1 (t ′)〉 =

δ(t − t ′). The input noise of the second cavity, characterized by
the operators ain

2 (t) and bin
2 (t), are from the output fluctuations

of the first cavity and transmission losses in the coupling.
When the output quantum field of the cavity mode a1(b1) is
used to drive the cavity mode a2(b2), then one has

ain
2 (t) = √

ηa

[
ain

1 (t) − √
2κa1a1(t)

]
e−i(νa1 −νa2 )t

+
√

(1 − ηa)ãin
2 (t), (3a)

bin
2 (t) = √

ηb

[
bin

1 (t) − √
2κb1b1(t)

]
e−i(νb1 −νb2 )t

+
√

(1 − ηb)b̃in
2 (t), (3b)

where ηz ∈ [0,1] (z = a,b) accounts for the imperfect cou-
plings between the two cavities. The operators ãin

2 (t) and
b̃in

2 (t) denote the local vacuum noise input to the second
cavity. The parameter ηz = 1 corresponds to a lossless
unidirectional coupling between the two cavities, whereas
ηz = 0 describes two independent cavities. Note here that
the exponential factors in the above equations result from
the differences between the frequencies of the relevant pump
lasers. In addition, cin

j (t) are noise operators of the mechanical

oscillators which have nonzero correlations 〈cin†
j (t)cin

j (t ′)〉 =
n̄

j

thδ(t − t ′) and 〈cin
j (t)cin†

j (t ′)〉 = (n̄j

th + 1)δ(t − t ′), where the
mean thermal phonon numbers at temperature T are given by
n̄

j

th = (eh̄ωmj
/kBT − 1)−1, with kB the Boltzmann constant.

Now we choose the detunings

�a1 = −�b1 = −ωm1 , �a2 = −�b2 = ωm2 ; (4)

i.e., cavity modes a1 and b2 are pumped by the blue sidebands
of the lasers, while modes a2 and b1 are driven by the red
sidebands, as illustrated in Fig. 1(b). Therefore, the pump
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frequencies νxj
should satisfy

νa1 − νa2 = (ωm1 + ωm2 ), (5a)

νb1 − νb2 = −(ωm1 + ωm2 ). (5b)

With the above choices of detunings, by performing the trans-
formations zj → zj e

−i�zj
t , zin

j (t) → zin
j (t)e−i�zj

t (z = a,b),

cj → cj e
−iωmj

t , and cin
j (t) → cin

j (t)e−iωmj
t , and neglecting fast

oscillating terms proportional to e±i(ωm1 +ωm2 )t , the Langevin
equations, (2), reduce to

ȧ1 = −κa1a1 − iga1c
†
1 + √

2κa1a
in
1 (t), (6a)

ḃ1 = −κb1b1 − igb1c1 + √
2κb1b

in
1 (t), (6b)

ȧ2 = −κa2a2 − iga2c2 − 2
√

ηaκa1κa2a1 + √
2ηaκa2a

in
1 (t)

+ √
2(1 − ηa)κa2 ã

in
2 (t), (6c)

ḃ2 = −κb2b2 − igb2c
†
2 − 2

√
ηbκb1κb2b1 + √

2ηbκb2b
in
1 (t)

+ √
2(1 − ηb)κb2 b̃

in
2 (t), (6d)

ċ1 = −γm1c1 − iga1a
†
1 − igb1b1 + √

2γm1c
in
1 (t), (6e)

ċ2 = −γm2c2 − iga2a2 − igb2b
†
2 + √

2γm2c
in
2 (t). (6f)

It should be noted that for our approximations to be valid, we
require our system to be in the resolved sideband regime,
ωmj

� κzj
, as well as to satisfy ωmj

� gzj
. The above

equations show that in each cavity, the mechanical mode is
coupled to the cavity modes via effective parametric amplifi-
cation as well as beam-splitter-like mixing. While the former
interaction leads to photon-phonon entanglement and optical
amplification, the latter is damping the mechanical modes.
If the coupling strengths satisfy gb1 > ga1 and ga2 > gb2 ,
the optical damping is dominant over amplification and both
mechanical oscillators are cooled.

B. Two-mode mechanical entanglement

We can equivalently re-express Eqs. (6)
as χ̇ = Zχ + f in(t), with the vector χ =
(xa1 ,ya1 ,xb1 ,yb1 ,xa2 ,ya2 ,xb2 ,yb2 ,xc1 ,yc1 ,xc2 ,yc2 )T , in terms
of the quadrature operators defined as x = (o + o†)/

√
2 and

y = −i(o − o†)/
√

2, while f in(t) contains the corresponding
noise operator contributions. The entanglement between the
mechanical systems is contained in the 12 × 12 correlation
matrix σ̃ given by σ̃ij = 〈χiχj + χjχi〉/2. In steady-steady
state, it satisfies Zσ̃s + σ̃sZT = −D, where D is the noise
matrix Dij δ(t − t ′) = 〈f in

i (t)f in
j (t ′) + f in

j (t ′)f in
i (t)〉/2. Since

we are only interested in the entanglement between the two
mechanical modes, it is enough to consider the reduced
correlation matrix σ12 related to the two-mode mechanical

states. It has the simple structure σ12 = (
σ 1

12 σ 3
12

(σ 3
12)T σ 2

12

), where σ 1
12,

σ 2
12, and σ 3

12 are 2 × 2 matrices containing the autocorrelations
of the two systems and their cross-correlations, respectively.
The entanglement between the two mechanical modes can be
quantified with the logarithmic negativity E12 [39], which is
defined as

E12 = max[0, − ln(2ζ12)], (7)

where ζ12 is given in terms of the reduced correlation matrices

ζ12 = 2−1/2
√

�(σ12) −
√

�(σ12) − 4detσ12, (8)

with �(σ12) = detσ 1
12 + detσ 2

12 − 2detσ 3
12.

Solving Eqs. (6) numerically and using Eq. (7) we can
investigate the mechanical entanglement in the system. Let us
first, however, turn to a regime where we can obtain analytical
results. To this end, we consider the cavity dissipation rates
κzj

= κ , the perfect cavity couplings ηz = 1, and the effective
optomechanical couplings

ga1 = gb2 = g1, ga2 = gb1 = g2. (9)

If the cavity dissipation rate is dominating the dynamics of the
system, i.e., κ � {gj ,γmj

n̄
j

th}, the cavity modes follow changes
of the mechanical oscillators adiabatically for times t > 1/κ .
In this case we can eliminate the cavity modes and find the
simple equations of motion for the mechanical modes cj ,

ċ1(t) = −(γm1 + γ̃m)c1(t) + √
2γm1c

in
1 (t) +

√
2γ̃mc̃in

1 (t),

(10a)

ċ2(t) = −(γm2 + γ̃m)c2(t) + √
2γm2c

in
2 (t) +

√
2γ̃mc̃in

2 (t),

(10b)

where γ̃m = (g2
2 − g2

1)/κ is the net optomechanical damping
rate. The noise operators c̃in

j (t) are given by

c̃in
1 (t) = − ig1√

κγ̃m

a
in†
1 (t) − ig2√

κγ̃m

bin
1 (t), (11a)

c̃in
2 (t) = ig2√

κγ̃m

ain
1 (t) + ig1√

κγ̃m

b
in†
1 (t) (11b)

and have nonvanishing correlations〈
c̃

in†
j (t)c̃in

j (t ′)
〉 = Nmδ(t − t ′), (12a)〈

c̃in
j (t)c̃in†

j (t ′)
〉 = (Nm + 1)δ(t − t ′), (12b)〈

c̃in
1 (t)c̃in

2 (t ′)
〉 =

√
Nm(Nm + 1)δ(t − t ′), (12c)

with Nm = g2
1/(g2

2 − g2
1). The above correlations indicate that

the two mechanical oscillators are effectively coupled to a
broadband quantum reservoir in a two-mode squeezed vacuum
state [40]. In the absence of the mechanical damping (γmj

=
0), the mechanical oscillators will reduce to the state of the
reservoir in the long-time limit, i.e., the two-mode squeezed
vacuum

|ψ〉ss12 = exp(−rc
†
1c

†
2 + rc1c2)|0c1 ,0c2〉, (13)

with the squeezing parameter r = tanh−1(g1/g2) dependent
only on the relative strengths of the two pump lasers.
Therefore, the strong mechanical entanglement can be built
up, in principle, just by controlling the ratio of the strengths
of the pump lasers. It should be pointed that our scheme is
quite different from that in Ref. [22], which discussed the
establishment of the stationary entanglement between two
mechanical oscillators by injecting externally squeezed light
into the cavities. Here, instead of creating entanglement in
an external source, the entanglement between the mechanical
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oscillator and the blue-driven cavity mode is created via the
parametric interaction in each cavity, and the photon-phonon
entanglement is then transferred to the mechanical oscillators
with the help of the beam-splitter interaction.

By taking into account mechanical damping, from
Eq. (10) we have the steady-state values 〈c†j cj 〉 = (γmn̄th +
γ̃mNm)/(γm + γ̃m) and 〈c1c2〉 = γ̃mMm/(γm + γ̃m), where we
have assumed γm1 = γm2 ≡ γm and n̄1

th = n̄2
th ≡ n̄th for sim-

plicity. It is easy to find the entanglement parameter

ζ12 = 1

2
− g1(g2 − g1) − κγmn̄th

κγm + g2
2 − g2

1

. (14)

Clearly, the steady-state mechanical entanglement can be
achieved at nonzero temperature, provided that the mean
number of thermal phonons satisfies

n̄th <
g1g2

κγm

(
1 − g1

g2

)
. (15)

Given that the couplings gj are tunable through the pump
lasers, this condition demonstrates the robustness of steady-
state entanglement against thermal noise in the mechanical
systems.

We next turn to the numerical results from solving Eqs. (6),
which allows us to investigate the entanglement property in the
regime where the adiabatical elimination of the cavity modes
is invalid. In Fig. 2 the dependence of steady-state mechanical
entanglement on the cavity decay rate κ is plotted for
different values of g2/g1 and the mechanical damping γm = 0.
Consistently with our analytic results we observe that, for large
cavity decay κ � gj , the entanglement becomes saturated
and independent of κ . The increase in the entanglement
with decreasing coupling ratios g2/g1 is also evident in this
regime. Furthermore, for the opposite situation κ � gj , we
also observe the steady-state entanglement, although to a
smaller degree than in the adiabatic regime. The behavior of
the steady-state entanglement in the presence of mechanical

FIG. 2. (Color online) (a) Dependence of the steady-state
mechanical entanglement E12 on the cavity dissipation rate κ for
different coupling ratios g2/g1. Other parameters are the mechanical
decay rate γm = 0, the coupling strength g1/2π = 0.1 × 105 Hz, and
the unidirectional intercavity coupling efficiency η = 0.95. (b) The
mechanical entanglement as a function of the coupling efficiency η

for the relative strength g2/g1 = 1.2 and the other parameters are the
same as in (a).

FIG. 3. (Color online) Dependence of the mechanical entan-
glement on the coupling g1 for different values of mean thermal
phonon number n̄th, with the cavity decay rate κ/2π = 4 × 105 Hz,
mechanical damping rate γm/2π = 100 Hz, coupling g2 = 1.5g1, and
unidirectional coupling efficiency η = 0.95.

damping is demonstrated in Fig. 3. We see that in this case
the optimal entanglement does not occur in the adiabatical
regime. With increasing thermal phonon number n̄th, stronger
coupling strengths gj are needed to achieve the maximum
entanglement. However, the robustness of the generated
entanglement is obvious, as it can still be maintained for
a relatively high mean thermal phonon number n̄th = 100.
Reaching the quantum ground state of the vibrational modes
is therefore not a prerequisite of the present scheme, which
reduces experimental difficulties considerably.

C. Equivalent master equations

It is instructive to discuss the master equation for the
systems density operator ρ(t) which corresponds to the
Langevin equations, (6), to gain insight into the physical
mechanism behind the scheme. It reads

dρ(t)

dt
= −i[Heff,ρ] +

∑
j

Lκ [aj ]ρ + Lκ [bj ]ρ + Lγ [cj ]ρ

+ Lc[a1,a2]ρ + Lc[b1,b2]ρ, (16)

where the effective linearized optomechanical Hamiltonian,

Heff = (ga1a1 + gb1b
†
1)c1 + (ga2a

†
2 + gb2b2)c2 + H.c., (17)

and the damping terms,

Lκ [O]ρ = κO[O,ρO†] + H.c., (18a)

Lγ [cj ]ρ = γmj

(
n̄

j

th + 1
)
[cj ,ρc

†
j ] + γmj

n̄
j

th[c†j ,ρcj ] + H.c.,

(18b)

Lc[O1,O2]ρ = 2
√

ηOκO1κO2 [O1,ρO†
2] + H.c., (18c)

where O ∈ {a,b}. The dissipative terms Lκ [O]ρ and Lγ [cj ]ρ
describe the damping of the cavity in vacuum and the mechan-
ical modes in thermal environments, while the cross terms
Lc[O1,O2]ρ account for the unidirectional couplings between
the corresponding cavity modes. According to the master
equation, (16), the generation of the mechanical entanglement
can be understood as follows. Via the parametric amplification
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described in Eq. (17), the optomechanical entanglement
between the blue-driven cavity modes and the mechanical
modes can be built up. By the unidirectional couplings be-
tween the cavity modes and the beam-splitter-like interactions
involving the red-driven cavity modes and mechanical modes,
the optomechanical entanglement is distributed among the
two mechanical oscillators and mechanical entanglement is
therefore achieved. The two entanglement channels interfere
constructively with each other, which leads to stronger
mechanical entanglement compared to the single-channel case.
In addition, the present two-channel scheme can also avoid the
phonon heating from the parametric amplification, through
the beam-splitter-like interactions.

Eliminating the cavity modes, as we have done before,
leads to the effective master equation for the density matrix ρc

involving only the mechanical modes c1 and c2,

dρc(t)

dt
= L[c1,c2]ρc + ∑

j Lγ [cj ]ρc, (19)

where the dissipation term

L[c1,c2]ρc =
∑

j

γ̃m(Nm + 1)[cj ,ρcc
†
j ] + γ̃mNm[c†j ,ρccj ]

+ γ̃m

√
Nm(Nm + 1)([c1,ρcc2] + [c†1,ρcc

†
2])

+ H.c. (20)

The above master equation, (19), is equivalent to the Langevin
equation, (10), and the dissipative term L[c1,c2]ρc character-
izes the coupling of the two mechanical modes to a correlated
phononic reservoir in a two-mode squeezed vacuum [the
correlations are embodied in the second line in Eq. (20)]. This
reservoir with nonclassical correlations is achieved by engi-
neering the appropriate interactions between the mechanical
modes and the cavity modes with strong dissipation rates. For
the engineered dissipative process L[c1,c2], we have

L[c1,c2]
(|ψ〉ss12〈ψ |) = 0; (21)

i.e., for the negligible mechanical damping (γm = 0) the
mechanical modes dissipate toward a pure and stationary
two-mode mechanical squeezed vacuum, independent of the
effective damping γ̃m.

III. MULTIPARTITE MECHANICAL ENTANGLEMENT

In this section, we generalize the previous two-cavity model
to a system of N mechanical oscillators in coupled cavities,
as shown in Fig. 4, and proceed to discuss the generation

FIG. 4. (Color online) Schematic of N vibrating membranes
trapped in cascaded cavities.

of multipartite mechanical entanglement. Consistent with the
previous model, we also introduce the convention that the
cavity modes a2n−1 and b2n are driven by the blue sidebands
of the pump lasers, while a2n and b2n−1 are driven by the
red sidebands, as depicted in Fig. 4. Assuming identical
mechanical frequencies (ωm) for all oscillators and also
identical frequencies of cavity modes aN and bN , we thus
have the effective detuning

�a2n−1 = −�b2n−1 = −ωm, �a2n
= −�b2n

= ωm (22)

and the driving frequencies

νa2n
− νa2n−1 = −2ωm, νb2n

− νb2n−1 = 2ωm. (23)

With the same procedures and approximations as before, the
Langevin equations of motion for cavity modes zj (z = a,b)
and mechanical modes cj can be obtained and read:

żj = −κzzj − igzc
z
j − 2κz

j−1∑
s=1

(
√

ηz)
j−szs

+
√

2κz

j∑
s=2

√
η

j−s
z (1 − ηz)z̃

in
s (t)

+
√

2κz(
√

ηz)
j−1zin

1 (t), (24a)

ċj = −γmcj − igaa
x
j − igbb

x
j +

√
2γmcin

j (t), (24b)

where the symbols are

(
ga,gb,c

a
j ,c

b
j ,a

x
j ,bx

j

) =
{

(g1,g2,c
†
j ,cj ,a

†
j ,bj ) for j odd,

(g2,g1,cj ,c
†
j ,aj ,b

†
j ) for j even,

with the optomechanical couplings ga2n−1 = gb2n
= g1 and

gb2n−1 = ga2n
= g2. The local vacuum noise operators are

denoted z̃s(t); the optical and mechanical damping rates, κz

and γm, respectively; and the cavity coupling efficiencies,
ηz. Before we turn to the numerical solutions, let us first
consider the situation that κz � {gj ,γmn̄th}, which allows us
to adiabatically eliminate the cavity modes. For the perfect
intercavity couplings ηz = 1 and identical cavity loss rates
κz = κ , the equations of motion for the odd and even
mechanical oscillators are

ċ2n−1(t) = −(γm + γ̃m)c2n−1(t) − 2γ̃m

n−1∑
s=1

c2s−1(t)

+
√

2γmcin
2n−1(t) +

√
2γ̃mc̃in

1 (t), (25a)

ċ2n(t) = −(γm + γ̃m)c2n(t) − 2γ̃m

n−1∑
s=1

c2s(t)

+
√

2γmcin
2n(t) +

√
2γ̃mc̃in

2 (t). (25b)

From the above equations we see that the odd and even
mechanical oscillators are coupled to the noise operators c̃in

1 (t)
and c̃in

2 (t), respectively. Therefore, the entanglement may be
established between any odd and even mechanical oscillators,
with the nonclassical correlations between the noises c̃in

1 (t) and
c̃in

2 (t) given in Eq. (12). However, between the oscillators with
the same parity, quantum entanglement cannot be established.
This is because the source of entanglement in this scheme
results from the coupling of the red sideband output to the blue
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FIG. 5. (Color online) (a) The steady-state reduced bipartite
entanglement E12 between mechanical modes c1 and c2 and
(b) the reduced bipartite entanglement E23 between modes c2 and c3

for a three-mode mechanical system. (c) The tripartite entanglement
structure of the mechanical oscillators; solid lines represent reduced
bipartite entanglement. (d) Plot depicting the negative eigenvalues
of the partially transposed correlation matrix of the three-mode
mechanical system with respect to any one mechanical mode,
which demonstrates that genuine tripartite mechanical entanglement
can be achieved. The unit of κ is 105 Hz, the coupling strength
g1/2π = 0.01 × 105 Hz, the mechanical rate γm/2π = 10 Hz, the
mean thermal phonon number n̄th = 0, and the intercavity coupling
efficiency η = 1.0.

sideband input, and vice versa. For two even or odd oscillators,
the cavity modes coupled to these two oscillators have the
same detunings from the pump lasers, which leads them not
to entanglement but to mode coupling through an incoherent
exchange interaction with rate −2γ̃m. These results are verified
in the following via numerical solution of Eqs. (24).

For N = 3, we plot in Figs. 5(a) and 5(b) the bipartite
entanglement E12 between mechanical modes c1 and c2 and
the bipartite entanglement E23 of modes c2 and c3, respectively.
We see that the entanglement E12 > E23 for the same param-
eters. As predicted above, the bipartite entanglement between
mechanical modes c1 and c3 is absent. Nevertheless, as
demonstrated in Fig. 5(d), full inseparable (genuine) tripartite
entanglement can be established among the three remote
mechanical oscillators. Figure 5(d) depicts the negative eigen-
values λl−mn of the partially transposed three-mode correlation
matrix with respect to the lth mode. The appearance of a
negative eigenvalue confirms bipartite entanglement between
the transposed mode l and the subsystem of the remaining
modes m and n, and fully inseparable (genuine) multipartite
entanglement is demonstrated in the regime where the negative
eigenvalues simultaneously exist for l = 1,2,3 [41]. Also,
Fig. 5(d) shows that bipartite entanglement between mode
c2 and the remaining two modes, c1 and c3, is largest, since
it is the only mode which is simultaneously entangled with
the other two subsystems, c1 and c3. Finally, the entanglement
between mode c3 and the subsystem including c1 and c2 is
smallest, since the bipartite entanglement satisfies E23 < E12

and E13 = 0. Therefore we see that the negativities will satisfy
λ3−12 > λ1−23 > λ2−13.

Extending the above three-mode mechanical system to the
four-mode case, i.e., N = 4, it is not difficult to see from

FIG. 6. (Color online) (a) Steady-state bipartite entanglement
between mechanical modes c3 and c4 for a four-mode mechanical
system. (b) Quadripartite square graph-state entanglement among the
four remote mechanical oscillators. (c) Dependence of the reduced
bipartite entanglement on the intercavity coupling efficiency η. Other
parameters used are the same as in Fig. 4.

Eq. (24) that the reduced bipartite entanglements E12 and
E23 are not affected due to the unidirectional cavity coupling.
Therefore, the entanglements E12 and E23 are the the same
as in the N = 3 case plotted in Fig. 5. Furthermore, it can be
inferred from Eq. (25) that the bipartite entanglements will
satisfy E14 = E23 in the bad-cavity limit. In Fig. 6(a), we plot
the bipartite entanglement E34 between mechanical modes
c3 and c4, and it is obvious that it exhibits behavior similar
to that of entanglement E12 between modes c1 and c2 (see
Fig. 5). We therefore see that quadripartite square graph-state
entanglement among four remote mechanical oscillators can
be achieved via cascaded cavity couplings. This kind of
multipartite entanglement is useful in the field of long-distance
quantum communication. The effects of imperfect cavity
couplings are illustrated in Fig. 6(c). We see that for a
coupling efficiency as low as η = 0.5, genuine quadripartite
entanglement of four distant mechanical oscillators can still
be achieved.

IV. CONCLUSION

In conclusion, we propose a scheme to generate steady-state
entanglement of remote mechanical oscillators in unidirec-
tionally coupled cavities in a cascaded way. We note here
that while the present model assumes the membranes to be
mechanical oscillators, the role of mechanical elements can
also be played by momentum modes of clouds of ultracold
atoms. By choosing the detuning of the pump lasers, in each
cavity the mechanical oscillator is coupled to the two cavity
modes via parametric and beam-splitter-like interactions. The
output quantum fluctuating field of the first cavity subsequently
drives the second cavity with reversed detunings. For the
case of two mechanical oscillators in cascaded cavities, strong
cavity dissipation can pull the two mechanical oscillators into
a stationary two-mode squeezed vacuum state for negligible
mechanical damping. Two-mode mechanical entanglement
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depends on the relative strength of the pump lasers and is robust
to thermal fluctuations. For multiple mechanical oscillators
in multiple cascaded cavities, it is found that steady-state
bipartite entanglement can be established between the odd
and the even oscillators, whereas odd and even oscillators
do not become entangled. We show that, using this scheme,
genuine multipartite entanglement can be achieved among
remote mechanical oscillators by cascaded cavity coupling.
This kind of remote multipartite macroscopic entanglement is
a useful resource in the construction of long-distance quantum
communication networks.
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