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We study the interplay between forgetful and memory-keeping evolution enforced on a two-level system by a
multi-spin environment whose elements are coupled to local bosonic baths. Contrarily to the expectation that any
non-Markovian effect would be buried by the forgetful mechanism induced by the spin-bath coupling, one can
actually induce a full Markovian–to–non-Markovian transition of the two-level system’s dynamics, controllable
by parameters such as the mismatch between the energy of the two-level system and of the spin environment.
For a symmetric coupling, the amount of non-Markovianity surprisingly grows with the number of decoherence
channels.
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I. INTRODUCTION

The understanding of the implications of non-Markovianity
and the reasons for its occurrence are still largely elusive. Yet,
they are stimulating a growing interest in light of their potential
impact on many disciplines, from quantum information and
nanotechnology up to quantum biology [1,2]. An important
contribution to this quest came from the formulation of
quantitative measures of the degree of non-Markovianity of
a process [3–6]. In general, these tools address different
features of non-Markovianity, from the lack of divisibility of a
map [4] to the ability of the environment to reciprocate the
information transfer from the system. This process occurs
unidirectionally in a Markovian dynamics [5], while the
refocusing of information on the system is the signature of
memory effects, as verified in all-optical set-ups [7]. The
handiness of such instruments has recently triggered the
analysis of non-Markovianity in quantum many-body systems
such as quantum spin chains [8] or impurity-embedded ultra-
cold atomic systems [9] and in excitation-transfer processes
in photosynthetic complexes [2]. While these studies relate
non-Markovian features to the critical behavior of a quantum
many-body system [8,10], they also provide a promising arena
where the roots for non-Markovianity can be researched in
physically motivated contexts.

In this paper we explore the competition between two
profoundly different mechanisms in a simple open quantum
model that is relevant for the physics of nitrogen-vacancy
centers in diamonds [11] and molecular nanomagnets [12].
Specifically, we address the interplay between the dynamics
induced on a two-level system by its coherent interaction
with other (environmental) spins, and the Markovian process
describing the relaxation of the latter. One would expect that,
when such memoryless dissipative coupling determines the
shortest dynamical timescale of the system, Markovianity
should emerge preponderantly, especially as the number of
environmental spins increases. Indeed, one could imagine that
a sort of “Markovianity-mixing” property would hold as a
result of the increasing difficulty to rebuild the coherence of
the system when many decoherence channels are open. Quite
strikingly, we show that this is not generally true. In order

to do this using a physically relevant model, general enough
to encompass the unexpected features that we would like to
highlight, we consider a spin-star configuration whose periph-
eral sites are coupled to rigid boson environments, assumed
to induce a memoryless dissipative dynamics. While certainly
not exhausting the possible scenarios that can be tackled, our
choice is illustrative since the degree of non-Markovianity (as
defined in Ref. [5]) can actually increase with the number of
peripheral spins, while stronger interactions with the boson
baths only affect its rate of growth. The features of the
system at hand are quite complex and a rich non-Markovianity
phase diagram emerges, spanning degrees of memory-keeping
effects all the way down to zero values. This can be exploited
to qualitatively modify the character of the dynamics by
engineering its features via accessible control parameters such
as the detuning between the central and the outer spins. In
turn, this opens up the possibility to implement qubit-state
preparation protocols in an open-system scenario that exploits
non-Markovinity, along the lines of Ref. [13] and beyond the
well-established Markovian dissipative framework [14,15].

In the following, we first present the model and its solution
in the simplest terms in Sec. II, while the microscopic descrip-
tion and more sophisticated solution method are presented
in the Appendices. We then proceed to the analysis of the
non-Markovianity of the dynamics in Secs. III and IV. Some
concluding remarks are given in Sec. V.

II. THE MODEL AND ITS SOLUTION

The physical set-up that we describe is sketched in Fig. 1(a),
which shows a central spin (labelled 0) coupled to N

outer spins, with bonds along the branch of a star. Each
environmental spin is further coupled to a local boson reservoir.
The evolution of the central spin is ruled by the master equation

∂tρ0(t) = TrS

⎧⎨
⎩−i[Ĥ ,ρ(t)] +

N∑
j=1

L̂j [ρ(t)]

⎫⎬
⎭ (1)

with ρ(t) the density matrix of the whole system. Each
Lindblad superoperator L̂j describes local dissipation at
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FIG. 1. (Color online) (a) Scheme of the system: The central spin
0 interacts with N peripheral spins, each affected by its own local
environment. (b) Evolution of states |+〉x (red trajectory) and |−〉x

(blue one) for a star with N = 4 peripheral sites. The Bloch spheres in
the left (right) column correspond to the isotropic (anisotropic) spin-
spin coupling. The top (bottom) row is for the resonant (off-resonant
at � = 1/2) case with γ /J = 1 and T = 0. In the isotropic cases,
the final state of spin 0 is pure, while for λ = ±1 it is mixed. � �= 0
prevents the intersections of the trajectories, which are the dynamical
points at which the trace distance is strictly null.

temperature T (the same for all the baths) as [16]

L̂j (ρ) = γ (n̄ + 1)(σ̂−
j ρσ̂+

j − {σ̂+
j σ̂−

j ,ρ}/2)

+ γ n̄(σ̂+
j ρσ̂−

j − {σ̂−
j σ̂+

j ,ρ}/2), (2)

where γ describes the effective coupling of each external
spin to its thermal reservoir, populated by n̄ = (eβωj −1)−1

excitations (β = 1/kbT , where kb is the Boltzmann constant).
In what follows, we will consider the peripheral spins to be
initially prepared in ⊗N

j=1 |−〉j .
To solve the master equation, we use the damping basis [17]

made out of tensor products of eigenoperators of L̂j . In this
basis, the density matrix of the system reads

ρ(t) =
4∑

n=1

4N∑
m=1

cnm(t)μ̂n
0 ⊗ Ôm, (3)

where μ̂1
j = (1̂ − 1

2n+1 σ̂ z
j )/2, μ̂2

j = σ̂ z
j /2, μ̂3

j = σ̂+
j and μ̂4

j =
σ̂−

j are right eigenoperators of L̂j with eigenvalues λ1
j =

0,λ2
j = 2,λ

3,4
j = −(2n̄ + 1). The set of operators {Ôm} is

composed of the tensor product of N damping-basis elements,
one for each peripheral spin. Due to the symmetry of the
Hamiltonian, if Ôr and Ôs consist of the same elements of
the damping bases (although differing for their order), the
respective coefficients must satisfy cnr = cns . This simple
observation allows us to reduce the number of relevant
operators from 4N to Ñ ≈ N3. With the help of the single-
spin dual damping basis {μ̌n

j }(n = 1, . . . ,4), made of left

eigenoperators of L̂j ’s, and using the orthogonality condition
Tr[μ̂k

j ,μ̌
k′
l ] = δkk′δjl , we find

ċrs(t) =
4∑

n=1

Ñ∑
m=1

cnm(t)Mnmrs (4)

with Mnmrs= − iTr{(μ̌r
0⊗Ǒs)[Ĥ ,σ̂ n

0 ⊗Ôm]}+�mδrnδms and
�m = ∑N

j=1 λm
j . By calling K(t) = eMt , the state of the spin

star at time t is

ρ(t)=
∑

r,s,n,m

Knmrs(t)crs(0)σ̂ 0
r ⊗ Ôs . (5)

Tracing over the degrees of freedom of the peripheral spins,
we find

ρ0(t) =
∑

r

(∑
nm

Knmr1(t)

)
cr1(0)σ̂ 0

r

=
(

n̄
1+2n̄

+ c21(t)
2 c31(t)

c31(t) (1+n̄)
1+2n̄

− c21(t)
2

)
. (6)

This gives the exact solution for the dynamics of the central
spin, valid for any N once the expressions for crs(t) are taken.
With this at hand, in the next section we evaluate the amount
non-Markovianity of the time evolution.

III. NON-MARKOVIANITY

To quantify the degree of non-Markovianity of the dynami-
cal evolution of the central spin described in Eq. (6), we employ
the measure put forward in Ref. [5], which is based on the idea
that memory effects can be characterized by the information
flowing out of the open system 0 and quantified in terms of
the trace distance D[ρ0,1(t),ρ0,2(t)] = Tr|ρ0,1(t) − ρ0,2(t)|/2
between any two of its states ρ0,j (t)(j = 1,2). The trace
distance quantifies the distinguishability of two states and leads
to measure non-Markovianity as

N = max
ρ0,j (0)

∫
�+

∂tD[ρ0,1(t),ρ0,2(t)], (7)

where �+ is the union of the intervals where ∂tD > 0. To
provide a general assessment of the dynamics of spin 0, we
consider the coupling with the external spins to be described
by the anisotropic XY model

ĤS = J

N∑
j=1

[
(1 + λ)σ̂ x

0 σ̂ x
j + (1 − λ)σ̂ y

0 σ̂
y

j

]
, (8)

where λ is an anisotropy parameter and J is the spin-spin
coupling strength. For isotropic coupling (λ = 0) and zero
temperature, we obtain a simple scaling law [18]: for any
N > 1 ρ0(t) is obtained from the expression valid for N = 1
with the redefinition J → J

√
N . This enables the analytic

optimization over the input states enteringN . By calling ρkl
0,i =

〈k|ρ0,i |l〉, we have

D[ρ0,1(t),ρ0,2(t)] =
√

δρ00(t)|g0(t)|2 + δρ01(t)|g0(t)|, (9)

where δρkl(t) = ρkl
0,1(t) − ρkl

0,2(t) and we have
introduced gn(t) = exp[− 1

2 (G + i�)t][(G + i�) sinh(zt) +
z cosh(zt)]/2z, z =

√
(G + i�)2 − J 2N/2,G = γ (n̄ + 1/2)

and the energy mismatch � = ε − ε0 between the
central and outer spins. The maximum in Eq. (7)
is achieved for the pure states ρ0,i = |ψi〉0〈ψi | with
|ψi〉0 = cos(θi/2) |−〉0 + eiφi sin(θi/2) |+〉0. Here, (θi,φi)
are the angles that identify the respective Bloch vector. N
is optimized by equatorial antipodal states (i.e. states with
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θ1,2 = π/2 and φ2 = π − φ1). In Appendix B, we provide an
alternative analytic approach to the evolution of spin 0 and
the dependence of the trace distance on such angles.

The trajectories described on the Bloch sphere by the
evolved states are shown in Fig. 1(b) (top row, left-most
sphere) where we see that the states tend to intersect, giving
D = 0. For � �= 0, the states that optimize the measure of
non-Markovianity are those with (θ1,θ2) = (π,0) (the phases
being immaterial) as shown in Fig. 2(b). Interestingly, non-zero
values of � hinder the intersections of the state trajectories
[cf. Fig. 1(b)]. However, this does not prevent the dynamics to
become Markovian at proper working points, as we show later
on.

The evolution of spin 0 can be characterized using N .
When the peripheral spins are detached from their respective
baths, any information seeded in the central site undergoes
coherent oscillations from the center to the periphery of the
star and back. For λ = 1 and peripheral spins prepared in
1/N , the dynamics induced by R̂ĤSR̂ with R̂ = σ̂

y

0 ⊗N
j=1 σ̂

y

j

is (strongly) non-Markovian at all times [5]. In our case,
the interaction of the outer spins with their environments
radically modifies this picture. As an example, in Fig. 2(a)
we plot the trace distance for the optimal states at � = 0.
We ramp up the spin-bath interaction strength γ , at set values
of the intra-star coupling J , looking for the influences that
an explicitly Markovian mechanism has on the degree of
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FIG. 2. (Color online) (a) Trace distance between the optimal
states ρ0,j (t)(j = 1,2) for N = 6 peripheral spins with λ = 0 and
γ /J = 0.5 (dot-dashed line), γ /J = 1 (dashed line), and γ /J = 1.5
(solid line). As the relaxation time becomes shorter, the revivals
of D(ρ0,1(t),ρ0,2(t)) are suppressed as a result of a reduction of
information back-flow from the baths. (b) N against � for γ /J =√

N . The two lines correspond to θ1,2 = π/2 ,(φ1,φ2) = (0,π ) (solid
blue curve) and (θ1,θ2) = (0,π ) (dashed red curve), which are the
optimal states in different detuning regions: N is the topmost curve
in each region. There is a finite window of detunings (light-shadowed
region marked as M) where N = 0 (NM marks regions where
N �= 0). Inset: N against � for γ /J = 0.5,0.75,1,1.25, and 1.5
(from top to bottom curve).

non-Markovianity that arises from the dynamical environment
to which particle 0 is exposed. We find a non-monotonic
behavior of the trace distance that results in non-Markovianity.
The quantitative features of D depend on the actual strength
of the Markovian process: as γ increases, the revivals of the
trace distance become less pronounced. As N depends on the
number of temporal regions where ∂tD > 0, Fig. 2(a) tells
us that N decreases as γ increases, thus showing that, at
resonance, a strong influence from the rigid environmental
baths over the peripheral spins is sufficient to make the whole
process Markovian.

This is expected as the excitations distributed to the
peripheral spins by spin 0 find the sink embodied by the
baths. The reduced ability to feed back information sets
N = 0. However, the general picture is more involved: it is
sufficient to move to the off-resonant case to face a rather rich
phase diagram of non-Markovianity. Figure 2(b) considers
the case of coupling mechanisms such that γ /J = √

N and
explores the effect that an energy mismatch between spin 0
and the peripheral sites has on N . We find two ranges of
values of � for which N = 0, symmetrically with respect to
� = 0. In between and beyond such regions, N behaves quite
distinctively: at resonance, the measure of non-Markovianity
achieves a global maximum (equatorial states realize the
maximum upon which N depends). For larger detunings, N
changes slowly with � (|±〉 being the optimal states). Clearly,
the trend followed by N also depends on γ /J : small values
of γ /J push the dynamics towards strong non-Markovianity,
regardless of �, as many coherent oscillations occur between
site 0 and the periphery before the initial excitation is lost into
the environments. At the same time, the range of detunings for
whichN = 0 increases with γ [cf. inset of Fig. 2(b)]. However
non-Markovianity persists, both on and off resonance, even
when γ becomes the largest parameter. This demonstrates an
effective control of the degree of non-Markovianity of the
dynamics undergone by spin 0, which can be tuned by both
the energy mismatch between the outer spins and the central
one, �, and the intra-star coupling strength, J .

Our discussions so far were restricted to the isotropic
coupling at zero temperature, T = λ = 0. When the peripheral
spins interact with baths populated by n thermal excitations,
the Markovianity regions disappear. This is seen in Fig. 3(a)
where we show a typical case of the behavior of N against �

and N . The anisotropy of the intra-star coupling is crucial for
the determination of the dynamics: for λ �= 0 the pair of states
that maximize N changes with the number of peripheral spins.
A numerical search for the optimal states can be performed,
leading to quite surprising results concerning the scaling of
N with the size of the spin environment. Intuitively, one
would conclude that, as N grows, the dynamics of spin 0
will be pushed towards Markovianity. This is not the case: as
shown in Fig. 3(a), N increases with N if λ = 0, regardless of
�. This shows that the non-Markovian character resists such
Markovianity-enforcing mechanisms and, counterintuitively,
overcomes them. We have checked this behavior for the exact
analytical expression obtained at � = λ = 0 [cf. Fig. 3(b)].
The picture somehow changes for λ �= 0: N decreases with
the growing dimension of the star. However, even for N 
 1
the non-Markovian character is preserved and N achieves a
non-null quasi-asymptotic value.
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FIG. 3. (Color online) (a) N against N and � for γ /J = 0.1 and
n = 3. Differently from T = 0, except for a small range of values,
the detuning has no effect on the character of the dynamics of spin 0.
Strikingly,N grows with N (almost linearly for N 
 1). (b) Analytic
behavior of N versus N for λ = 0, � = 0, γ = J at T = 0 (n = 0).
Inset: we present the case corresponding to λ = −1 [other parameters
as in (b)].

IV. TIME DEVELOPMENT OF NON-MARKOVIANITY

The non-Markovianity measure gives an integral character-
ization of the dynamics. More details on the time dependence
of the system-environment information-exchange process is
obtained by considering the ratio of in-flowing to out-flowing
information, up to a given value τ of the evolution time. To
this end, we defineR(τ ) = N+(τ )

N−(τ ) , where the in-flow [out-flow]
N+(τ ) [N−(τ )] is defined as (minus) the integral of ∂tD,
over the time intervals in which it is positive (negative),
but only up to τ . To evaluate these quantities explicitly,
we chose as input states the same ρ0,i that optimize the
non-Markovianity measure N ≡ limτ→∞ N+(τ ). The ratio
R(τ ) gives the fraction of the lost information that returns
to the system within τ , and its behavior is quite different in
the various dynamical regimes that we have identified so far.
In Fig. 4, R(τ ) is shown for three values of � corresponding
to the three regions of Fig. 2(b). The diverse evolutions of
R(τ ) signal qualitatively different dynamical behaviors of the
system, depending on both the detuning and the anisotropy
parameter. At short times, R(τ ) is always zero (information
has to flow out of the system before it can come back), while its
first peak is determined by the first revival of the trace distance
[see Fig. 2(a)]. Then, its features become strongly dependent
on �. At long times and at resonance, where a maximum of
N is found for λ = 0, information oscillates between the star
and spin 0 and R(τ ) �= 0 [cf. Fig. 4(a)]. The overall dynamics
is non-Markovian also for the case of Fig. 4(c), where the
time behavior of R(τ ) is shown for a large detuning. In
this case, however, R(τ ) decays to zero at long times. Thus,
the regions of non-Markovianity in Fig. 2(b) correspond to
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FIG. 4. (Color online) Ratio R(t) = N+(t)/N−(t) versus λ for a
star of N = 8 sites at T = 0, with γ /J = √

8 (left plots) and γ /J =
1 (right plots) for three different values of the detuning: �/J = 0
for (a) and (d), �/J = 0.7 for (b) and (e), while �/J = 3 for (c)
and (f).

different behaviors: near resonance, a fraction of information
comes back to the system, different input states remain
distinguishable even at long times and thus no equilibrium
state is found. For large detunings, non-Markovianity is built
up at short times, while different input states converge towards
a long-time equilibrium. On the other hand, for intermediate
values of the detuning [i.e., for � in the Markovianity region
of Fig. 2(b)] and λ = 0, there is no back-flow. Even for λ �= 0,
the fraction of information that comes back is quite small. The
picture changes when J increases, the evolution becoming
increasingly non-Markovian and the role of the anisotropy
being fully reversed: λ = 0 implies a larger R(τ ), persisting
for longer times at resonance.

V. CONCLUDING REMARKS

We have used a measure of non-Markovianity to show
the possibility to control the dynamics of an open quantum
system coupled to many independent decohering channels.
We have highlighted the key role played by the detuning and
the degree of anisotropy of the system-environment coupling:
both can be used to explore a rich non-Markovianity phase
diagram, where qualitatively different scaling laws with the
number of decoherence channels are found. The ability to
switch from a Markovian to a non-Markovian regime by
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means of a local parameter could be used to prepare a
quantum system in a desired state: indeed the Markovian
character of processes can be employed for state engineering
and information manipulation [14,15]. On other hand, while
the formation of a steady entangled state is supported by
non-Markovianity, a purely Markovian dynamics produces
separable steady states [13].
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APPENDIX A

The total Hamiltonian of the spin-star system Ĥ = Ĥ0 +
ĤS + ĤB consists of a few contributions. The first one is the
system’s free energy (we take units such that h̄ = 1 throughout
the paper) Ĥ0 = ∑N

j=0 εj σ̂
z
j + ∑N

j=1

∑
k ωkb̂

†
k,j b̂k,j , describ-

ing the free evolution of N + 1 spin-1/2 particles [here,
σ̂ s

j is the s-Pauli matrix of spin j (s = x,y,z)], each with
transition frequency εj between spin states |−〉j and |+〉j .
The second term in Ĥ0 describes the energy of N sets of Mj

harmonic modes (one set per peripheral spin of the star) with
creation (annihilation) operators b̂

†
k,j (b̂k,j ) which satisfy the

commutation relations [b̂k,j ,b̂
†
k′,l] = δkk′δjl . The central and

peripheral spins are coupled by ĤS , whose explicit form will
be specified later on. Each peripheral spin interacts with its
own bath as ĤB = ∑N

j=1 ĤB,j , where

ĤB,j =
∑

k

(gk,j σ̂
+
j b̂k,j + g∗

k,j σ̂
−
j b̂

†
k,j ) (A1)

with σ̂±
j = (σ̂ x

j ± iσ̂
y

j )/2. We assume that the their local bath
induce a Markovian dynamics of the peripheral spins and take
uniform couplings, so that the evolution of the central spin is
ruled by

∂tρ0(t) = TrS

⎧⎨
⎩−i[Ĥ ,ρ(t)] +

N∑
j=1

L̂j [ρ(t)]

⎫⎬
⎭ . (A2)

APPENDIX B

Here we provide an alternative solution to the dynamics of
the system. In the interaction picture with respect to Ĥ0 the
Schrödinger equation reads

∂t |�(t)〉 = −iĤI (t)|�(t)〉, (B1)

where the interaction Hamiltonian is given by

HI (t) = J

N∑
j=1

[σ+
0 (t)σ−

j (t) + σ−
0 (t)σ+

j (t)]

+
N∑

j=1

∑
k

[gkσ
j
+(t)bk(t) + g∗

k σ
j
−(t)b†k(t)] (B2)

with

σ±
j (t) = σ±

j e±iεj t (j = 0, . . . ,N )

bk(t) = gkbke
−iωkt (B3)

b
†
k(t) = gkb

†
ke

+iωkt

The operator N = ∑
j [σ z

j + (
∑

k b
†
kbk)j ] counts the number

of excitations in the system and commutes with the total
Hamiltonian H , so that any initial state of the form

|�(0)〉 = (c0|−〉0 + c1(0)|+〉0)|0〉S |0〉B

+
N∑

j=1

cj (0)|−〉0|j〉S |0〉B

+
N∑

j=1

∑
k

ckj (0)|−〉0|0〉S |k〉Bj

evolves after time t into the state

|�(t)〉 = (c0|−〉0+c1(0)|+〉0)|0〉S |0〉B+
N∑

j=1

cj (t)|−〉0|j〉S |0〉B

+
N∑

j=1

∑
k

ckj (t)|−〉0|0〉S |k〉Bj , (B4)

where the state |0〉S denotes the product state ⊗N
j=1|−〉j and

|j〉S = σ+
j |0〉S for the sites on the star; |0〉B is the vacuum

state of all the reservoirs, and |k〉Bj = b
†
k|0〉j the state with one

particle in mode k in the j th reservoir. The amplitude c0 is
constant in time because of HI (t)|−〉0|0〉S |0〉B = 0.

Substituting Eq. (B4) into the Schrödinger equation (B1)
one finds

d

dt
c1(t) = −iJ

N∑
j=1

cj (t)ei(ε0−εj )t ,

d

dt
cj (t) = −iJ c1(t)e−i(ε0−εj )t − i

∑
k

ckj (t)gkj e
i(εj −ωkj )t ,

d

dt
ckj (t) = −ig∗

kj cj (t)e−i(εi−ωkj )t . (B5)

We assume in the following that cj (0) = ckj (0) = 0. This
means that the two level systems on the star are in the |−〉
state and that each environment is in the vacuum state initially.

The total initial state is given by the product state

|�(0)〉 = (c0|−〉0 + c1(0)|+〉0)|0〉B |0〉S. (B6)

Formally integrating Eq. (B5) and substituting into Eq. (B5)
one obtains the system for the amplitude c1(t),cj (t),

d

dt
c1(t) = −iJ

N∑
j=1

cj (t)ei(ε0−εj )t

d

dt
cj (t) = −iJ c1(t)e−i(ε0−εj )t

−
∫ t

0
cj (t1)

∑
k

|gkj |2ei(εj −ωkj )(t−t1)dt1. (B7)
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We can define the kernels fj (t − t1) describing the two-
point correlation function of each reservoir, which are the
Fourier transform of the respective environmental spectral
density

fj (t − t1) =
∑

k

|gkj |2ei(εj −ωkj )(t−t1). (B8)

For the moment, we do not make any restrictive hypothesis
on the form of fj , so that our results will be valid for an
environment with a generic spectral density. In order to solve
the system above it is convenient to pass in the Laplace domain:

sc̃1[s] = c1(0) − iJ

N∑
j=1

c̃j [s + i(ε0 − εj )]

(B9)
sc̃j [s] = −iJ c̃1[s − i(ε0 − εj )] − c̃j [s]f̃j [s].

Solving the second of Eq. (B9) respect to c̃j [s],assuming
that all the reservoirs are the same (fj (t) = f (t)∀j ), and
substituting in the first we get

c̃1[s] = c1(0)
s − i� − f [s − i(ε0 − ε)]

s2 − is(ε0 − ε) − isf [s − i(ε0 − ε)] + J 2N
,

where � = (ε0 − ε) (εj = ε ∀ j ).
To specify the model, but still retaining a general enough

description, we consider a Lorentzian spectral density for each
bath (which gives rise to an exponentially decaying correlation
function):

J (ω) = 1

2π

γλ2

(εj − δ − ω)2 + λ2
. (B10)

Here δ = εj − ωc is the detuning of the center frequency of
the bath ωc and the frequency of the two-level system εj , the
parameter λ defines the spectral width of the environment,
which is associated with the reservoir correlation time by
the relation τB = λ−1 and the parameter γ is related to the
relaxation time scale τR by the relation τR = γ −1.

We will consider δ = 0, and in this case we may distinguish
between the Markovian and the non-Markovian regimes (for
the dynamics of the environmental spins themselves) using the
ratio of γ and λ: γ < λ

2 gives a Markovian regime and γ > λ
2

corresponds to non-Markovian regime.

Substituting in Eq. (B10) and anti-transforming we have
c1(t) = c1(0)G(t) with

G(t) = c1(0)

∑3
i=1(−1)i−1etαi (αj − αk)

[
δ2
i + (δi + γ /2)λ

]
(α1 − α2)(α2 − α3)(α1 − α3)

,

(B11)

where δi = αi−i�, j, k = 1,2,3 and for j < k. Here, αi’s are
the roots of the equation

p(s) = s3 + (2i� + λ)s2 + (J 2N + �2 + i�λ + λγ/2)s

+ J 2N (i� + λ). (B12)

Already at this point, it is evident how the only effects of
increasing N is to redefine the coupling constant J .

The solution of the Schrödinger equation of the total system
with initial states of the form (B6) lies in the sector of the
Hilbert space corresponding to zero or one excitations.

We can construct the exact dynamical map describing the
time-evolution of the reduced density matrix of the central spin
which is given by

ρ(t) = TrS+B{|�(t)〉〈�(t)|} =
(

ρ11(t) ρ10(t)
ρ01(t) ρ00(t)

)
, (B13)

where ρij (t) = 〈i|ρ(t)|j 〉 for i,j = 0,1. Using Eqs. (B4) and
(B11) we find

ρ11(t) = 1 − ρ00(t) = |c1(0)G(t)|2, (B14)

ρ10(t) = ρ∗
01(t) = c∗

0c1(0)G(t). (B15)

The optimization of the initial states in Eq. (7) obtains the
maximally possible non-Markovianity of a particular quantum
evolution.

In our case, the maximization is achieved by pure states,
thus we choose as initial states for Eq. (B6)

|�1(0)〉 = (cos(θ1)|−〉 + eiφ1 sin(θ1)|+〉)|0〉B |0〉S, (B16)

|�2(0)〉 = (cos(θ2)|−〉 + eiφ2 sin(θ2)|+〉)|0〉B |0〉S. (B17)

With these states, the trace distance takes the form
1
2 |G(t)|

√
|G(t)|2[cos(θ1) − cos(θ2)]2 + [sin(θ1) + sin(θ2)]2,

(B18)

where we used the fact that, since H is invariant under rotations
along the z axis, the maximum is obtained for φ1 − φ2 = π .
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