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Spatial entanglement in two-electron atomic systems
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Recently, there has been considerable interest in investigating quantum entanglement in two-electron systems,
such as two-electron model atoms and quantum dots. In this work, the quantum entanglement of the helium atom
and helium-like ions are explored using the two-electron wave functions constructed by the B-spline basis. As
a measure of the spatial entanglement, the linear entropy of the reduced density matrix is investigated for the
ground state and the singlet excited 1sns1S states, with n = 2–10, of the helium atom. The variation of the spatial
entanglement with the nuclear charges Z = 2–15 for the helium-like ions is reported. Results are compared with
the existing predictions.
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I. INTRODUCTION

As one of the most essential characteristics of the quantum
world, quantum entanglement, depicting the inseparable links
of composite quantum systems, plays a crucial role for under-
standing a variety of physical phenomena, such as quantum
correlations, phase transitions [1], and chaotic properties [2].
Besides the interest of conceptual development in quantum
physics, the entanglement also provides possible technological
applications in quantum information, quantum computing [3],
quantum cryptography [4], and quantum teleportation [5].

Recently, a great deal of effort has been made to investigate
the role of entanglement in atomic systems, including two-
electron model atoms, helium-like ions, and helium atoms.
The review article by Tichy et al. [6] has given a detailed
discussion on essential entanglement for atomic and molecular
systems. For the model atoms, the Moshinsky atom [7], which
is characterized by the harmonic confining potential and
the harmonic electron-electron interaction, has been widely
investigated in previous studies [8–12]. The Crandall and the
Hooke atoms are two alternative model atoms which have
attracted much attention recently [13–15]. Both model atoms
have the harmonic confining potential, but the Crandall atom
has an inverse cubic electron-electron repulsion force, while
the Hooke atom has the Coulomb electron-electron interaction.
Being an artificial atom, the quantum dot has been analyzed for
the spatial entanglement between two trapped electrons [16].

Based on the previous work for the two-electron model
atoms, the trends of entanglement measures varying with the
state energies and the nuclear charges have been observed
and reported [17]. However, the research efforts made on real
two-electron atoms, i.e., the helium atom [18] and helium-like
ions [13,14], are relatively sparse. It is interesting to uncover
the resemblance and different properties of the entanglement
for the real two-electron atoms. The present work proposes
an alternative computing approach to explore the spatial
entanglement of the helium atom and helium-like ions. In
Sec. II, the linear entropy as a spatial entanglement measure
is introduced, and the method of the B-spline configuration
interaction is briefly described. In Sec. III, the results for
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the helium atom and helium-like ions for the ground and
excited states are presented and discussed. Comparisons are
made to existing results. Section IV summarizes this work and
gives conclusions. Atomic units are used throughout unless
otherwise noted.

II. THEORETICAL METHOD

The entanglement of atomic systems is quantified using
different entanglement entropies, such as von Neumann and
linear entropies. In this work, we focus on the linear entropy,
which is an approximation of von Neumann entropy:

S(ρ) = −Tr(ρ ln ρ), (1)

where ρ is the density matrix. The natural logarithm can be
expanded as

ln ρ = (ρ − 1) − (ρ − 1)2

2
+ (ρ − 1)3

3
+ · · · . (2)

We can rewrite the von Neumann entropy as

−Tr(ρ ln ρ)

= −Tr

[
ρ(ρ − 1) − ρ(ρ − 1)2

2
+ ρ(ρ − 1)3

3
+ · · ·

]
. (3)

The leading term gives linear entropy. In the present work,
it is defined as Ls = 1 − Tr ρ2

red, where ρred is the reduced
density matrix. For two-component quantum systems, e.g.,
two-electron atoms, the reduced density matrix ρred is obtained
by tracing the two-particle density matrix over one of the two
particles.

The state wave functions of two-electron systems can be
described by

� = �χ, (4)

where the spatial and spin components � and χ , respectively,
are factorized. In this work, we concentrate on the singlet-spin
states with antiparallel spins, which lead to a constant value
of 1/2 for tracing the spin part of the reduced density matrix.
Therefore, the entanglement of two-electron atoms is well
characterized by the spatial degree of freedom of the reduced
density matrix,

ρred(r1,r2) =
∫

�∗(r1,r3)�(r2,r3)dr3. (5)
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As given by Coe et al. [15], the square of the reduced density
matrix is

ρ2
red(r1,r2) =

∫
ρred(r1,r3)ρred(r3,r2)dr3, (6)

and

Trρ2
red =

∫
ρ2

red(r,r)dr. (7)

For two-electron atoms, the basis function ψ�
nl,n′l′(r1,r2),

with � standing for a set of quantum number (S,L,MS ,ML),
can be constructed through the expansion of two-particle
Slater-determinant wave functions [19], i.e.,

ψ�
nl,n′l′ (r1,r2) =

∑
mm′,msm′

s

(−1)l
′−l[(2S + 1)(2L + 1)]1/2

×
(

l l′ L

m m′ −ML

) (
1
2

1
2 S

ms m′
s −MS

)

×φ
mmsm

′m′
s

nl,n′l′ (r1,r2). (8)

where the Slater-determinant wave function φ
mmsm

′m′
s

nl,n′l′ (r1,r2) is
given by the one-particle orbital u

mms

nl including spin, i.e.,

φ
mmsm

′m′
s

nl,n′l′ (r1,r2)

= 1√
2

[
u

mms

nl (r1)u
m′m′

s

n′l′ (r2) − u
mms

nl (r2)u
m′m′

s

n′l′ (r1)
]
. (9)

It is worth mentioning that a factor of 1/
√

2 should be added
to Eq. (8) for the normalization as nl = n′l′.

The radial function χnl(r) of the one-particle orbital is
expanded in terms of the B-spline basis functions Bi,k(r), i.e.,

χnl(r) =
N∑

i=1

CiBi,k(r). (10)

Along the r axis with end points r = 0 and r = R, we select a
knot sequence {ti} (i = 1,2,3, . . . ,N + k), in which ti � ti+1.
The B-spline basis functions of order k are defined on the knot
sequence by the following recurrence relations [20]:

Bi,1(r) =
{

1 for ti � r < ti+1,

0 otherwise (11)

and

Bi,k(r) = r − ti

ti+k−1 − ti
Bi,k−1(r) + ti+k − r

ti+k − ti+1
Bi+1,k−1(r).

(12)

The boundary conditions of the radial wave functions require
φ(0) = φ(R) = 0, which leads to the vanished coefficients C1

and CN because of the properties of the B splines at two end
points, i.e., B1,k(0) = 1 and BN,k(R) = 1.

Within the framework of the configuration interaction
method, we had implemented the finite basis approach using
the B-spline basis functions to obtain the high-quality wave
functions of the helium atom [21]. In the present work,
the one-electron basis functions including s, p, d, f , g,
and h orbitals with the principal quantum number n up to
40 are used to construct two-electron wave functions for
∼4000 1S configurations. Through the diagonalization of the
Hamiltonian matrix, the eigenvalues and eigenvectors can

be obtained, in which the eigenvectors are essential for the
calculation of the linear entropy. Using Eqs. (5)–(7) with the
wave functions expanded in terms of the basis functions (8)
but not including the spin part, i.e.,

φmm′
nl,n′l′(r1,r2) = 1√

2

[
um

nl(r1)um′
n′l′ (r2) + um

nl(r2)um′
n′l′ (r1)

]
, (13)

the trace of the square of reduced density matrix for the singlet
S states is given as

Trρ2
red = 1

4

∑
l,n1,n2,n3,n4

{
J (l,m)

[
Cl

n1,n2
Cl

n3,n2
Cl

n1,n4
Cl

n3,n4

+Cl
n1,n2

Cl
n3,n2

Cl
n1,n4

Cl
n4,n3

+Cl
n1,n2

Cl
n2,n3

Cl
n1,n4

Cl
n3,n4

+ Cl
n1,n2

Cl
n2,n3

Cl
n1,n4

Cl
n4,n3

+Cl
n1,n2

Cl
n3,n1

Cl
n4,n2

Cl
n3,n4

+ Cl
n1,n2

Cl
n3,n1

Cl
n4,n2

Cl
n4,n3

+Cl
n1,n2

Cl
n1,n3

Cl
n4,n1

Cl
n3,n4

+ Cl
n1,n2

Cl
n1,n3

Cl
n4,n2

Cl
n4,n3

]
+ J (l,0)

[
Cl

n1,n2
Cl

n3,n1
Cl

n2,n4
Cl

n3,n4

+Cl
n1,n2

Cl
n3,n1

Cl
n2,n4

Cl
n4,n3

+ Cl
n1,n2

Cl
n1,n3

Cl
n2,n4

Cl
n3,n4

+Cl
n1,n2

Cl
n1,n3

Cl
n2,n4

Cl
n4,n3

+ Cl
n1,n2

Cl
n3,n2

Cl
n4,n1

Cl
n3,n4

+Cl
n1,n2

Cl
n3,n2

Cl
n4,n1

Cl
n4,n3

+ Cl
n1,n2

Cl
n2,n3

Cl
n4,n1

Cl
n3,n4

+Cl
n1,n2

Cl
n2,n3

Cl
n4,n1

Cl
n4,n3

]}
, (14)

where Cl
na,nb

is a component of the eigenvector corresponding
to a configuration (na,la,nb,lb) with na � nb and la = lb = l.
For the present case with total angular momentum L = 0, the
orbital angular momenta of each electron, la and lb, must be
equal. The factor J (l,m) is defined as

J (l,m) =
∑
m

(
l l 0
m −m 0

)4

(15)

and

J (l,0) =
(

l l 0
0 0 0

)4

. (16)

It should be noted that an additional factor of 1
4 needs to be

added to Eq. (14) for na = nb.

III. RESULTS AND DISCUSSION

To explore the entanglement features of real atomic systems
instead of the atomic models, we perform calculations of linear
entropy as a measure of the spatial entanglement for the helium
atom and helium-like ions. For the helium atom, Coe and
D’Amico [14] studied the variation of spatial entanglement
with the strength of the electron-nucleus interaction using the
local-density approximation. They also calculated the linear
entropy for the ground state of the helium atom with wave
functions constructed by using the products of hydrogenic
wave functions [14]. Manzano et al. [13] also investigated
the entanglement of the helium ground and excited states
using the Kinoshita-type wave functions. Recently, the same
approach facilitated by the Monte Carlo multidimensional
integration was implemented by Dehesa et al. [18] to explore
the 1sns 1S and 3S states of the helium atom for n up to 5.
Our calculation of the helium ground state carried out by the
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FIG. 1. (Color online) Spatial entanglement of helium ground
state. i-LDA: interacting local-density approximation; EXD: exact
diagonalization with a basis constructed using products of hydrogenic
wave functions [14].

B-spline configuration interaction method for linear entropy
as a measure of the spatial entanglement is presented in Fig. 1
and compared to existing results. The present calculation is
in good agreement with the prediction by Dehesa et al. [18].
The data reported by Coe and D’Amico [14] show a smaller
amount of entanglement. It should be noted that the result of
Manzano et al. [13] involves large variances due to the Monte
Carlo calculations. For the prediction by Dehesa et al. [18],
the variances are significantly reduced.

In Fig. 2, we demonstrate the linear entropy for the helium
1sns 1S states with n up to 10. The linear entropy, which
tends to reach a saturated value with increasing the quantum
number n, i.e., increasing the state energy, has been observed
in several model atoms, such as the Crandall, Hooke, and
Moshinsky models. This trend is also exhibited by the real
helium atom, but with a saturated value of 0.5 instead of
1 due to the Coulomb potential [18]. Our results shown in
Fig. 2 present a relatively stable trend compared to the data
reported by Dehesa et al. [18]. In our present work, by using
different expansion terms in the wave functions, we have
estimated the uncertainty of the linear entropy for the ground
1s2 1Se state of He is about ±0.000040. For excited 1sns

states, with 2 � n � 5 and with 6 � n � 10 the estimated
uncertainties are ±0.00020 and ±0.00010, respectively. It is

FIG. 2. (Color online) Variation of the spatial entanglement
with the helium states of 1sns1S (n = 1–10). i-LDA: interacting
local-density approximation; EXD: exact diagonalization with a basis
constructed using products of hydrogenic wave functions [14].

seen that our results agree with those of Dehesa et al. [18] quite
well, except for the 1s3s 1S state, which lies slightly outside
our combined estimated uncertainties. Using the present
computation scheme, we can perform calculations for higher
excited states with less computational cost. The linear entropy
approaching the saturated value of 0.5 is clearly illustrated.

For highly excited states, i.e., 1sns 1S with large n, the
electron-electron interaction is relatively small compared
to the electron-nucleus interaction. One configuration con-
structed by employing the 1s and ns hydrogenic wave
functions can properly describe the state. Based on this
approximation, the linear entropy equal to 0.5 is obtained. As
n decreases, the interactions between electrons are increased,
so that the configuration interactions should be taken into
account, which leads to a decrease of spatial entanglement
from 0.5. On the other hand, for the ground state, spatial
entanglement equal to zero can be obtained as one Slater de-
terminant of two 1s orbitals is implemented. Due to the strong
correlation between two 1s electrons, more configurations are
needed for the ground state, which results in the deviation of
spatial entanglement from zero.

The values for linear entropy varying with the energies of
singlet helium states is listed in Table I. The present energies

TABLE I. Energies and linear entropies of helium atom for the singlet S states.

Energy (in atomic units) Linear entropy

State This work Dehesa et al. [18] Drake [22] This work Dehesa et al. [18]

1s2 1S −2.9035869 −2.903724377 −2.9037243770341195 0.015943 0.015914 ± 0.000044
1s2s 1S −2.1459653 −2.145974046 −2.145974046054419 0.488736 0.48866 ± 0.00030
1s3s 1S −2.0612695 −2.061271954 −2.061271989740911 0.497251 0.49857 ± 0.00097
1s4s 1S −2.0335856 −2.033586653 −2.03358671703072 0.498925 0.49892 ± 0.00052
1s5s 1S −2.0211762 −2.021176531 −2.021176851574363 0.499471 0.4993 ± 0.0019
1s6s 1S −2.0145627 −2.01456309844660 0.499701
1s7s 1S −2.0106255 −2.01062577621087 0.499815
1s8s 1S −2.0080934 −2.00809362210561 0.499877
1s9s 1S −2.0063693 −2.00636955310785 0.499915
1s10s 1S −2.0051391 −2.00514299174800 0.499937
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TABLE II. Linear entropies of 1sns1S (n = 1–10) states for the two-electron atoms with Z = 3–15.

Linear entropy

Z = 3 Z = 4 Z = 5 Z = 6 Z = 7 Z = 8 Z = 9 Z = 10 Z = 11 Z = 12 Z = 13 Z = 14 Z = 15

1s2 1S 0.006549 0.003562 0.002237 0.001535 0.001118 0.000851 0.000669 0.000539 0.000444 0.000372 0.000316 0.000272 0.000236
1s2s 1S 0.493030 0.495637 0.497070 0.497912 0.498442 0.498795 0.499041 0.499219 0.499352 0.499454 0.499534 0.499597 0.499649
1s3s 1S 0.498382 0.499035 0.499376 0.499568 0.499684 0.499760 0.499812 0.499849 0.499876 0.499896 0.499912 0.499925 0.499935
1s4s 1S 0.499379 0.499637 0.499769 0.499842 0.499886 0.499914 0.499933 0.499946 0.499956 0.499964 0.499969 0.499974 0.499977
1s5s 1S 0.499696 0.499824 0.499889 0.499925 0.499946 0.499959 0.499968 0.499975 0.499980 0.499983 0.499986 0.499988 0.499989
1s6s 1S 0.499829 0.499901 0.499938 0.499958 0.499970 0.499978 0.499983 0.499986 0.499989 0.499991 0.499992 0.499993 0.499994
1s7s 1S 0.499894 0.499939 0.499962 0.499974 0.499982 0.499986 0.499989 0.499992 0.499993 0.499994 0.499995 0.499996 0.499996
1s8s 1S 0.499930 0.499960 0.499975 0.499983 0.499988 0.499991 0.499993 0.499994 0.499995 0.499996 0.499997 0.499997 0.499998
1s9s 1S 0.499951 0.499972 0.499983 0.499988 0.499992 0.499994 0.499995 0.499996 0.499997 0.499997 0.499998 0.499998 0.499998
1s10s 1S 0.499965 0.499980 0.499987 0.499991 0.499994 0.499996 0.499996 0.499997 0.499998 0.499998 0.499998 0.499998 0.499999

agree reasonably well with the most accurate results predicted
by Drake [22] from the 1s2 1S to 1s10s 1S state, and the
agreement gets better for the higher excited states. The small
value of the linear entropy for the ground helium state indicates
the small entanglement for two tightly bound electrons. As one
electron is transited to the higher excited states and the other
one remains tightly bound, the linear entropy rapidly increases.
The linear entropies monotonically increasing with the state
energies are observed.

For the helium-like atoms, the entanglement of the ground
state varying with the nuclear charge from Z = 2 to 15 is
presented in Fig. 3. Our results are in good agreement with
the existing data [13,14] for the ground states showing the

FIG. 3. (Color online) Variation of the spatial entanglement with
the nuclear charge Z for the ground and excited states of two-electron
atoms.

declining trend of the linear entropy with increasing nuclear
charge Z. It is attributed to the decrease of the ratio of electron-
electron interaction to the nucleus-electron interaction. When
the nucleus-electron attraction potential dominates that of
the electron-electron repulsion with increasing Z to a large
value, the ground state starts to behave like the product of
two hydrogenic ground-state wave functions. An independent
particle model can be used to estimate the limiting case for
the helium-like ions. Using one configuration, i.e., one single
Slater determinant consisting of hydrogenic orbitals to repre-
sent the singlet ground state (Hartree-Fock approximation), it
is straightforward to find Trρ2

red = 1, which means the linear
entropy is approaching zero. That is the reason why the spatial
entanglement approaches zero with increasing Z in Fig. 3. The
deviation from zero, such as ∼1.1% for Z = 7 and ∼0.024%
for Z = 15, indicates the contribution from the configuration
interaction effect. Obviously, the configuration interaction
plays a crucial role for small-Z cases where the electron-
electron interaction is important. In contrast to the ground
state, the excited states exhibit a different trend for increasing
nuclear charge. As shown in Fig. 3, the linear entropies for
the excited states with increasing nuclear charge Z approach
0.5 for large Z. The detailed data for the linear entropy of the
excited singlet S states as functions of nuclear charge Z are
listed in Table II. Based on the similar hydrogenic model, as Z

is increased, the nucleus-electron attractive potential starts to
dominate that of the electron-electron repulsion. The excited
1S state for two-electron systems with one electron tightly
bound and the other electron highly excited would start to
resemble the following:

1√
2

[�1s(r1)�ns(r2) + �ns(r1)�1s(r2)]

× 1√
2

[(↑)1(↓)2 − (↓)1(↑)2], (17)

with the (↑) and (↓) denoting the spin-up and spin-down wave
functions for the electrons, respectively, and where �1s(r1) and
�ns(r2) are the hydrogenic ground state and excited ns state,
respectively, of the helium-like ion. The symmetric radial part
of the wave function will lead to the limiting case for a linear
entropy of 0.5 as Z is further increased. Our present results for
linear entropies as shown in Fig. 3 and Table II are consistent
with the physics discussed above.
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IV. CONCLUSIONS

Based on the configuration interaction approach, we have
investigated the spatial entanglement of the helium atom
and helium-like ions using the B-spline basis functions.
We perform calculations for linear entropy as a measure
of the spatial entanglement of two electrons to explore the
helium ground state and 1sns 1S (n = 2–10) excited states.
The present computing approach provides the entanglement
results for higher excited states (from n = 6 to n = 10).
Our calculations show an increase of linear entropies with
increasing quantum number n or with increasing state energies.
The saturated value of 0.5 for the linear entropy is clearly

demonstrated as one of the two electrons in the helium atom
is about to be ionized. The influence of nuclear charge on
the spatial entanglement has also been studied for helium-like
ions. For the ground states of helium-like ions, it is observed
that the linear entropy increases for decreasing Z from Z = 15
down to Z = 2. However, the reverse behavior of the spatial
entanglement, which is increased with increasing nuclear
charge, is observed for the excited states.
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