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With the aid of a quantum memory, the uncertainty about the measurement outcomes of two incompatible
observables of a quantum system can be reduced. We investigate this measurement uncertainty bound by
considering an additional quantum system connected with both the quantum memory and the measured quantum
system. We find that the reduction of the uncertainty bound induced by a quantum memory, on the other hand,
implies it is increasing for a third participant. We also show that the properties of the uncertainty bound can
be viewed from perspectives of both quantum and classical correlations, in particular, that the behavior of the
uncertainty bound is a result of competitions of various correlations between different parties.
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I. INTRODUCTION

The Heisenberg uncertainty principle [1] is one of the most
remarkable features of quantum theory which differentiates
the quantum world from the classical world. It sets limits
on the precise prediction of the outcomes of two incompatible
quantum measurements Q and R on a particle and is expressed
in various forms [2—4]. However, Berta et al. [5] showed
recently that the uncertainty bound imposed by the Heisenberg
principle could actually be violated with the aid of a quantum
memory B that is entangled with the particle A to be measured.
This quantum-memory-assisted entropic uncertainty relation
reads [5]

1
S(QIB) + S(R|B) > log, — + S(A[B), ey

the equivalent form of which was previously conjectured by
Renes and Boileau [6]. Here, S(A|B) is the conditional von
Neumann entropy of the density operator psp, S(A|B) =
S(pap) — S(pp). On the left-hand side (LHS) of the inequality,
S(X|B) s that of the postmeasurement state px 5 = ), (I1 ff ®
Dpa B(l'[,f ® I), which represents uncertainty of the mea-
surement outcomes of X = {Q, R} conditioned on the prior
information stored in B, where IT{ = [W;) (¥ | with &)
being the eigenstates of X and where ¢ = maxy |(\IJkQ|\I/lR) |2
with 1/c quantifies the complementarity of Q and R.

This generalized entropic uncertainty relation has been
confirmed in all-optical experiments [4,7]. Meanwhile, the
related relations expressed by other entropic quantities, such
as the Rényi entropy is important in physical models [8], are
also exploited [9,10]. Since it has a fundamental role, this
quantum-memory-assisted entropic uncertainty relation can be
studied from various viewpoints [11-13] and can be applied
to other quantum information processes [14—16].

The uncertainty relation of Eq. (1) differs from its original
one [3] by an additional term S(A|B). It is clear that the
bound of the entropic uncertainty, the right-hand side (RHS) of
inequality (1), named as the uncertainty bound (UB) hereafter,
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is reduced whenever S(A|B) < 0. It is remarkable that the
quantity of conditional entropy S(A|B) has many important
implications in quantum information processing. Its negativity
means inseparability [17] and gives the lower bound of the
one-way distillable entanglement for p4p [18]. It quantifies
partial quantum information [19] and can be related with
quantum correlation measures [12,20-24].

In this paper, we go one step further from bipartite
state pap to consider its purification |W),pc or a tripartite
state papc; 1.e., a third party C is entangled with both
the particle A and the memory B. Some fundamental and
interesting phenomena are found: For example, there exists
correlative capacities which indicate the uncertainty reduction
of UB because B implies it is increasing for other parties;
the changing of UB is induced by competitions of various
quantum correlations between different pairs. These results
have important conceptual implications and shed new light on
the foundations of quantum mechanics.

II. CORRELATION CAPACITIES

We begin with a simple yet meaningful observation. For
any three-partite system A BC with density matrix papc, we
have

S(A[B) + S(A|C) =0, 2

which can be proved directly by the strong subadditivity
inequality: S(og) + S(pc) < S(pas) + S(pac) [25]. Equation
(2) indicates that whenever S(A|B) < 0, we always have
S(A|C) > 0. Therefore, the reduction of the UB on A with
quantum information stored in B excludes its reduction by
quantum information stored in C. Because the reduction of
the UB originates from the quantum correlations established
between the measured particle and the quantum memory [5],
this observation may be interpreted as a fact that particle A
reaches its potential correlative capacities with the quantum
memory B in the sense that any other quantum memory except
B always gives increasing UB of measurement uncertainty
on A.

Inequality (2) also has important physical implications.
To be convinced, let us consider a variant of the imaginary
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FIG. 1. (Color online) Schematic representation of the “uncer-
tainty game” with three (a) and six (b) players.

“uncertainty game” presented in Ref. [5]: Three players, Alice
(A), Bob (B), and Charlie (C), share a quantum state p4 ¢, the
form of which is known only to Bob and Charlie. They begin
the game by agreeing on two measurements, Q and R. Alice
then measures either Q or R randomly on the particle A and
informs Bob and Charlie of her measurement choice but not
the outcome. We want to determine whether Bob and Charlie
(communication between them is forbidden) can predict the
outcomes of Alice with improved precision (see Fig. 1 for an
illustration). As for fixed Q and R, the UB of measurement
is determined only by the conditional entropy S(A|X) for
pax of the observed particle A and the quantum memories
X = {B,C}, and Eq. (2) excludes the possibility for S(A|B)
and S(A|C) taking the negative values simultaneously. The
prediction precision of Bob and Charlie cannot be improved
simultaneously in this game; i.e., the improvement of Bob’s
prediction precision implies the degradation of Charlie’s, and
vice versa. Particularly, for pure p4p, Eq. (2) simplifies to
S(A|B) 4+ S(A|C) = 0, which tells us that the more precisely
the measurement outcome is predicted by one participant, the
less precisely it will be predicted by the other one. In some
sense, one may say that this implies another kind of uncertainty
relation, because it sets limits on Bob’s and Charlie’s (under
the constraint of no communication between them) abilities
to predict correctly the measurement outcomes of Alice
simultaneously; that is to say, the certainty of prediction for one
participant implies the uncertainty of prediction for another
participant.

The arguments above can also be easily generalized to the
N-player case; i.e., we have

N-—1
> S(AIX) = 0, 3)
i=1

where the particles X; = {B,C,D, ...} belong to Bob, Char-
lie, Daniel, et al., respectively. This inequality can be proved
directly by combination of the strong subadditivity of the
von Neumann entropy (Theorem 11.14 of Ref. [25]) and the
subadditivity of the conditional entropy (Theorem 11.16 of
Ref. [25]), and it implies that even for the multiplayer case, the
precision of predictions about Alice’s measurement outcomes
cannot be improved simultaneously for all of the participants.

Also we remark here that the generalized “uncertainty
game” illustrated in Fig. 1 can be immediately tested by similar
all-optical setups as those in Refs. [4,7].
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III. COMPETITION OF QUANTUM DISCORDS

Next let us consider some quantum correlations and begin
with quantum discord [20]. The measure of the classical
correlation takes the form

J(BIA) = S(on) — min S(BI{EL)) @)
k

where  S(BIE) = >y piS(opigs),  with  ppipa =
TrA(E,f‘,oAB)/ pr being the nonselective postmeasurement
state of B after the positive operator valued measure
(POVM) on A, and p; = Tr(E;{4 pap) is the probability for
obtaining the outcome k. J(B|A) is usually interpreted as the
maximum information gained about B with the measurement
outcome of A. The quantum discord is then defined by

the discrepancy between quantum mutual information
I(A:B) = S(pa) + S(pp) — S(pap) and J(B|A) as

D(B|A) =I(A : B) — J(B|A). (5)

The quantum discord can therefore be interpreted as the
minimal loss of correlations due to the POVM {E ,? }. It survives
for states with quantumness of correlation and vanishes
for states with only classical correlation. It attracts much
attention recently because of its fundamental role in quantum
information processing [26—29]. Here, we demonstrate a new
perspective of quantum discord in the uncertainty principle of
quantum mechanics.

Assuming |W) 4p¢ is the purification of the bipartite state
pap, we first have the following proposition:

Proposition 1. When the UB on A is reduced with the aid
of a quantum memory B, then both D(B|A), J(B|A) and the
entanglement of formation (EoF), E(p4p) are larger than
those between A and its purifying system C.

Proof. By using the Koashi-Winter equality for |¥)4pc
[30], we obtain

E¢(ppc) + J(BIA) = S(pp),
E¢(pcp) + J(ClA) = S(pc),

where E(ppc) is the EoF for ppc, defined as E(ppc) =

ming,, yse) 2 PiS(Tre|¥i)pe(¥il) [31], and the min-
imum is taken over all pure state decompositions
pec = Y_; Pilvi)sc(Wil. Since Es(ppc) = Ef(pcs), Eq. (6)
yields J(B|A) — J(C|A) = S(pp) — S(pc) = —S(A|B) > 0,
and therefore J(B|A) > J(C|A). Furthermore, by combining
Egs. (5) and (6), we obtain an equivalent form of the Koashi-
Winter equalities

D(B|A) + S(B|A) = E¢(ppc)s

D(C|A) + S(C|A) = E¢(pcs),
which gives D(B|A) — D(C|A) = S(C|A) — S(B|A) =
—S(A|B) > 0, and hence D(B|A) > D(C|A). Finally, to
prove Ef(pap > Ef(pac), we note that the conditional

entropy S(A|B) < 0 is equivalent to S(pp) > S(pc) for
| W) apc. Therefore by using the chain rule [32], we derive

(6)

)

S(pp) + Ef(pca) < S(pc) + Ef(pap), 3
which  implies  E((pap) — Ef(pac) = S(pp) — S(oc) =
—S(A|B) > 0, and thus completes the proof. |

In fact, from Eqs. (4), (5), and S(ppja) = S(pcja) =
E ¢ (ppc), with S(pxa) := mingay S(XHEL)) (X = B or C€)
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[30], we can obtain
D(B|A) + J(C|A) = D(C|A) + J(B|A) = S(pa)- (9)

Thus, D(B|A) > D(C|A) and J(B|A) > J(C|A) are in fact
equivalent; i.e., the fulfillment of one inequality implies the
holding of another one. Moreover, we point out here that
even for mixed pspc, we still have J(B|A) > J(C|A). This
is because for any papc with the purification |W)spcp, we
always have J(B|A) > J(CDJ|A) > J(C|A), where the first
inequality originates from proposition 1 (by taking CD as a
combined system), and the second one is due to the fact that
the classical correlation is nonincreasing under local quantum
operations [20].

Equation (8) also implies that J(C|B) = J(B|C), which
can be convinced by the Koashi-Winter equalities J(C|B) =
S(pc) — E¢(pca)and J(B|C) = S(pp) — Ef(pap). By com-
bining this with D(A|B) + J(C|B) = S(pp) [an equivalent
form of Eq. (9)] and D(A|B)+ S(A|B) = E((pac), we
further obtain

Ey(pac) < D(A|B) < Ef(paB)- (10)

This equation indicates that when the UB on A is reduced,
the quantum discord D(A|B) is upper bounded by EoF
between A and the quantum memory B and lower bounded
by EoF between A and the purifying system C. Furthermore,
for pure |W)apc Eq. (2) turns into S(A|B) + S(A|C) = 0;
therefore by combining this with the Koashi-Winter equalities
of the equivalent form of Eq. (7), we have D(A|B) +
D(A|C) = E¢(pa) + Ef(pac), and hence Eq. (10) also
means E¢(pac) < D(A|C) < Ef(pas).

We now discuss the physical mechanism responsible for
changing UB. From the proof of proposition 1 we know that

S(A|B) = D(C|A) — D(B|A), (11)

and therefore S(A|B) is determined by the competition
between the quantum discords D(C|A) and D(B|A). This
relation has also been noted by Fanchini et al. [33]. It explains
why the UB is not a monotonic function of the quantum discord
between A and the quantum memory B, as while D(B|A)
increases, D(C|A) may also increases but with a faster rate,
and as a result, this induces the increase of the uncertainty with
increasing D(B|A). To be explicit, we consider the mixed state
pasp of the following form

pap = sin® 0]®) (| + cos? O] 11)(11], (12)

where |®) = cos¢|01) + sing|10) in the standard basis
{10),]1)}. The purification |W)spc for this state can be
written as

|W)apc = sinf cos ¢|011) + sin O sin ¢|101)
+cos6|110), (13)

which is just the generalized W state [34].

For the purification |W)4pc of Eq. (13), both the reduced
states pap and psc have the X structure and therefore the
discords D(B|A) and D(C|A) can be determined analytically
[35]. In Fig. 2 we plot dependence of S(A|B), D(B|A), and
D(C|A)on 8/m with ¢ = /4;i.e., |P) = (|01) + |10>)/«/§.
One can see that S(A|B) and thus the UB increase with
increasing values of both D(B|A) and D(C|A) when /7 €
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FIG. 2. (Color online) Conditional von Neumann entropy S(A|B)
and quantum discords D(B|A) and D(C|A) vs 0/x for |V)apc of
Eq. (13) with ¢ = 7 /4. The insets are derivatives of D(x) with respect
to8/m,withx = B|A (solid red), C|A (dashed blue), and the vertical
dashed line represents constant 0.182.

[0,0.182] and decrease with decreasing values of both D(B|A)
and D(C|A) when 8/7 € [0.818,1]. As illustrated in the inset
of Fig. 2 with6 /7 € [0,0.5], this counterintuitive phenomenon
is caused by the more quickly increasing rate of D(C|A) (the
dashed blue line) compared with that of D(B|A) (the solid red
line). Out of the above 6/ regions, either D(B|A) increases
more rapidly than that of D(C|A), or D(B|A) increases
while D(C|A) decreases, and therefore the UB decreases with
increasing D(B]A). So, the behavior of UB depends on the
competition of quantum discords.

A. Observation based on one-way unlocalizable
quantum discord

Recently, Xi et al. proposed the concept of one-way
unlocalizable quantum discord [36], which is in some sense
dual to quantum discord [20]. Here, we present some analysis
of the quantum-memory-assisted entropic uncertainty relation
based on this measure of correlations. By using the same
semiological rules as Ref. [36], we denote E,(pxy) as the
entanglement of assistance for pxy [37], E; (pxy) as the
one-way unlocalizable entanglement [38], and & (pxy) as
the one-way unlocalizable quantum discord [36], for pxy with
measurements on both Y and X,Y € {A, B,C}. Then we have
the following result:

Proposition 2. When the UB on A is reduced with the aid of
a quantum memory B, then both E; (pp4a) > E,; (pca) and
8, (pga) > 8, (pca) are always satisfied.

Proof. By using the Buscemi-Gour-Kim equality [38], we
have

E.(pgc) + E; (ppa) = S(pp),

E.(pcs) + E (pca) = S(pc).

Substraction of the second equality of Eq. (14) from that of
the first one gives rise to E; (ppa) — E, (oca) = S(pp) —
S(pc) = —S(A|B) > 0, and hence E; (ppa) > E; (pca).
Furthermore, combination of the definition of the one-way un-
localizable quantum discord [36] with the Buscemi-Gour-Kim

(14)
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equality [38] implies
s (pa) + S(BIA) = Eu(ppc),
8, (pca)+ S(C|A) = E,(pcB).

Then we have 8, (ppa) — 8, (pca) = S(C|A) — S(B|A) =
—S(A|B) > 0, and therefore §,; (ppa) > 8, (pca). |

This proposition implies that when the UB on A is
reduced using the information stored in a quantum memory
B, then both the one-way unlocalizable entanglement and
the one-way unlocalizable quantum discord between A and
B are always larger than those between A and the purifying
system C. This reinforces the interpretation of the potential
maximal correlations between A and B as the essential element
responsible for the reduction of the measurement uncertainty
in Eq. (1).

15)

IV. NEGATIVE CONDITIONAL ENTROPY

As the negativity of the conditional entropy plays such an
important role in improving the prediction precision of the
uncertainty game, we now present some possible structures
of pap ensuring S(A|B) < 0. By noting the Araki-Lieb
inequality [25]

S(pa) = |S(pa) = S(pp)l, (16)

we see that if S(pp) — S(pa) = S(pap), then S(A|B) =
—S(pa) < 0 due to the non-negativity of the von Neumann
entropy. S(A|B) is negative if S(pa) # 0, i.e., pa # |u)(ul,
with |u) being the orthonormal basis of H4. Recently, a
necessary and sufficient equality condition for the inequality
(16) was derived in Ref. [39]. It states that S(pg) — S(pa) =
S(pap) if and only if the complex Hilbert space Hp can be
factorized as Hp = Hpr ® Hpr such that

PaB = |¥)ap{¥| ® ppr, (17)

with |w>ABL € Ha ® Hpe.
In fact, for state p4p of Eq. (17), we have

S(pag) = SUY) ape(Y]) + S(ppr)
= S(ppr) = S(pp) — S(ppr)
= S(pp) — S(pa), (18)

by using the additivity of the von Neumann entropy [25], and
therefore D(B|A) = D(B.|A) = S(pa). Combination of this
with Eq. (9) gives J(C|A) = 0. Since quantum correlation
cannot exist without classical correlation [20], this further
implies D(C|A) =0 and J(B|A) = S(pa), which confirms
the arguments presented in proposition 1, namely, D(B|A) >
D(C|A) and J(B|A) > J(C|A) if S(A|B) < 0.

PHYSICAL REVIEW A 87, 022314 (2013)

As an explicit example, consider a qubit-qudit
system with pap = (]00) + [12))((00| + (12])/4 + (|01) +
[13)((01] + (13])/4 in the standard basis {|MU>}L3V:00. As
shown in Ref. [40], this state can be factorized as in
Eq. (17) with [v) age = (100) + [11))/+/2 and ppr = Lpr /2,
and as aresult gives the negative conditional entropy S(A|B) =
—S(pa) = —1.

Finally, note that Eq. (17) is only a sufficient condition for
the negativity of S(A|B), and there are bipartite states psp
ensuring S(A|B) < 0 but that cannot be factorized into the
form of Eq. (17). An obvious example of such states is the
two-qubit Werner state pap = r|W)(V| 4+ (1 — r)l4/4 [41],
with [W) = (]00) + |11))/+/2 and r > 0.7476.

V. SUMMARY AND DISCUSSION

To summarize, we have established some new physical
implications of the quantum-memory-assisted entropic uncer-
tainty relation from the perspective of correlative capacities,
which are captured by the concepts of quantum discord,
EoF, and the one-way unlocalizable quantum discord. The
changing of the uncertainty bound is a result of competitions
of various correlations between different players. We showed
that whenever the prediction precision is improved compared
with that with only classical memory, the observed particle A
reaches its potential maximal correlative capacities with the
quantum memory B in the sense that their correlations (both
quantum and classical) are always larger than those between
A and the purifying system C. We hope these results may shed
some new light on exploring the physical implications of the
entropic uncertainty principle, especially from the perspective
of quantum correlations.

As a concluding remark, we point out that the resulting
certainty on the prediction of the measurement outcomes
of two incompatible observables with the aid of a quantum
memory may imply another kind of uncertainty. This is
convinced by a variant of the “uncertainty game” with more
than two players, e.g., the three-player case illustrated in
Fig. 1, which shows that the more precisely the measurement
outcomes of Alice are predicted by Bob, the less precisely they
will be predicted by Charlie, and vice versa.

ACKNOWLEDGMENTS

This work was supported by NSFC (11205121, 10974247,
11175248), the “973” Program (2010CB922904), NSF of
Shaanxi Province (2010JM1011), and the Scientific Research
Program of the Education Department of the Shaanxi Provin-
cial Government (12JK0986).

[1] W. Heisenberg, Z. Phys. 43, 172 (1927).

[2] H. P. Robertson, Phys. Rev. 34, 163 (1929).

[3] I. Biatynicki-Birula and J. Mycielski, Commun. Math. Phys.
44, 129 (1975); D. Deutsch, Phys. Rev. Lett. 50, 631 (1983);
K. Kraus, Phys. Rev. D 35, 3070 (1987); H. Maassen and J. B.
M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).

[4] R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J.
Resch, Nat. Phys. 7, 757 (2011).

[5] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner,
Nat. Phys. 6, 659 (2010).

[6] J. M. Renes and J. C. Boileau, Phys. Rev. Lett. 103, 020402
(2009).

022314-4


http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1103/PhysRev.34.163
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1103/PhysRevLett.50.631
http://dx.doi.org/10.1103/PhysRevLett.50.631
http://dx.doi.org/10.1103/PhysRevD.35.3070
http://dx.doi.org/10.1103/PhysRevLett.60.1103
http://dx.doi.org/10.1038/nphys2048
http://dx.doi.org/10.1038/nphys1734
http://dx.doi.org/10.1103/PhysRevLett.103.020402
http://dx.doi.org/10.1103/PhysRevLett.103.020402

COMPETITION BETWEEN QUANTUM CORRELATIONS IN ...

[7] C.-F. Li, J.-S. Xu, X.-Y. Xu, K. Li, and G.-C. Guo, Nat. Phys. 7,
752 (2011).

[8] J. Cui, M. Gu, L. C. Kwek, M. F. Santos, H. Fan, and V. Vedral,
Nat. Commun. 3, 812 (2012).

[9] M. Tomamichel and R. Renner, Phys. Rev. Lett. 106, 110506
(2011).

[10] P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, Phys. Rev. Lett.
108, 210405 (2012).

[11] P. J. Coles, Phys. Rev. A 86, 062334 (2012); R. L. Frank and
E. H. Lieb, arXiv:1204.0825; W. Roga, Z. Puchata, .. Rudnicki,
and K. Zyczkowski, arXiv:1206.2536; U. Singh and A. K. Pati,
arXiv:1211.0939.

[12] Z. Y. Xu, W. L. Yang, and M. Feng, Phys. Rev. A 86, 012113
(2012).

[13] Z. Y. Xu, S. Q. Zhu, and W. L. Yang, Appl. Phys. Lett. 101,
244105 (2012).

[14] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Nat.
Commun. 3, 634 (2012).

[15] M. L. Hu and H. Fan, Phys. Rev. A 86, 032338 (2012).

[16] A. K. Pati, M. M. Wilde, A. R. Usha Devi, A. K. Rajagopal, and
Sudha, Phys. Rev. A 86, 042105 (2012).

[17]N. J. Cerf and C. Adami, Phys. Rev. Lett. 79, 5194
(1997).

[18] I. Devetak and A. Winter, Proc. R. Soc. London, Ser. A 461, 207
(2005).

[19] M. Horodecki, J. Oppenheim, and A. Winter, Nature (London)
436, 673 (2005).

[20] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001);
L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).

[21] S. Luo, Phys. Rev. A 77, 022301 (2008).

[22] B. Daki¢, V. Vedral, and C. Brukner, Phys. Rev. Lett. 105,
190502 (2010); S. Luo and S. Fu, Phys. Rev. A 82, 034302
(2010).

[23] K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson,
Phys. Rev. Lett. 104, 080501 (2010).

[24] S.Luo and S. Fu, Phys. Rev. Lett. 106, 120401 (2011); Europhys.
Lett. 92, 20004 (2010).

PHYSICAL REVIEW A 87, 022314 (2013)

[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[26] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100,
050502 (2008); B. P. Lanyon, M. Barbieri, M. P. Almeida, and
A. G. White, ibid. 101, 200501 (2008).

[27] V. Madhok and A. Datta, Phys. Rev. A 83, 032323 (2011);
D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and
A. Winter, ibid. 83, 032324 (2011).

[28] B. Daki¢ et al., Nat. Phys. 8, 666 (2012).

[29] M. Gu et al., Nat. Phys. 8, 671 (2012).

[30] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).

[31] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996); W. K. Wootters, Phys.
Rev. Lett. 80, 2245 (1998).

[32] G. L. Giorgi, B. Bellomo, F. Galve, and R. Zambrini, Phys. Rev.
Lett. 107, 190501 (2011).

[33] E. E. Fanchini, L. K. Castelano, M. F. Cornelio, and M. C. de
Oliveira, New J. Phys. 14, 013027 (2012); F. F. Fanchini, M. F.
Cornelio, M. C. de Oliveira, and A. O. Caldeira, Phys. Rev. A
84, 012313 (2011).

[34] W. Diir, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
(2000).

[35] S. Luo, Phys. Rev. A 77, 042303 (2008); M. Ali, A. R. P.
Rau, and G. Alber, ibid. 81, 042105 (2010); X.-M. Lu, J. Ma,
Z. Xi, and X. Wang, ibid. 83, 012327 (2011); D. Girolami and
G. Adesso, ibid. 83, 052108 (2011); Q. Chen, C. Zhang, S. Yu,
X. X.Yi,and C. H. Oh, ibid. 84, 042313 (2011); M. Shi, C. Sun,
F. Jiang, X. Yan, and J. Du, ibid. 85, 064104 (2012).

[36] Z. Xi, H. Fan, and Y. Li, Phys. Rev. A 85, 052102 (2012).

[37] O. Cohen, Phys. Rev. Lett. 80, 2493 (1998).

[38] F. Buscemi, G. Gour, and J. S. Kim, Phys. Rev. A 80, 012324
(2009).

[39] L. Zhang and J. D. Wu, J. Phys. A 45, 025301 (2012).

[40] Z. Xi, X.-M. Lu, X. Wang, and Y. Li, Phys. Rev. A 85, 032109
(2012).

[41] R. FE. Werner, Phys. Rev. A 40, 4277 (1989).

022314-5


http://dx.doi.org/10.1038/nphys2047
http://dx.doi.org/10.1038/nphys2047
http://dx.doi.org/10.1038/ncomms1809
http://dx.doi.org/10.1103/PhysRevLett.106.110506
http://dx.doi.org/10.1103/PhysRevLett.106.110506
http://dx.doi.org/10.1103/PhysRevLett.108.210405
http://dx.doi.org/10.1103/PhysRevLett.108.210405
http://dx.doi.org/10.1103/PhysRevA.86.062334
http://arXiv.org/abs/1204.0825
http://arXiv.org/abs/1206.2536
http://arXiv.org/abs/1211.0939
http://dx.doi.org/10.1103/PhysRevA.86.012113
http://dx.doi.org/10.1103/PhysRevA.86.012113
http://dx.doi.org/10.1063/1.4771988
http://dx.doi.org/10.1063/1.4771988
http://dx.doi.org/10.1038/ncomms1631
http://dx.doi.org/10.1038/ncomms1631
http://dx.doi.org/10.1103/PhysRevA.86.032338
http://dx.doi.org/10.1103/PhysRevA.86.042105
http://dx.doi.org/10.1103/PhysRevLett.79.5194
http://dx.doi.org/10.1103/PhysRevLett.79.5194
http://dx.doi.org/10.1098/rspa.2004.1372
http://dx.doi.org/10.1098/rspa.2004.1372
http://dx.doi.org/10.1038/nature03909
http://dx.doi.org/10.1038/nature03909
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.106.120401
http://dx.doi.org/10.1209/0295-5075/92/20004
http://dx.doi.org/10.1209/0295-5075/92/20004
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevA.83.032323
http://dx.doi.org/10.1103/PhysRevA.83.032324
http://dx.doi.org/10.1038/nphys2377
http://dx.doi.org/10.1038/nphys2376
http://dx.doi.org/10.1103/PhysRevA.69.022309
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.107.190501
http://dx.doi.org/10.1103/PhysRevLett.107.190501
http://dx.doi.org/10.1088/1367-2630/14/1/013027
http://dx.doi.org/10.1103/PhysRevA.84.012313
http://dx.doi.org/10.1103/PhysRevA.84.012313
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.81.042105
http://dx.doi.org/10.1103/PhysRevA.83.012327
http://dx.doi.org/10.1103/PhysRevA.83.052108
http://dx.doi.org/10.1103/PhysRevA.84.042313
http://dx.doi.org/10.1103/PhysRevA.85.064104
http://dx.doi.org/10.1103/PhysRevA.85.052102
http://dx.doi.org/10.1103/PhysRevLett.80.2493
http://dx.doi.org/10.1103/PhysRevA.80.012324
http://dx.doi.org/10.1103/PhysRevA.80.012324
http://dx.doi.org/10.1088/1751-8113/45/2/025301
http://dx.doi.org/10.1103/PhysRevA.85.032109
http://dx.doi.org/10.1103/PhysRevA.85.032109
http://dx.doi.org/10.1103/PhysRevA.40.4277



