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Strategies for enhancing quantum entanglement by local photon subtraction
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Subtracting photons from a two-mode squeezed state is a well-known method to increase entanglement. We
analyze different strategies of local photon subtraction from a two-mode squeezed state in terms of entanglement
gain and success probability. We develop a general framework that incorporates imperfections and losses in all
stages of the process: before, during, and after subtraction. By combining all three effects into a single efficiency
parameter, we provide analytical and numerical results for subtraction strategies using photon-number-resolving
and threshold detectors. We compare the entanglement gain afforded by symmetric and asymmetric subtraction
scenarios across the two modes. For a given amount of loss, we identify an optimized set of parameters, such
as initial squeezing and subtraction beam splitter transmissivity, that maximize the entanglement gain rate.
We identify regimes for which asymmetric subtraction of different Fock states on the two modes outperforms
symmetric strategies. In the lossless limit, subtracting a single photon from one mode always produces the highest
entanglement gain rate. In the lossy case, the optimal strategy depends strongly on the losses on each mode
individually, such that there is no general optimal strategy. Rather, taking losses on each mode as the only input
parameters, we can identify the optimal subtraction strategy and required beam splitter transmissivities and initial
squeezing parameter. Finally, we discuss the implications of our results for the distillation of continuous-variable
quantum entanglement.
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I. INTRODUCTION

Efficient distribution of entanglement between distant
parties is fundamental to most quantum communication
protocols. However, entanglement is fragile and suffers from
decoherence, which is detrimental to the performance of any
communication protocol upon which it relies. The ability to
increase the entanglement between communicating parties is
therefore vital, and further, practical considerations dictate
that this should be achieved through only local operations and
classical communication (LOCC). While entanglement cannot
increase on average under LOCC, a probabilistic protocol
can be employed to increase the entanglement of a subset of
states. This is the basis of entanglement distillation: extracting
a small ensemble of more strongly entangled states from a
larger ensemble of weakly entangled states [1].

In the discrete variable regime, entanglement distillation
has been achieved using photonic qubits [2]. In the continuous-
variable (CV) regime, the situation is more involved. Most
common CV states and operations are Gaussian in nature.
However, there exists a no-go theorem which states that
one cannot distill entanglement from Gaussian states by
Gaussian operations alone [3–5]. Gaussian operations are
those with Hamiltonians which are (at most) quadratic in the
ladder operators â,â†, comprising the basic tools of quantum
optics, including beam splitters, phase shifters, squeezers,
and homodyne detection. A number of protocols to increase
entanglement in CV systems have been proposed [6–11],
elements of which have been implemented [12–16].

Photon subtraction was initially proposed by Opatrný et al.
to increase the efficacy of a teleportation protocol [6]. Since
then, several studies have looked at photon subtraction in more
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detail. Cochrane et al. investigated subtracting and detecting
n photons simultaneously from the modes of a two-mode
squeezed state [17]. Olivares et al. studied the use of on-off
(single-photon threshold) detectors to measure at least one
photon subtracted from both modes coincidentally, again in
terms of the improvement of a teleportation protocol [18].
Kitagawa et al. provided a detailed numerical analysis of
two-mode subtraction by on-off detectors in terms of the
explicit change in entanglement and compared this with the
operational measures used previously in the literature [19].
This work was built on by Zhang and van Loock [20] in which
analytical results for perfect symmetric subtraction using
photon-number-resolving detectors and on-off detectors were
derived. More recently, Navarrete-Benlloch et al. extended
the analysis to asymmetric subtraction and quantified the
non-Gaussianity of the operations [21]. Photon subtraction
(and addition) is discussed more generally in terms of
quantum-state engineering in the review by Kim [22] and
in terms of non-Gaussian entanglement quantification in
Ref. [23]. Experimentally, both nonlocal [24] and local [16]
photon subtraction from two-mode squeezed states have been
demonstrated.

In this paper, we extensively investigate the best entan-
glement enhancement strategy in a realistic experimental
scenario. We present practical figures of merit based on
the entanglement gain and success probability of photon
subtraction protocols. Using the log negativity [25] as an
entanglement metric allows us to quantify the entanglement
of mixed states caused by losses. Indeed, we consider six
independent loss parameters and allow for detecting different
numbers of photons subtracted from each mode, which we
refer to as asymmetric subtraction. In addition, our model
considers both on-off and photon-number-resolving detectors
to measure the subtracted photons. Our results can be applied
directly to realistic experiments, as well as providing a
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framework in which to study other entanglement-enhancing
strategies.

This article is organized as follows: in Sec. II, we define the
figures of merit by which protocols that increase entanglement
may be measured. In Sec. III, we derive the state evolution of
photon subtraction from a two-mode squeezed state (TMSS),
and we provide an analytical form for the probabilities
corresponding to different detection strategies. We use the
evolved state to analyze the gain in entanglement by different
subtraction strategies: using photon-number-resolving detec-
tors (PNRDs) in Sec. IV and threshold detectors (such as
avalanche photodiodes, APDs) in Sec. V. For both types of
detectors (PNRDs in Sec. IV D and APDs in Sec. V C), we
numerically analyze symmetric and asymmetric subtraction
in the presence of loss occurring before, during, and after
subtraction and show how these different parameters affect
the success of the protocol. We also list the main conclusions
drawn from our work in Sec. VI.

II. ENTANGLEMENT, GAIN, AND RATE

Entanglement in this system can be captured conveniently
by the positive partial transpose (PPT) criterion. If the partial
transpose ρTA of a density matrix ρ has negative eigenvalues,
then ρ must be entangled [26,27]. The sum of the absolute
values of the negative eigenvalues of ρTA is defined as the
negativity N (ρ). The entanglement measure we use in this
paper is the log negativity [25], defined as

EN (ρ) = log2[1 + 2N (ρ)] = log2 ||ρTA ||1, (1)

where ||X||1 = Tr
[√

X†X
]

denotes the trace norm of X.

The maximally entangled CV state, for a fixed energy,
is the TMSS, as generated during parametric down conver-
sion (PDC) or, equivalently, by interfering two single-mode
squeezed vacua in phase at a 50:50 beam splitter [28]. This
state can be written in the Fock basis as

|ψTMSS〉 =
√

1 − λ2
∞∑

n=0

λn|n,n〉AA′ (2a)

=
√

1 − λ2
∞∑

n=0

λn

n!
a†na′†n|0,0〉AA′ , (2b)

which describes n pairs of photons in modes A and A′
for a given squeezing parameter λ ∈ [0,1), and we define
|n,m〉AA′ = |n〉A ⊗ |m〉A′ .

The density matrix of this state is

ρTMSS = (1 − λ2)
∞∑

n=0

∞∑
m=0

λnλm|n〉A〈m| ⊗ |n〉A′ 〈m|, (3)

the partial transpose (with respect to mode A) of which is

ρ
TA

TMSS = (1 − λ2)
∞∑

n=0

∞∑
m=0

λnλm|m〉A〈n| ⊗ |n〉A′ 〈m|. (4)

Taking the trace norm yields

∣∣∣∣ρTA

TMSS

∣∣∣∣
1 = (1 − λ2)Tr

[ ∞∑
n=0

λn|n〉〈n|
]

Tr

[ ∞∑
m=0

λm|m〉〈m|
]

= (1 − λ2)

(1 − λ)2
; (5)

therefore the TMSS defined in Eq. (2a) has log negativity

EN (ρTMSS) = log2

(
1 + λ

1 − λ

)
, (6)

which is the benchmark against which changes in entangle-
ment will be measured.

From this initial state ρTMSS, a subtraction step s produces
a state ρs with entanglement EN (ρs). We define the gain in
entanglement G (ρs) as the difference between entanglement
after distillation and that of the initial state, normalized to the
initial entanglement, i.e.,

G (ρs) = EN (ρs)

EN (ρTMSS)
− 1, (7)

such that G (ρs) > 0 if the subtraction step increases entan-
glement.

The probability of an entanglement-enhancing step must
be less than unity since entanglement cannot be increased on
average under LOCC [29]. It is calculated by

P (ρs) = Tr [s (ρ)] , (8)

where s (ρ) is the unnormalized density matrix following a
subtraction operation. The final density matrix ρs is found by
normalizing s (ρ) as follows:

ρs = s (ρ)

Tr [s (ρ)]
. (9)

The aim of an entanglement enhancement protocol is to
increase entanglement from some initial value. It is therefore
desirable not only for subtraction to produce a high gain
but also to do so at a high rate, i.e., that the probability of
a subtraction event is as high as possible. In general these
conditions cannot be met independently; therefore there exists
an optimum to be found based on the parameters of a given
implementation. We therefore define the entanglement gain
rate (frequently shortened to “rate” in the remainder of the
paper) � (ρs) as the gain afforded by a distillation step G (ρs)
multiplied by its likelihood,

� (ρs) = P (ρs) G (ρs) . (10)

By postselecting on successful subtraction events, the entan-
glement of this subensemble can be increased. The increase
will depend on the parameters of the subtraction step employed
and can be maximized to determine the values of those
parameters which yield the highest rate.

III. THE PROTOCOL

To effect subtraction and account for loss, we consider
an array of eight beam splitters, each with transmissivity
Ti and reflectivity Ri =

√
1 − T 2

i , acting on the TMSS as
shown in Fig. 1. The state initially occupies modes A,A′. The
beam splitters T2,T

′
2 effect subtraction, while the other beam
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FIG. 1. (Color online) A TMSS in a photon-subtraction setup. A
TMSS initially occupies modes A,A′. Following the array of beam
splitters (with transmissivity Ti,T

′
i ), we seek the entanglement in

modes S1,S
′
1 following detection in modes S3,S

′
3. Losses are modeled

by photons in modes before (S2,S
′
2), during (S4,S

′
4), and after (S5,S

′
5)

detection.

splitters T1,T3,T4 model losses before subtraction, during
detection, and after subtraction, respectively (and similarly for
the primed counterparts). As such, the state vector describing
the combined state of the input modes may be written
|�in〉 = |ψTMSS〉 ⊗ |0〉⊗8. The evolution of the input modes is
governed by the unitary transformation U ⊕ U ′. The unitaries
U and U ′ actually denote the orthogonal (rotation) matrices
corresponding to symplectic transformations in the Heisenberg
picture and operate on the modes as labeled in Fig. 1 and
circuit diagram (13). The elements of U,U ′ depend on the
arrangement of beam splitters and how they couple their
respective modes. For the array of beam splitters shown in
Fig. 1, U may be written as

U=

⎛
⎜⎜⎜⎜⎜⎜⎝

T1T2T4 −R1T2T4 −R2T4 0 −R4

R1 T1 0 0 0

T1R2T3 −R1R2T3 T2T3 −R3 0

T1R2R3 −R1R2R3 T2R3 T3 0

T1T2R4 −R1T2R4 −R2R4 0 T4

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)

and similarly for U ′, with all symbols replaced by their primed
counterparts. Since the only nonvacuum input modes are A,A′,
the output modes depend only on the first column of each
component unitary U,U ′. Indeed, we may write the output
state vector in the Fock basis as

|�out〉 =
√

1 − λ2
∞∑

n=0

λn

n!

(
5∑

m=1

σ1,ms†m

)n

×
(

5∑
m′=1

σ ′
1,m′s

′†
m′

)n

|0〉, (12)

where σ1,m is the (1,m)th element of the unitary U and s
†
m

is the creation operator for the mode m. We are interested in
the entanglement between the modes S1,S

′
1, occupied by e,e′

photons, respectively, dependent on detecting d,d ′ photons
in modes S3,S

′
3, respectively. The modes S2,S4,S5,S

′
2,S

′
4,S

′
5

contain l,l′ photons lost to the environment. These loss modes
can be combined, simplifying our problem into the following

circuit diagram:

|0〉⊗3

U

γ
|l〉⊗3

|0〉
β

d

|n〉
α

|e〉⎧⎨
⎩

⎫⎬
⎭|ψTMSS〉 s (ρ)

|n〉

U ′

α′
|e′〉

|0〉
β′

d′

|0〉⊗3
γ′

|l′〉⊗3

(13)

The photons in two input modes of the TMSS are divided into
three output modes each: entangled, detected, and lost, and we
assign parameters α,α′, β,β ′, and γ,γ ′ to be the fraction of
photons in each mode, respectively. These may be written in
terms of the components of the unitary U as follows:

α2 ≡ σ 2
1,1 = T 2

1 T 2
2 T 2

4 , (14a)

β2 ≡ σ 2
1,3 = T 2

1 R2
2T

2
3 , (14b)

γ 2 ≡
∑

m=2,4,5

σ 2
1,m = R2

1 + T 2
1

(
R2

2R
2
3 + T 2

2 R2
4

)
, (14c)

where the coefficients satisfy α2 + β2 + γ 2 = 1, as defined
by the unitarity condition (and similarly for their primed
counterparts). Substituting Eqs. (14) into Eq. (12) yields

|�out〉 =
√

1 − λ2
∞∑

n=0

λn
∑
S

ce,d,lc
′
e′,d ′,l′ |e,e′〉|d,d ′〉|l,l′〉,

(15)
where the summation is overS = {e,e′,d,d ′,l,l′ subject to e +
d + l = e′ + d ′ + l′ = n} and where we have defined

ce,d,l =
√(

n

e,d,l

)
αeβdγ l, (16)

with the multinomial coefficient [30] ( n
e,d,l ) (and similarly for

the primed quantities). On tracing out the loss and detected
modes, we obtain the (mixed) entangled state ρ across modes
S1,S

′
1 as

ρ = (1 − λ2)
∞∑

n,ñ=0

dmax,d
′
max∑

d,d ′

lmax∑
l,l′

cn,ñ,d,d ′,l,l′ |e〉S1〈ẽ| ⊗ |e′〉S ′
1
〈ẽ′|,
(17)

where dmax = min (n,ñ) − l, lmax = min (n,ñ), and cn,ñ,d,d ′,l,l′

are subject to the constraints e + d + l = e′ + d ′ + l′ = n, ẽ +
d + l = ẽ′ + d ′ + l′ = ñ, such that

cn,ñ,d,d ′,l,l′ = λn+ñn!ñ!αe+ẽα′e′+ẽ′
β2dβ ′2d ′

γ 2lγ ′2l′

d!d ′!l!l′!
√

e!e′!ẽ!ẽ′!
. (18)

As the mode structure is now clear, we will suppress the mode
labels S1,S

′
1 in further discussions for compactness.

A. Subtraction

Subtraction is effected by changing the limits of the
summation over d,d ′ in Eq. (17), leading to an unnormalized
subtracted state s (ρ). The exact form of this state depends on
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the subtraction strategy employed and is derived in detail in the
relevant sections below. To calculate the entanglement we seek
the sum of the negative eigenvalues of the partial transpose of
the normalized state. Using Eqs. (1) and (9), we therefore seek

En (ρs) = log2

{ ||s (ρ)TS1 ||1
Tr [s (ρ)]

}
, (19)

where s (ρ)TS1 is the partially transposed unnormalized state
with respect to mode S1. Following the analysis in Refs. [19,
20], we can write s (ρ)TS1 in block diagonal form, and we

change variables such that

n≡i + l + d, ñ ≡j + l + d, l′ ≡ i + j − K + l + d − d ′,
(20)

where the indices i,j denote the rows and columns of the
Kth block matrix of dimension K + 1. Thus s (ρ)TS1 is written
explicitly as

s(ρ)TS1 = (1 − λ2)
∞⊕

K=0

K∑
i,j=0

C
(K)
i,j |j 〉〈i| ⊗ |K − i〉〈K − j |,

(21)
with coefficients

C
(K)
i,j =

tmax,t
′
max∑

d,d ′=t,t ′

∞∑
l=l0

λi+j+2(l+d)αi+jα′2K−i−jβ2dβ ′2d ′
γ 2lγ ′2(i+j−K+l+d−d ′) (i + l + d)! (j + l + d)!

l! (l + i + j + d − K − d ′)!d!d ′!
√

i!j ! (K − j )! (K − i)!
, (22)

where l0 = max {0,K + d ′ − d − i − j} and t,t ′,tmax,t
′
max de-

pend on the type of detector employed. By inspection the
matrices C(K) = [C(K)

i,j ]i=0,...,K;j=0,...,K are symmetric, and
they are also persymmetric (and therefore centrosymmetric)
when the primed parameters are equal to their unprimed
counterparts and the range of the summations over d and d ′
are equal [20]. Equation (22) is central to the derivation of all
subsequent analytic results.

The coefficients C
(K)
i,j lead to a normalized state if d,d ′

are summed over entirely, i.e., the limits on the summation
over d,d ′ are t = t ′ = 0,tmax = t ′max = ∞, respectively. The
(unnormalized) state s (ρ) following a subtraction event is
found by placing limits on the d,d ′ summation, yielding coef-
ficients C̃

(K)
i,j = C

(K)
i,j (t,t ′,tmax,t

′
max), dependent on the strategy

employed. For threshold detectors that click on receipt of a
minimum number of photons, the sum runs from the threshold
value t to tmax = ∞ (for instance, single-photon avalanche
detectors have t = 1). For PNRDs operating within their
resolution regime, the summation disappears since tmax = t .

IV. SUBTRACTION USING PNRDs

We will first briefly consider the case when subtracted
photons are measured using perfect PNRDs. This amounts
to removing the sums over d,d ′ in Eq. (22).

A. Probability of photon subtraction

The probability P (t,t ′) = P (ρs) of detecting t = tmax,
t ′ = t ′max photons, respectively, is given by the trace of the
unnormalized state s (ρ) after a subtraction event. Detecting
t,t ′ subtracted photons by PNRDs projects onto modes S1,S

′
1

the unnormalized state

s(ρ) = (1 − λ2)
∞⊕

K=0

K∑
i,j=0

C̃
(K)
i,j |i〉E〈j | ⊗ |K − i〉E′ 〈K − j |,

(23)
where the coefficients C̃

(K)
i,j = C

(K)
i,j (t,t ′,t,t ′) are identical to

those in Eq. (22) for tmax = t,t ′max = t ′, and therefore the

summation over d is dropped. This has probability

P (t,t ′) = Tr[s(ρ)] = (1 − λ2)λ2t ′β ′2t ′β2t (α2 + γ 2)t
′−t

[1 − (α2 + γ 2)(α′2 + γ ′2)λ2]t ′+1

×P
(t ′−t,0)
t

[
1 + (α2 + γ 2)(α′2 + γ ′2)λ2

1 − (α2 + γ 2)(α′2 + γ ′2)λ2

]
, (24)

where P (a,b)
n [z] denotes the nth-order Jacobi polynomial. We

have assumed, without loss of generality, that t � t ′; owing
to the symmetry of the problem a corresponding equation for
t � t ′ can be found by swapping all of the primed values
with their unprimed counterparts. This expression is valid
if t,t ′ are known, i.e., in the case where detection resolves
photon number. This may be extended to threshold detectors
by summing over t,t ′ from the threshold t̃ ,t̃ ′ (typically unity)
to tmax,t

′
max. We deal with this scenario in greater detail in

Sec. V.

B. Lossless symmetric subtraction

Perfect symmetric photon subtraction detects an equal
number of photons in both modes with 100% efficiency. This
is equivalent to setting γ = γ ′ = 0, whereby l = l′ = 0 and
α = T2, the transmissivity of the subtraction beam splitter.
Symmetry implies t = t ′, α = α′, and β = β ′, implying K =
i + j , which simplifies Eq. (22) to

C
(K)
i,j = λK+2tα2Kβ4t (i + t)! (j + t)!

t!2
√

i!j ! (K − i)! (K − j )!
δK,i+j , (25)

where the Kronecker delta function δK,i+j means that all off-
antidiagonal elements are zero. In this case, each of the (K +
1) × (K + 1) blocks C(K) are both symmetric, C

(K)
i,j = C

(K)
j,i ,

and persymmetric, C
(K)
i,j = C

(K)
K−i,K−j , which can be exploited

[20,31] to compute the log negativity using

EN (ρ) = log2

{
(1 − λ2)

∑∞
K=0 Tr[J(K)C(K)]

P (t,t)

}
, (26)

where J(K) = [δi+j,K ] is the anti-identity matrix and we
include explicitly the normalization factor in the denominator.
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FIG. 2. (Color online) Lossless symmetric subtraction of a single photon using perfect photon-number-resolving detectors. (a) Entanglement
gain, (b) distillation probability, and (c) rate are shown for λ ∈ [0,1) and α2 ∈ [0,1).

The numerator traces over the antidiagonal elements C
(K)
i,K−i ,

while the denominator traces over the diagonal elements C
(K)
i,i .

This yields
∞∑

K=0

Tr[J(K)C(K)]

= (λβ2)2d

∞∑
K=0

K∑
i=0

(λα2)K
(i + t)! (K − i + t)!

t!2i! (K − i)!

=
(

λβ2

1 − λα2

)2t
1(

1 − λα2
)2 , (27)

and from Eq. (24), the probability simplifies to

P (t,t) = (1 − λ2)λ2tβ4t

(1 − λ2α4)t+1
Pt

[
1 + (λα2)2

1 − (λα2)2

]
, (28)

where Pn[z] is the nth Legendre polynomial, a special case
of the Jacobi polynomial P (a,b)

n [z] found in Eq. (24) given by
P (0,0)

n [z] = Pn[z]. This is an analytic, closed-form expression
of the results in Refs. [19,20] and yields an entanglement of

EN (ρs) = log2

{(
1 + λα2

1 − λα2

)t+1 /
Pt

[
1 + (λα2)2

1 − (λα2)2

]}
.

(29)
Figure 2 depicts the result for varying squeezing parameter
λ and subtraction coefficient α2. The behavior of the en-
tanglement gain rate in Fig. 2(c) shows that there exists an
optimum value that provides the best entanglement yield per
trial. High gain is less likely, such that the rate is peaked at
particular values of λopt = 0.66 and α2

opt = 0.83. On average,
these parameters produce the highest gain in entanglement per
trial.

In general, the parameter α2 is freely tunable when per-
forming the protocol, whereas λ is restricted by the maximum
squeezing available. Therefore it is useful to obtain an
expression for the optimal subtraction parameter α2

opt in terms
of the initial squeezing λ that maximizes the entanglement
gain rate � (ρs). These values are obtained from Fig. 2(c) and
are plotted as a function of λ in Fig. 3(a). For t = 1, the fit to
these data is a second-order polynomial of the form

α2
opt = 0.238 (λ − 1)2 + 0.576 (λ − 1) + 1. (30)

Thus, given that in the lossless case α = T2, we have the recipe
to dial up the most effective subtraction rate to maximize the
gain in entanglement per trial.

It has been shown previously that, all things being equal,
subtracting more photons increases the gain after subtraction

[20]. However, by optimizing α2 with respect to the rate,
this gain is only marginally higher with increasing d, as
shown in Fig. 3(c). Indeed, at λ > 0.6, there is no advantage
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FIG. 3. (Color online) Lossless symmetric subtraction with PN-
RDs. 3(a) α2 optimized over entanglement gain rate for a given
λ for different numbers of subtracted photons t . The maximum
(b) probability, (c) gain, and (d) rate achieved with the optimal α2 as
a function of λ for different values of t .
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FIG. 4. (Color online) Lossless symmetric and asymmetric subtraction with PNRDs. Using α,α′ optimized over entanglement gain rate for
different combinations of subtracted photons (t,t ′ � 2), we calculate (a) the achievable gain, (b) the success probability, and (c) entanglement
gain rate as a function of λ.

to subtracting more photons. As expected, even with the
optimal α2, the probability of entanglement gain decreases
significantly with increasing t , shown in Fig. 3(b). These
effects combine to yield a lower entanglement gain rate as
the number of subtracted photons is increased, as shown in
Fig. 3(d).

C. Lossless asymmetric subtraction

We now consider the case of perfect asymmetric subtrac-
tion, i.e., detecting different numbers of photons t �= t ′ in each
subtracted mode. When counting resources in terms of total
photons subtracted, asymmetric subtraction allows us to dou-
ble our space to include odd photon numbers. This additional
degree of freedom lifts the degeneracy in the coefficients, i.e.,
the primed quantities may take different values from their
unprimed counterparts. This doubles the number of parameters
over which the protocol can be optimized.

Starting again from Eq. (22), we detect t,t ′ photons in
each mode with unit efficiency. Since we are neglecting the
effects of loss in the system, γ = γ ′ = 0, and as such the
only nonzero contribution to the summation over l is the l =
0 term. Photon-number resolution is maintained by setting
tmax = t,t ′max = t ′ in Eq. (22) as before; however, they need
not be equal as in the case above. In this scheme the relation
γ = γ ′ = 0 ensures that all elements of C(K), except those that
satisfy i + j = K + t ′ − t , are zero. We may thus express the
elements of C(K) as

C
(K)
i,j = (1 − λ2)λi+j+2tαi+jα′2K−i−jβ2t β ′2t ′

× (i + t)!(j + t)!

t!t ′!
√

i!j !(K − i)!(K − j )!
δi+j,K+t ′−t . (31)

The matrices C(K) only have elements along one of their
skew diagonals, shifted from the main skew diagonal by
t ′ − t . This allows us to define an antidiagonal submatrix
B(K̄), where B(K̄) is a (K̄ + 1) × (K̄ + 1) matrix and where
K̄ = K − t ′ + t , which contains the elements on its main
skew diagonal. Without loss of generality, we are able to

choose t � t ′, whereby the elements of B(K̄) are B
(K̄)
i,j =

C
(K)
i+t ′−t,j+t ′−t . This is both symmetric and persymmetric, so the

above approach can again be used in computing the negativity.
When evaluating Tr[B(K̄)J(K̄)], the elements of interest are

B
(K̄)
i,K̄−i

= C
(K)
i+t ′−t,K−i , where

B
(K̄)
i,K̄−i

= (1 − λ2)λK̄+2t ′αK̄+2(t ′−t)α′K̄β2t β ′2t ′

× (i + t ′)!(K̄ − i + t ′)!

t!t ′!
√

(i + t ′ − t)!(K̄ − i + t ′ − t)!(K̄ − i)!i!
.

(32)

Equations (24) and (32) together lead to the relations

P (t,t ′) = (1 − λ2)λ2t ′β ′2t ′β2tα2(t ′−t)

(1 − α2α′2λ2)t ′+1

×P
(t ′−t,0)
t

[
1 + (αα′λ)2

1 − (αα′λ)2

]
(33)

and
∞∑

K̄=0

Tr[B(K̄)J(K̄)] = (1 − λ2)(λβ ′)2t ′β2tα2(t ′−t)

×
( ∞∑

i=0

(λαα′)i
(i + t ′)!√

i(i + t ′ − t)!t!t ′

)2

.

(34)

Unfortunately, no analytical expression could be found for
the sum of series in brackets. However, by considering the
ratios between successive terms in the series, it is clear that
it converges over the relevant range 0 < λαα′ < 1. This gives
an exact, but not closed, form for the log negativity of the state

EN (ρs) = log2

{
(1 − α2α′2λ2)t

′+1

P
(t ′−t,0)
t

[
1+α2α′2λ2

1−α2α′2λ2

]
}

+ 2 log2

{ ∞∑
i=0

(λαα′)i
(i + t ′)!√

i! (i + t ′ − t)!t!t ′!

}
. (35)

1. Comparing symmetric and asymmetric subtraction

As with the symmetric case earlier, we can directly compare
the entanglement gain, probability, and rate for asymmetric
subtraction. For illustration purposes, we compare different
ways of subtracting up to two photons from each mode. The
results are shown in Fig. 4.

It is clear from Fig. 4(a) that the symmetric cases, (t,t ′) =
(1,1) and (2,2), produce more gain than their asymmetric
counterparts for a fixed number of subtracted photons. From
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FIG. 5. (Color online) Lossy symmetric subtraction with PNRDs.
(a) Squeezing λ and subtraction α2 parameters, optimized to produce
the highest entanglement gain rate at a given loss and the resulting
(b) probability, (c) gain, and (d) rate resulting from these parameters.

Fig. 4(b), there exists a regime of λ � 0.7 for which the
probability of subtracting (2,0) photons is greater than the
(1,1) case; therefore the gain rate, shown in Fig. 4(c), is
correspondingly higher in this regime. This is because the (2,0)
subtraction event is more likely than the (1,1) case for high
values of λ. However, it is clear that in general the asymmetric
(1,0) case produces the most entanglement gain per trial, once
again due to the high likelihood of subtracting 1 photon as
opposed to 2 photons in any combination.

D. Losses and imperfect detection

In any realistic scenario, where the process of entanglement
distillation and entanglement enhancement will be most
essential, the detectors are imperfect, and evolving quantum
states suffer losses. Losses are accounted for by setting
γ,γ ′ > 0, and the summation over l (which denotes the
number of photons lost) includes contributions from l � 1
which are nonzero. Losses are modeled by beam splitters
before, during, and after subtraction, as shown in Fig. 1.
The effect of loss, for the symmetric cases where one [blue
(dark gray)], two [red (medium gray)] and three [green (light
gray)] photons are detected from each mode, is shown in
Fig. 5. As the combined loss γ 2 increases, optimal initial
squeezing λ for which entanglement can be enhanced by local
photon subtraction decreases. Furthermore, detecting higher

numbers of photons is more loss tolerant; since a smaller α2 is
required to subtract more photons, the restriction on γ 2 � 0.5
is reduced. Indeed, we can define γ 2

max as the maximum loss
for which entanglement still increases on subtraction. The
dependence of the maximum losses γmax = 1/t + 1 comes
from the gain as a function of loss, setting to zero and solving
for t the difference of Eqs. (6) and (38).

The constituents of γ,γ ′ are determined by Eq. (14c), where
we define efficiencies before, during, and after detection as
T 2

1 ,T 2
3 , and T 2

4 , respectively. From the expressions of γ,γ ′, it
is clear that each of these efficiencies contribute differently to
losses. The effect of detector efficiency, parameterized by T3,
is almost negligible. This can be interpreted by considering
the subtraction detector as something of a postselector: it
may not often click, but when it does, one can be fairly
certain that entanglement has been increased. Losses after
subtraction may be mitigated in a similar way, by using a loss-
tolerant entanglement detection strategy, such as postselection
or a loss-tolerant entanglement witness [32]. Loss before
subtraction, which may be modeled as a mixing of the state
due to nonunit channel transmission, is unavoidable, and its
contribution is significant.

1. Entanglement gain and rate under loss

To study the enhancement of entanglement in the presence
of losses and imperfection, we again start from Eq. (22), which
in the symmetric detection PNRD case for t = t ′ is given by

C
(K)
i,j =

∞∑
l=l0

λi+j+2(t+l)α2Kβ4t γ 2(i+j−K+2l)

× (i + l + t)! (j + l + t)!

l! (l + i + j − K)!t!2
√

i!j ! (K − j )! (K − i)!
,

(36)

where l0 = max (0,K − i − j ). Since this matrix is symmetric
and persymmetric, we can calculate the entanglement follow-
ing [20]. Defining x = 1 − α2λ and y = (α2 + γ 2)λ allows us
to write

Tr[J(K)C(K)] = (1 − λ2)β4t λ2t

(x2 − γ 4λ2)t+1
Pt

[
x2 + γ 4λ2

x2 − γ 4λ2

]
,

and the success probability is given by

P (t,t) = (1 − λ2)β4t λ2t

[1 − y2λ2]t+1
Pt

[
1 + y2

1 − y2

]
. (37)
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FIG. 6. (Color online) Lossy symmetric subtraction with PNRDs. The (a) gain, (b) probability, and (c) rate of entanglement increase as a
function of loss γ 2,γ ′2, given one photon subtracted from each mode.

022313-7



BARTLEY, CROWLEY, DATTA, NUNN, ZHANG, AND WALMSLEY PHYSICAL REVIEW A 87, 022313 (2013)

0
0.5

1

0
0.5

1

0

0.5

1

(a)

0
0.5

1

0
0.5

1

0

0.2

0.4

0.6

0.8

(b)

FIG. 7. (Color online) Lossy asymmetric subtraction with PNRDs. (a) Optimized subtraction parameter α2
opt and (b) squeezing parameter

λopt under loss given asymmetric (1,0) subtraction.

This yields a log negativity of

EN (ρ) = log2

⎡
⎣(

1 − y2

x2 − γ 4λ2

)t+1 Pt

[
x2+γ 4λ2

x2−γ 4λ2

]
Pt

[ 1+y2

1−y2

]
⎤
⎦ . (38)

These results reduce to the lossless symmetric detection case
given by Eqs. (27) and (28) when γ = γ ′ = 0.

2. Optimizing parameters under loss

Subtraction is a general strategy for increasing entangle-
ment. However, it is interesting to investigate which two-mode
squeezed states, parameterized by λ, are most improved by
this scheme. Furthermore, using Eqs. (37) and (38), we can
incorporate loss as an additional input parameter. For a given
implementation, the experimentalist has free choice of the
reflectivity of the subtraction beam splitter (proportional to
α). Therefore a logical question to ask would be, given losses
of a certain level, what is the optimum range of λ for which
subtraction yields the highest entanglement gain rate, and to
what value should the subtraction beam splitter reflectivity be
set in order to achieve this?

Figure 5(a) shows the pairs of λ and α2 values required to
produce the highest entanglement gain rate in the presence of
losses. Finding an empirical fit to these data, one obtains the

following formulas for setting the optimal λ and α2:

αopt(γ
2) = e−38.1(γ 2+0.1) − 0.6γ 2 + 0.8, (39)

λopt(γ
2) = e−107.1(γ 2+0.1)2 + e−2.8(γ 2+0.1) − 0.2. (40)

The gain and rate resulting from these parameters are plotted
as functions of the loss parameter γ in Figs. 5(c) and
5(d), respectively. One can immediately see that there is an
upper threshold on loss, above which entanglement cannot be
increased.

3. Symmetric subtraction, asymmetric loss

By setting t ′ = t in Eq. (24), one may calculate the
probability of symmetric subtraction allowing for different
parameters α,β,γ on each mode. However, lifting the degen-
eracy of the parameters across the different modes means the
submatrices C(K) are no longer centrosymmetric, and there-
fore the entanglement is not analytically tractable. Instead,
we calculate numerically the entanglement from Eq. (22).
Figure 6 shows the gain, probability, and rate for nondegener-
ate losses when subtracting a single photon from each mode.
The results in Fig. 5 are simply line-outs for γ = γ ′.

E. Losses in asymmetric subtraction

When subtracting photons asymmetrically, the effect of loss
on each mode may not be equivalent. As the simplest example
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FIG. 8. (Color online) Lossy asymmetric subtraction using PNRDs. (a) Gain, (b) probability, and (c) rate of entanglement gain as a function
of the losses γ 2,γ ′2 on modes 1 and 2, respectively. The probability of successful subtraction decreases very quickly with loss, and the positive
gain region is bounded asymmetrically, being roughly twice as sensitive to losses on the unsubtracted mode.
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FIG. 9. (Color online) Comparing lossless subtraction strategies between APDs and PNRDs. (a) Subtraction gain, (b) probability, and (c)
rate for lossless PNRDs and APDs in various subtraction strategies. The results for APDs and PNRDs for similar strategies, up to λ = 0.8, are
identical.

of asymmetric subtraction, we consider the (t,t ′) = (1,0) case,
whereby one photon is subtracted from one mode, and the
other mode is left unchanged. As shown in Fig. 4(c), this
case produces the highest entanglement gain rate for all λ.
We calculate numerically the optimal parameters α2

opt,λopt that
give the largest rate of gain, as shown in Fig. 7. Note that, since
we do not subtract from the second mode, the optimal α′2 is,
trivially, 1 − γ ′2 for all γ 2.

The resulting gain, probability, and rate are shown in
Figs. 8(a), 8(b), and 8(c) respectively. As is to be expected,
the effect of loss is not symmetric in this case. The gain region
is bounded more sharply by losses in the unsubtracted mode,
whereas the losses in the subtracted mode follow the scaling
of the symmetric case, Fig. 5(a).

V. SUBTRACTION WITH THRESHOLD DETECTORS

We now proceed to study the enhancement of entanglement
that can be effected by subtracting photons locally using
threshold detectors. We consider avalanche photodiodes, de-
tectors that click when at least one photon is incident. Starting
from Eq. (22), the effect of such detectors is described by the
summations over d from t = tmax = 0 for “off” or from t = 1
to tmax = ∞ for “on” and similarly for t ′. This analysis can
be extended to higher-photon-number threshold detectors by
changing the ranges corresponding to the on and off detection.
A physical example of such a detector would be a multiplexed
array of n APDs with a detection event triggered off n-fold
coincidences.

A. Probability of photon subtraction using APDs

The four measurement outcomes to consider when using
APDs are as follows: both detectors clicking (on, on), neither
clicking (off, off), or just one clicking (on, off) or (off, on).
The probabilities corresponding to these events must sum to
unity.

The (off, off) case is identical to the case where both
PNRDs register no photons. Defining y = (α2 + γ 2)λ,y ′ =
(α′2 + γ ′2)λ, the probability in this case is

P (off, off) = 1 − λ2

1 − yy ′ . (41)

The (off, on) case is also analytically tractable when incorpo-
rating losses. From Eq. (24), P (off, on) is given by

P (off, on) =
∞∑

t ′=1

P (0,t ′) = (1 − λ2)y(λ − y ′)
(1 − yλ)(1 − yy ′)

. (42)

Note that P (on, off) is identical to the result above under
exchange of primed and unprimed parameters. The probability
of both detectors registering photons P (on, on) can be tackled
by using the relation

∑
p,q=(on,off) P (p,q) = 1, yielding

P (on, on) = (y − λ)(y ′ − λ)(1 − yy ′λ2)

(1 − yλ)(1 − y ′λ)(1 − yy ′)
. (43)

B. Lossless subtraction

The idealized case of lossless symmetric subtraction using
APDs with unit efficiency is analytically tractable [20].
However, lifting the degeneracy of the parameters means the
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FIG. 10. (Color online) Lossy subtraction with APDs. Subtraction parameters (a) α2 and (b) α′2 and 10(c) squeezing parameter λ, optimized
to produce the highest entanglement gain rate under loss given symmetric subtraction with APDs.
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FIG. 11. (Color online) Comparing symmetric and asymmetric subtraction with APDs under loss. The difference between (on, on) and (on,
off) subtraction events in (a) gain, (b) probability, and (c) rate as a function of the losses γ 2,γ ′2 on modes 1 and 2, respectively.

submatrices CK are no longer centrosymmetric, rendering in-
tractable the analytical method used previously. All subsequent
results are therefore numerical.

In Ref. [20], it was shown that for squeezing parameters
λ < 0.95, the results are essentially equivalent to those with
PNRDs. The same is true for perfect asymmetric subtraction:
the case where (1,0) photons are simultaneously detected on
each mode, respectively, is, within the limits of our numerical
analysis, identical to the case where (on, off) is detected with
APDs, as shown in Fig. 9 up to λ = 0.8.

C. Lossy subtraction

As with the PNRD case calculated above, we can use
entanglement gain rate as the figure of merit to be optimized,
from which the optimal parameters can be extracted. The
optimal parameters α2

opt and λopt are shown in Fig. 10, with
the resulting gain, probability, and rate identical to that shown
for PNRDs in Fig. 8, as a function of the asymmetric loss
parameters γ 2,γ ′2. Note that the optimal parameters are also
the same for both the PNRD and APD cases.

1. Imperfect asymmetric detection

As with perfect subtraction, the behavior of APDs and
PNRDs under loss is the same at experimentally accessible
values of λ. In the lossless case, we have shown that
asymmetric subtraction always produces a higher rate of
entanglement gain (Sec. IV C, Fig. 8). We now ask whether
one strategy is always better than the other for all losses. This
turns out not to be the case, as shown in Fig. 11.

While the gain produced when subtracting from both modes
is always greater than when subtracting from a single mode
[Fig. 11(a)], for a particular range of losses on each mode γ,γ ′,
the probability favors subtracting from just a single mode. This
result is repeated in the plot showing the comparative rate of
gain [Fig. 11(c)].

VI. CONCLUSION

We have investigated photon subtraction from a two-
mode squeezed state as a means to probabilistically increase
entanglement under LOCC. By defining the entanglement gain
rate as our figure of merit, we are able to optimize over the
subtraction beam splitter transmissivity T2 to maximize this

quantity in the presence of unequal losses on each mode. Our
results may be summarized as follows.

(1) If the losses are above a threshold, which depends on the
number of photons to be subtracted, local subtraction cannot
enhance entanglement.

(2) When it can, (1,0) subtraction seems to be the best
strategy, whether APDs or PNRDs are used to detect the
subtracted photon.

(3) However, depending on how losses are distributed
across the modes, symmetric subtraction may be advanta-
geous.

(4) Subtracting more photons produces marginal enhance-
ment in entanglement and is far less probable.

(5) APDs are essentially equivalent to PNRDs for most
of the λ regime, including when accounting for asymmetric
losses.

Given any realistic scenario with lossy transmission chan-
nels and imperfect detectors, our conclusions outline the most
suitable strategy that must be adopted to achieve entanglement
enhancement in CV systems most effectively. This approach
also specifies the initial squeezing parameter λopt for which
this particular protocol works best. The figure of merit we use
in this paper is the entanglement gain rate, relevant to quantum
communication applications. For other applications, it may be
the final entanglement, or indeed the gain alone, that is more
important. The methods presented in this paper can be easily
modified for those purposes.

Photon subtraction is one of the simplest operations
introducing non-Gaussianity, thereby opening the gate to a
large class of CV quantum information processing protocols
such as entanglement distillation that are not possible in the
Gaussian regime. We hope that our work will inform future
efforts to increase entanglement via this technique under
realistic experimental conditions.
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[8] J. Fiurášek, L. Mišta, and R. Filip, Phys. Rev. A 67, 022304

(2003).
[9] D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev.

A 67, 062320 (2003).
[10] E. T. Campbell and J. Eisert, Phys. Rev. Lett. 108, 020501

(2012).
[11] E. T. Campbell, M. G. Genoni, and J. Eisert, arXiv:1211.5483

[quant-ph] (2012).
[12] B. Hage, A. Samblowski, J. Diguglielmo, A. Franzen,
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