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We investigate the schemes of quantum network teleportation for quantum information distribution and
concentration, which are essential in quantum cloud computation and the quantum internet. In those schemes,
with the prior shared entanglement in the quantum network, the cloud can send simultaneously identical unknown
quantum states to clients located in different places. Additionally, with the same entanglement resource, these
clients can concentrate their states to the cloud to reconstruct the original state. The number of clients can be
beyond the number of identical quantum states intentionally being sent; this quantum network teleportation
can make sure that the quantum states’ distribution is optimal in the sense that the fidelity achieves the upper
bound. These schemes facilitate the quantum information distribution and concentration in quantum networks in
the framework of quantum cloud computation. Potential applications in time synchronization and the photonic
implementation of those schemes are discussed.
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I. INTRODUCTION

In the past decades, much progress has been made in the
fields of quantum information science and quantum physics.
Recently, the quantum network and its extension, the quantum
internet, have been attracting a great deal of interest [1–5]. The
quantum networks are constituted by quantum nodes where
quantum information can be generated, processed, and stored
locally. Those nodes are linked by quantum channels and
classical channels. With quantum networks, the quantum cloud
computation (QCC) seems emergent. In QCC, the constituent
quantum nodes may only have moderate capabilities in
quantum information processing and some central quantum
computers have the full quantum computational power. So the
clients at some quantum nodes with limited power can finish
all quantum information tasks with the help of the quantum
servers, which are assumed to be the cloud. In addition, it is
also shown that quantum computers can provide unconditional
security in data processing by the quantum blind computation,
as proven theoretically and demonstrated experimentally in
Refs. [6,7].

An essential feature of a quantum network is that the quan-
tum nodes are linked by both quantum channels and classical
channels so that the entanglement can be distributed among
them, and thus a fully quantum network has an exponentially
large state space. In case there is a largest size attainable for
the state space of an individual quantum node, the quantum
network provides the infrastructure to link such quantum
nodes together as a fully quantum network [1]. Then this
full quantum realm with available classical communication
can process various quantum information tasks which may
not be accomplished if restricted to several local quantum
nodes provided they are only classically linked. The quantum
network has the capabilities for quantum computation even
with a distributed style, such as the blind quantum computation
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[6], the unconditional secure quantum communication [8],
quantum metrology [9,10], and the simulation of quantum
many-body systems [11–14]. Those exciting opportunities
provide the motivation to examine research related to the
quantum network protocols and the physical implementations.

One of the most fundamental functions of a quantum
network should be the quantum information transportation
from site to site with high fidelity. However, the inevitable de-
coherence and lossy of flying qubits may induce high errors in
the direct transportation of quantum information. Fortunately,
quantum information science also provides teleportation for
state transportation with a prior shared entanglement [15]. The
reduction of entanglement caused by decoherence and lossy
of quantum channel, however, can be overcome by various
schemes in quantum information science, such as purification
and quantum repeaters [16–19]. With a maximally entangled
state resource, a quantum state can thus be teleported perfectly
from one site to another site only if the “local” quantum
operations are perfect. Now we are wondering whether we can
have a quantum network teleportation, i.e., many states can be
teleported simultaneously across the quantum network with a
reduced consumption of the precious entanglement resource.
The one-to-many quantum network teleportation is already
studied in the framework of telecloning for qubit [20] and
qudit [21] and as the programmable processor [22]. In this
work, we will study systematically this problem for the general
distribution and concentration of quantum information across
quantum networks.

II. QUANTUM NETWORK TELEPORTATION FOR
QUANTUM INFORMATION DISTRIBUTION

For QCC in a quantum network, we suppose that the cloud
tries to teleport N identical but unknown d-level quantum
states, i.e., qudits, to N remote clients located in spatially
separated quantum nodes. This can be realized by standard
teleportation and each qudit is teleported independently.
However, we may find an improved method, as presented in
the following. With prior shared entanglement, our network
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teleportation protocol is that the cloud performs coherent
quantum operation, and each client can recover the qudit
locally with the help of the classical information. The case
that the cloud tries to distribute quantum information to more
than N remote clients is almost the same, and we thus present
those results in a unified way.

Suppose N identical qudits |ϕ〉⊗N are in X possessed by the
cloud, and M spatially separated clients who will receive the
qudit are located in quantum nodes C1,C2, . . . ,CM denoted as
C with M � N . Due to the no-cloning theorem [23], when M

is strictly larger than N , each retrieved qudit will not be exactly
equal to |ϕ〉, but our protocol is to achieve the optimal fidelity.
The cloud at port P first shares entanglement with clients C

as a resource; instead of the Bell measurement in standard
teleportation, the cloud performs a positive operator-valued
measure (POVM) on XP, which is initialed for the qubit case
in Ref. [24]. By using the local recovery unitary operators
(LRUOs) according to the publicly announced POVM results,
each client can obtain their optimal state which is consistent
with the optimal quantum cloning [25–31]. The entangled state
used in this network teleportation takes the form

|ξ 〉PAC = 1√
d[M]

M∑
−→
m

|−→m 〉PA|−→m 〉C, (1)

where d[M] = CM
d−1+M is the dimension of the symmetric

space H⊗M
+ , which is a subspace of the M-fold Hilbert space

H⊗M , and |−→m 〉 ≡ |m0,m1, . . . ,md−1〉 is a completely symmet-
ric normalized state with mj states that are |j 〉; the constraint in
summation is

∑
j mj = M , and A represents ancillary states

and can be M − N qudits. There is an explicit map between
this entangled state and the direct product of M maximally
entangled states in [31] presented as |ξ 〉PAC = dM/2√

d[M]
[I⊗M

PA ⊗
SM

C ]|�+〉⊗M , where |�+〉 = 1√
d

∑
j |jj 〉, I is the identity

operator on Hilbert space H, and SM =∑−→
m |−→m 〉〈−→m | is the

symmetric projector that maps states in H⊗M onto H⊗M
+ . With

the help of a result that the symmetric state |−→m 〉 of M qudits can
be divided into two symmetric states of N qudits and (M − N )
qudits [31], we rewrite the shared maximally entangled state
as

|ξ 〉PAC = 1√
d[N ]

N∑
−→
n

|−→n 〉P
⎡
⎣η

mj �nj∑
−→
m

√√√√∏
j

mj !

(mj − nj )!nj !

× |−→m − −→
n 〉A|−→m 〉C

⎤
⎦

= 1√
d[N ]

N∑
−→
n

|−→n 〉P
⎡
⎣η

M−N∑
−→
k

√√√√∏
j

(nj + kj )!

kj !nj !

× |−→k 〉A|−→n + −→
k 〉C
⎤
⎦= 1√

d[N ]

N∑
−→
n

|−→n 〉P |φ−→
n 〉AC,

where the normalization coefficient is η =
√

1
CN

M

d[N]
d[M] . The pure

state of qudit is |ϕ〉 =∑j xj |j 〉,∑j |xj |2 = 1. So, N identical

qudits |ψ〉X = |ϕ〉⊗N belong to the symmetric subspace H⊗N
+

FIG. 1. Procedures of information distribution. The cloud and
spatially separated clients share the entanglement resource. POVM
is performed and the classical information is sent to clients who can
recover their states locally.

as follows:

|ψ〉X =
N∑
−→
n

⎛
⎝√

N !
∏
j

x
nj

j√
nj !

⎞
⎠ |−→n 〉 =

N∑
−→
n

y−→
n |−→n 〉. (2)

In our scheme, the cloud performs a POVM as follows:∫
d
−→
x F−→

x =
∫

d
−→
x λ(−→x )|χ (−→x )〉〈χ (−→x )| = SN

X ⊗ SN
P , (3)

|χ (−→x )〉 = [I⊗N
X ⊗ U (−→x )⊗N

P

] 1√
d[N ]

N∑
−→
n

|−→n 〉X|−→n 〉P , (4)

where SN ⊗ SN is the identity operator in the space H⊗N
+ ⊗

H⊗N
+ , U (−→x ) is an element of the compact Lie group SU(d),

and the vector −→
x consisting of (d2 − 1) parameters determines

the unitary matrix.
Interestingly, the order of the symmetric projector SM

and the unitary transformation U (−→x )⊗M can be exchanged,
U (−→x )⊗NSM = SMU (−→x )⊗M . We also have the property (U ⊗
U ∗)|�+〉 = |�+〉. Representing the network teleportation, the
total system can be expressed as

|ψ〉X|ξ 〉PAC =
∑
−→
x

λ(−→x )|χ (−→x )〉XP 〈χ (−→x )|ψ〉X|ξ 〉PAC

= 1

d[N ]

∑
−→
x

λ(−→x )|χ (−→x )〉XP

×[U †⊗(M−N)
A ⊗ UT ⊗M

C

]†|ψc〉AC, (5)

where the ultimate output state |ψc〉AC =∑N−→
n

y−→
n |φ−→

n 〉AC in
our scheme is optimal, which is equivalent to the result of
optimal universal cloning [29–31]. The procedures of quantum
information distribution are described in Fig. 1. Note that
UT (−→x ) is the LRUO performed by each receiver locally, while
U †(−→x ) is performed by each ancillary depending on POVM
results −→

x , where superscript T means transposition.
In order to show that Eq. (3) is true, some knowledge of

group theory is necessary. According to the Theorem of Weyl
Reciprocity [32], the order of an arbitrary permutation Pα

and the unitary transformation U⊗N can be exchanged, and
the subspace Y [λ]

μ H⊗N is invariant under transformation U⊗N ,
where Y [λ]

μ is a standard Young operator corresponding to the
standard Young tableau with N boxes. Also, the symmetric
projection SN = 1

N!

∑
α Pα is equal to the standard Young
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operator 1
N!Y [N]; thus we have

U (−→x )⊗NSN = SNU (−→x )⊗N, (6)

U (−→x )⊗N |−→n1 〉 =
∑
−→
n2

D−→
n2 ,

−→
n1

(−→x )|−→n2 〉, (7)

where D(−→x ) is a unitary representation of Lie group SU(d). In
the group theory, there is a theorem [32] that states that ifY [λ]

μ is
a standard Young operator, then an irreducible representation
of group SU(d) will be induced when U (−→x )⊗N operates
on invariant subspace Y [λ]

μ H⊗N . So, D(−→x ) is an irreducible
representation of SU(d). Then, according to Schur’s lemmas
and the orthogonality relations [32,33], we get

1

d[N ]

∫
d
−→
x λ(−→x )D−→

n1 ,
−→
n2

(−→x )D∗−→
n3 ,

−→
n4

(−→x ) = δ−→
n1 ,

−→
n3

δ−→
n2 ,

−→
n4

.

(8)
This equation ensures the integral of the projectors F−→

x

is equal to the identity in the space H⊗N
+ ⊗ H⊗N

+ . In the
special case when we know the analytical expression of the
unitary matrix U (−→x ) and its irreducible representation D(−→x ),
an appropriate finite POVM can be constructed, and then
the integral degenerates into summation. It is important to
construct the finite POVM because it can be experimentally
realizable. Some details for the qubit case will be discussed in
the next section.

Thus, by network teleportation, N identical qudits are
distributed simultaneously to M spatially separated clients in
the quantum networks. If M = N , each client can retrieve
perfectly this qudit; if M > N , each retrieved qudit is optimal.
The amount of entanglement used is log d[M], which is less
than M log d if standard teleportation is performed repeatedly.
One may realize that this scheme can distribute arbitrary
symmetric state |ψ〉X =∑−→

n α−→
n |−→n 〉 in the cloud to remote

clients optimally. When N = 1, the POVM will reduce to the
standard Bell-type measurement [15,20,21].

III. QUANTUM NETWORK TELEPORTATION OF QUBITS

The explicit and finite POVM can be found for the qubit
case. In d = 2, an arbitrary unitary operator can be expressed
by using three Euler angles α, β, and γ , U (−→x ) = U (α,β,γ ),
as shown in Refs. [32,33],

U (α,β,γ ) =
[

cos β

2 ei(α+γ )/2 sin β

2 e−i(α−γ )/2

− sin β

2 ei(α−γ )/2 cos β

2 e−i(α+γ )/2

]
. (9)

The symmetric state |−→n 〉 is denoted as |JM〉, where |JM〉
denotes that J − M states are |0〉 and J + M states are
|1〉,(J = N/2, M = {−J,−J + 1, . . . ,J − 1,J }). And the ir-
reducible representation is given by the following analytical
form [32,33]:

U (α,β,γ )⊗N |JM〉
=
∑
M ′

e−i(Mα+M ′γ )dJ
M ′,M (β)|JM ′〉,

×
∑

ν

(−1)ν
[(J +M ′)!(J − M ′)!(J + M)!(J − M)!]1/2

(J +M ′ − ν)!(J − M − ν)!ν!(ν + M − M ′)!

×
(

cos
β

2

)2J+M ′−M−2ν (
sin

β

2

)2ν−M ′+M

= dJ
M ′,M (β).

In order to ensure that Eq. (8) is satisfied, we choose the
following parameters to construct a finite POVM:

α = j
2π

N + 1
, j = 0,1, . . . ,N,

γ = j ′ 2π

N + 1
, j ′ = 0,1, . . . ,N,

(10)
λ(α,β,γ ) = λ(β),∑

β

λ(β)
[
dJ

M ′,M (β)
]2 = 1

N + 1
.

The next task is to simplify the equations which determine
β and λ(β), and we find that the result is surprisingly concise.
It is important to obtain the simplified expression[

dJ
M ′,M (β)

]2 =
∑
μ,ν ′

(−1)μ+ν ′+M ′−MC
μ

J+M ′C
μ+M−M ′
J−M ′

×Cν ′
J+MCν ′+M ′−M

J−M

(
cos

β

2

)2N−2(μ+ν ′)

×
(

sin
β

2

)2(μ+ν ′)

. (11)

(i) We can choose M ′ = J, M =
{−J,−J + 1, . . . ,J − 1,J }, then [dJ

J,M (β)]2 =
CJ−M

N (cos β

2 )2N−2(J−M)(sin β

2 )2(J−M), and therefore∑
β

λ(β)
[
dJ

M ′,M (β)
]2 = 1

N + 1

⇒
∑

β

λ(β)Ci
N

[
cos

β

2

]2(N−i) [
sin

β

2

]2i

= 1

N + 1
. (12)

(ii) Using Schur’s Lemma and the orthogonality relations
[32,33], we have∫ π

0
dβ sin β

[
dJ

M ′,M (β)
]2 = 2

2J + 1
. (13)

And according to the well-known Euler integral, B function
and � function, we get∫ π

0
dβ sin β

(
cos

β

2

)2N−2(μ+ν ′) (
sin

β

2

)2(μ+ν ′)

= 2

N + 1
× 1

C
μ+ν ′
N

. (14)

Thus,∑
μ,ν ′

(−1)μ+ν ′+M ′−M

C
μ+ν ′
N

C
μ

J+M ′C
μ+M−M ′
J−M ′ Cν ′

J+MCν ′+M ′−M
J−M

= 1,∑
β

λ(β)Ci
N

[
cos

β

2

]2(N−i) [
sin

β

2

]2i

= 1

N + 1
⇒
∑

β

λ(β)[dJ
M ′,M (β)]2 = 1

N + 1
. (15)
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TABLE I. Values for β and weight factors λ(β) to construct a finite POVM.

N = 1 N = 2 N = 3

β/2 0 π/2 0 π/4 π/2 0 π/6 π/3 π/2
λ(β) 1/2 1/2 1/6 2/3 1/6 1/18 4/9 4/9 1/18

So, we have proven that the concise independent equations
which determine β and λ(β) are

∑
β

λ(β)Ci
N

[
cos

β

2

]2(N−i) [
sin

β

2

]2i

= 1

N + 1
, (16)

where i = 0,1, . . . ,N . We can choose the parameters β =
j π

N
(j = 0,1, . . . ,N ), and it is convenient to find the weight

factors λ(β) from the linear equations (16). Given these pa-
rameters, we have dimH⊗N

+ ⊗ H⊗N
+ = (N + 1)2 < �(F−→

x ) =
(N + 1)3, which is different from the results in Ref. [24]. For
N = 1,2,3, we explicitly present these factors in Table I. If we
use standard teleportation N times, then 2N bits of classical
information and N ebits of entanglement are required. Our
scheme requires 3N log2(N + 1) bits of classical information
and log2(N + 1) ebits of entanglement; the precious entangle-
ment resource is saved.

IV. QUANTUM INFORMATION CONCENTRATION IN
THE NETWORKS

Remote quantum information concentration is a reverse
process of the quantum information distribution. It begins
with a situation where the spatially separated clients hold the
clones that the cloud distributed. The aim is to concentrate the
distributed quantum information by a network teleportation
scheme. The process can be done, trivially for example, by
repeatedly using standard teleportation so that all states are
teleported to the cloud, then a reverse unitary transformation
on all states is performed to recover the original state. The
drawbacks of this method are that lots of entanglement
resources are needed and a coherent operation on a large
Hilbert space including all states is necessary. It is already
shown that bound entanglement can be used as a resource in
quantum information concentration [34], and some different
schemes are also proposed in some contexts [35–38].

Next is our general network teleportation scheme for quan-
tum information concentration, which can be accomplished
by two different methods. By distribution state |ψ〉X = |ϕ〉 =∑

j xj |j 〉 to M clients C1, . . . ,CM with M − 1 ancillary states
A1, . . . ,AM−1, we have [30]

|ψc〉AC =
√

d

d[M]

⎛
⎝∑

j

αjP 〈j |
⎞
⎠
⎛
⎝ M∑

−→
m

|−→m 〉PA|−→m 〉C
⎞
⎠ .

First, we suppose M maximally entangled states |�+〉
are shared between pairs of ancillary states and clients
(C ′

j ,A
′
j ), j = 1, . . . ,M , where A′

M = cloud; then the total

system is expressed as

|ψc〉AC

∏
j

|�+〉C ′
j A

′
j

= 1

dM

∑
mi,ni

∏
j

∣∣�mj ,nj

〉
Cj C

′
j

(
Umj ,nj

)†
A′

j

|ψc〉AA′ . (17)

The universal cloning state |ψc〉AC can be transferred
to |ψc〉AA′ by using standard teleportation [15].
We also have the equation

∑
−→
m |−→m 〉A′ |−→m 〉A =∑

m′,n′ f (m′,n′)δ∑m′
i ,0δ
∑

n′
i ,0
∏

j |�m′
j ,n

′
j
〉A′

j ,Aj
, where

m′ = (m′
1, . . . ,m

′
M ), n′ = (n′

1, . . . ,n
′
M ), and module d is

always assumed. Thus, Bell measurements on qubits A′
iAi

(i = 1, . . . ,M − 1) with outcomes {m′
i ,n

′
i} can let the cloud

recover the original state by local operation Um,n, where
m = (

∑
m′

i), n = (
∑

n′
i). The entanglement and procedures

of concentration scheme can be represented by Fig. 2.
Additionally, we can show that entanglement in Eq. (1) can

be a universal resource which can also accomplish network
concentration. In the second scheme, the clients and A

perform Bell measurements,
∏

i |�mi,ni
〉Ci,C

′
i

∏
j |�xj ,yj

〉A′
j ,Aj

,
then the cloud performs the local operation Um,n on its qudit
according to the measurement results, where m =∑mi +∑

xj ,n =∑ ni +∑ yj . The resource |�+〉⊗M can be used
in this scheme because U

†
mj ,nj

|�m′
j ,n

′
j
〉 ∝ |�m′

j −mj ,n
′
j −nj

〉. On
the other hand, the entanglement resource used in the dis-
tribution can also accomplish this concentration task, |ξ 〉 =√

1
d[M] (

∑
−→
m |−→m 〉|−→m 〉) = 1√

d[M]M!

∑
σ

∏
j |�+〉A′

j Aσj
, where

σ is a permutation. It is obvious that the amount of entan-
glement in this scheme is reduced.

FIG. 2. Procedures of remote information concentration. The
cloud and spatially separated clients share the entanglement resource,
Bell-type measurement is performed, and the classical information is
sent to the cloud.
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V. POTENTIAL APPLICATIONS AND DISCUSSIONS

For qubits, the maximally entangled bipartite state used
in our scheme has been generated experimentally by using
stimulated parametric down-conversion and has been used
in the 1-to-3 + 2 information distribution [39]. Some other
experiments also produce such entanglement and realize the
quantum information distribution [40]. With the schemes
presented in this paper, it is possible that the many-to-many
information distribution and the many-to-one information
concentration can also be realized experimentally.

The quantum information distribution is no doubt very
useful as a fundamental function of a quantum network.
The application of quantum information concentration seems
obscure. Here we try to propose one application for both
distribution and concentration functions. It is known that the
timekeeping of International Atomic Time [41] is operated
jointly by several atomic clocks located in different places
around the world with different environments and accuracies.
We suppose that its next generation might be operated by using
a quantum network. The quantum information distribution can
be used as the time synchronization method. In case all duty
atomic clocks run independently, the quantum information

concentration thus can collect all different times and form
one average (with different weights) standard time. It then
can be distributed again for time synchronization. From this
viewpoint, the concentration will be very useful for cases
where only one standard or only the average value is important.
This function is expected to be broadly useful in QCC and
quantum networks.

In conclusion, we present a general network quantum
teleportation for quantum information distribution and con-
centration with a universal entanglement resource. Our scheme
can play a key role in quantum networks and in QCC, and it
might be useful in time synchronization. Since teleportation
plays a fundamental role in many protocols in quantum
information science, the network teleportation can be modified
and extended to other cases.
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