
PHYSICAL REVIEW A 87, 022126 (2013)

State-independent contextuality with identical particles

Adán Cabello1,2,* and Marcelo Terra Cunha3,†
1Departamento de Fı́sica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain

2Universidade Federal de Minas Gerais, Caixa Postal 702, 30123-970, Belo Horizonte, MG, Brazil
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It has been recently conjectured that the state-independency of quantum contextuality may be lost when the
indistinguishability of identical particles is taken into account. Here, we show that quantum state-independent
contextuality exists for any system of more than one identical bosonic qudit, and for most systems of fermionic
qudits. The only exception is the case of d fermionic qudits, since there the dimension of the antisymmetric
subspace is 1, which is insufficient for contextuality. For all the other cases, either the symmetry precludes the
existence of physical states or we provide an explicit method to produce quantum state-independent contextual
correlations.
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I. INTRODUCTION

All photons are identical in their properties; the same is
true of all electrons, all kaons, etc. Particle indistinguishability
has important consequences (e.g., it is behind lasers, Bose-
Einstein condensation, and superconductivity) and leads to
extra postulates in nonrelativistic quantum mechanics (QM).
The fact that two physical situations that differ only by the
permutation of identical particles do not have any observable
difference is called the principle of indistinguishability [1],
although it merely defines what we mean by “identical”
particles. A consequence is that any prediction of QM must
be invariant under permutation of identical particles. This
leads to a superselection rule prohibiting interference between
states of different permutation symmetry. In addition to that,
if one keeps the usual QM formulation, relating pure states to
one-dimensional projectors (also called rays), there are only
two one-dimensional representations of the permutation group
[2]; the only physical states for identical particles whose spin
is integer, called bosons (half-odd integer, called fermions) are
the symmetric (antisymmetric) states. Symmetric (antisym-
metric) states are those invariant (multiplied by −1) under any
two-particle interchange [3].

While there are many works investigating entanglement and
nonlocality for identical particles [4–12], little is known about
how particle indistinguishability and the symmetrization pos-
tulate affect quantum contextuality [13] and state-independent
quantum contextuality.

The hypothesis that compatible measurements reveal re-
sults that are independent of the choice of which other
compatible measurements are jointly performed is inconsistent
with QM [14–16]. This is what is meant by quantum
contextuality. Consequently, contextual correlations can be
obtained by measuring suitably chosen sets of observables
on a system prepared in a suitably chosen quantum state.
A well-known example of quantum contextuality is given
by quantum nonlocality, when quantum correlations violate
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some Bell inequality [17]. Contextual correlations, however,
can also be observed on any physical system (not necessarily
composite) described in QM by a Hilbert space of dimension
3 or higher. The importance of having a minimum of three
dimensions is explained by the fact that in lower dimensions
any observable does not belong to more than one context (i.e.,
a set of compatible observables), so noncontextuality does
not impose any restriction, and the notion of contextuality is
meaningless. For example, for two-dimensional Hilbert space,
a nontrivial observable O induces a complete splitting of this
space as an orthogonal direct sum of two irreducible subspaces,
implying that all other observables compatible with this given
one are also mutually compatible and all contexts for the
observable O are equivalent.

A notable property of quantum contextuality is that the same
set of observables can produce contextual correlations for any
initial quantum state of the system [18]. These correlations
are called state-independent contextual (SIC) correlations and
have been observed in experiments with ions [19] and photons
[20,21]. There is a method [22] for producing SIC correlations
from any Kochen-Specker (KS) set of yes-no tests [16]. Since
explicit KS sets exist for any quantum system with state
space of dimension 3 or higher [23,24], this implies that SIC
correlations can be produced for any of these physical systems.
The situation does not change by the observation that there are
sets of yes-no tests, which are not KS sets but can be used
to produce SIC correlations [25,26], since the necessary and
sufficient condition for SIC correlations [27] still requires the
quantum systems to have at least dimension 3.

In this article, we address the problem of whether SIC
correlations can be obtained for physical systems of indis-
tinguishable particles. Recently, Srikanth and Gangopadhyay
[28] have speculated that the state-independency of quantum
contextuality might be lost in this case. Their argument is
based of the impossibility of symmetrizing a specific proof
of state-independent contextuality for a two-qubit system.
The aim of this paper is to show that SIC correlations can
be produced with any number (n � 2) of identical bosonic
and most numbers of fermionic qudits, and to provide an
explicit method for producing SIC correlations in all these
cases.
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II. PROOF THAT SIC CORRELATIONS EXIST FOR
MOST SCENARIOS

Our physical systems consist of n identical fermions
(bosons), each of them having d levels, when considered
isolated. This d counts all physical degrees of freedom
(including the spin levels), otherwise we cannot deal with
the symmetrization postulate. A two-ququart fermionic system
could be, for example, a system of two spin- 1

2 particles, each
of them with access to two spatial modes. Notice, however,
that, with this definition, n-qudit fermionic systems do not
exist for odd d, since fermions cannot be spinless, and its
spin-state space has even dimension. We shall continue the
general argument, however, under the assumption that one can,
at least in principle, take a fermionic system with two degrees
of freedom (e.g., spin and d available spatial modes) and
impose a symmetric state of spin, implying an antisymmetric
d-dimensional effective state space [9]. However, a two-qubit
fermionic system could be two spin- 1

2 particles with no extra
degrees of freedom (e.g., a doubly occupied quantum dot). For
bosons no restriction applies, since we can simply assume that
the spin is zero.

Given a Hilbert space H = ⊗n
i=1 Hd , representing the

complete state space of a system of n distinguishable qudits,
we denote byS andA the totally symmetric and antisymmetric
subspaces ofH, respectively. S andA are mutually orthogonal
subspaces and each of them is itself a Hilbert space. The
key point for having SIC correlations in identical particles
is that each physical space has to have, at least, dimension 3.
While the dimension of H is dn, for the totally symmetric and
antisymmetric subspaces we have,

dim(S) =
((

d

n

))
:=

(
d + n − 1

n

)
, (1a)

dim(A) =
(

d

n

)
, (1b)

the well-known numbers of n combinations of d symbols,
allowing for repetitions or not, respectively [29]. If, for a given
system, one of these dimensions is 0, this means that there are
no physical states. If it is 3 or greater, then the method described
below allows us to obtain SIC correlations. The only physical
scenario where SIC correlations are not possible is when one of
these dimensions is 1 or 2. A simple inspection shows 2 never
happens, while 1 only occurs for systems of d fermionic qudits
(remember the restrictions already discussed when considering
d identical fermionic qudits), i.e., the only physical exception
is the generalization to d qudits of the two-qubit singlet.

III. METHOD

A method for revealing SIC correlations using a bosonic
(fermionic) system has three steps: (i) Choose an orthogonal
basis B of S (A). (ii) Choose a KS set in dimension dim(S)
[dim(A)] and rewrite it in terms of B: this produces a KS set
in S (A) containing only symmetric (antisymmetric) rank-one
projectors. (iii) The final step consists in applying the method
in Ref. [22] to, given a KS set, construct a noncontextuality
inequality (i.e., satisfied by any theory that assumes that results
of tests are independent on whether or not other compatible
tests are performed) violated by any state in this space.

In this case, a state-independent noncontextuality inequality
violated by any symmetric (antisymmetric) quantum state, i.e.,
revealing SIC correlations in bosonic (fermionic) systems.

We illustrate steps (i) and (ii) with two examples. After that,
step (iii) is a direct application of the result in Ref. [22], which
we make explicit here only in the second example.

Consider two bosonic qutrits. In this case, Eq. (1a)
indicates that dim(S) = 6. An orthonormal basis of completely
symmetric states is the following one (in obvious notation):

|0̂〉 = | + +〉, (2a)

|1̂〉 = 1√
2

(| + 0〉 + |0+〉), (2b)

|2̂〉 = 1√
6

(| + −〉 + 2|00〉 + | − +〉), (2c)

|3̂〉 = 1√
2

(|0−〉 + | − 0〉), (2d)

|4̂〉 = | − −〉, (2e)

|5̂〉 = 1√
3

(| + −〉 − |00〉 + | − +〉). (2f)

Using this basis and results in Ref. [24], we can construct
a KS set in dimension 6, containing only rank-one projectors
onto the following 31 symmetric vectors: S6 := {(a,0,0),
(0,0,a) : a ∈ S4} ∪{(0,1,0,0,0,0), (1,0,−1,0,0,0),
(1,1,1,1,0,0)} − {(0,0,1,0,0,0), (0,0,0,1,0,0), (1,1,0,0,0,0),
(0,0,1,−1,0,0), (1,−1,−1,1,0,0), (0,1,0,1,0,0)}, where S4

is the following KS set in dimension 4 [30]: S4 := {(1,0,0,0),
(0,0,1,0), (0,0,0,1), (1,1,0,0), (0,1,1,0), (0,0,1,1),
(1,−1,0,0), (0,1,−1,0), (1,0,1,0), (0,1,0,1), (0,1,0,−1),
(1,0,0,1), (1,−1,1,−1), (1,1,−1,−1), (1,−1,−1,1),
(1,1,1,−1), (1,1,−1,1), (−1,1,1,1)}.

In the case of two fermionic qutrits, Eq. (1b) indicates that
dim(A) = 3. A basis of completely antisymmetric states is the
following one:

|0̃〉 = 1√
2

(| + 0〉 − |0+〉), (3a)

|1̃〉 = 1√
2

(| + −〉 − | − +〉), (3b)

|2̃〉 = 1√
2

(|0−〉 − | − 0〉). (3c)

Using this basis and results in Ref. [31], we can construct
a KS set in dimension 3, containing only rank-one
projectors onto the following 31 antisymmetric vectors
A3 := {P (0,0,1),P (0,1,1),P (0,1,−1),P (0,1,2),P (0,1,−2),
(1,1,1), P (1,1,−1), P (1,1,2), P (1,1,−2), P (1,−1,2) } −
{ (2,1,1), (2,1,0), (2,1,−1), (−1,2,1), (1,−2,0), (1,−2,1) },
where P (a,b,c) is the set of all vectors with components a,
b, c, and representing different directions. For step (iii), it
is important to recognize that these 31 vectors include 17
triorthogonal frames (see the Appendix), which implies [22]
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the noncontextuality inequality

β(3,17) � 15, (4a)

where

β(3,17) =
17∑

j=1

〈Bj 〉, (4b)

Bj = −(
1 + A

j

1A
j

2 + A
j

2A
j

3 + A
j

3A
j

1 + A
j

1A
j

2A
j

3

)
,

(4c)

and each A
j

i is considered as a noncontextual random variable
assuming the values ±1, in the sense that when the same
random variable belongs to more than one context, it must
be assigned the same value. The contradiction with quantum
mechanics is obtained when we make A

j

i = I − 2|vj

i 〉〈vj

i | and
we promptly verify that

βQM = 17, (5)

irrespectively of the quantum state considered.

IV. CONCLUSIONS

We show here that it is not true that particle indistin-
guishability flaws state-independent contextuality. Indeed, for
n qudits we have the following situation: for n � 2 bosonic
qudits, d � 2, the symmetric subspace S has dimension
[( n

d )] � 3 and one can always find a KS set of vectors suitable
for generating a noncontextuality inequality violated by any
physical state.

The fermionic case is richer. First of all, if we consider the
qudit as the complete description of an isolated fermion, we
need d to be even. But even if we considered effective spaces
with fermionic symmetry, since the antisymmetric subspace
A has dimension ( n

d ), one would need n � d for the fermionic
subspace to exist. For SIC to exist with n fermionic qudits
(d � 2), it is sufficient to have n > d.

The distinctive characteristic of nonlocality among other
forms of contextuality is the requirement that particles are
spacelike separated. If we remove this requirement, we end up
with general contextuality. Here, we have taken a further step
and addressed the problem of what happens when we also re-
move the assumption of particle distinguishability. To a certain
extent, this means investigating quantum contextuality in the
extreme opposite to where it is better understood and tested
(namely, nonlocal scenarios). The result in this work shows
that quantum contextuality, in its more powerful version,
remains, and that, consequently, there is an interesting road
for experimental research at a fundamental level: the design
and performance of experiments where quantum contextuality
can be checked for identical indistinguishable particles, and in
which both the state preparation and measurements are done
in a regime where it is impossible to label the particles.
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APPENDIX

We label the 17 triorthogonal frames obtained from the 31
vectors of KS proof in Ref. [31] as

(
v1

1,v
1
2,v

1
3

) = ((1,0,0),(0,1,0),(0,0,1)), (A1a)(
v2

1,v
2
2,v

2
3

) = ((1,0,0),(0,1,1),(0,1,−1)), (A1b)(
v3

1,v
3
2,v

3
3

) = ((1,0,1),(0,1,0),(−1,0,1)), (A1c)(
v4

1,v
4
2,v

4
3

) = ((1,1,0),(1,−1,0),(0,0,1)), (A1d)(
v5

1,v
5
2,v

5
3

) = ((1,0,0),(0,1,2),(0,−2,1)), (A1e)(
v6

1,v
6
2,v

6
3

) = ((1,0,0),(0,1,−2),(0,2,1)), (A1f)(
v7

1,v
7
2,v

7
3

) = ((1,0,2),(0,1,0),(−2,0,1)), (A1g)(
v8

1,v
8
2,v

8
3

) = ((1,0,−2),(0,1,0),(2,0,1)), (A1h)(
v9

1,v
9
2,v

9
3

) = ((1,2,0),(−2,1,0),(0,0,1)), (A1i)(
v10

1 ,v10
2 ,v10

3

) = ((1,1,1),(1,−1,0),(1,1,−2)), (A1j)(
v11

1 ,v11
2 ,v11

3

) = ((1,1,1),(0,1,−1),(−2,1,1)), (A1k)(
v12

1 ,v12
2 ,v12

3

) = ((1,1,−1),(0,1,1),(2,−1,1)), (A1l)(
v13

1 ,v13
2 ,v13

3

) = ((1,−1,1),(1,1,0),(−1,1,2)), (A1m)(
v14

1 ,v14
2 ,v14

3

) = ((−1,1,1),(1,0,1),(1,2,−1)), (A1n)(
v15

1 ,v15
2 ,v15

3

) = ((−1,1,1),(1,1,0),(1,−1,2)), (A1o)(
v16

1 ,v16
2 ,v16

3

) = ((1,1,−1),(1,−1,0),(1,1,2)), (A1p)(
v17

1 ,v17
2 ,v17

3

) = ((1,−1,1),(−1,0,1),(1,2,1)). (A1q)

It is essential to note the multiple labeling of the vectors; e.g.,
v1

1 = v2
1 = v5

1 = v6
1, as well as v2

3 = v11
2 , and so on, which

demands that A1
1 = A2

1 = A5
1 = A6

1, as well as A2
3 = A11

2 , and
so on (this is the noncontextuality hypothesis). It is also
essential that this set of vectors gives a KS proof, in the
sense that it is impossible to make a noncontextual assignation
of values ±1 to the variables A

j

i also obeying that, in each
context, one and only one of the variables receives the value
−1 [and this is clearly the condition for each Bj be maximal;
see Eq. (4c)]. This makes the noncontextual bound to be
two units less than the algebraic bound, obtained by the
independent maximization of each Bj . Finally, in our case one
must remember that these vectors are all written with respect
to the basis {|0̃〉,|1̃〉,|2̃〉} of Eqs. (3a)–(3c), which makes the
quantum operators to be

A1
1 = A2

1 = A5
1 = A6

1 = I − 2|0̃〉〈0̃|, (A2a)

A1
2 = A3

2 = A7
2 = A8

2 = I − 2|1̃〉〈1̃|, (A2b)

A1
3 = A4

3 = A9
3 = I − 2|2̃〉〈2̃|, (A2c)

and so on.
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