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Exponential and nonexponential buildup in resonant tunneling
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The exponential and nonexponential regimes of the buildup process in resonant tunneling structures are
analyzed by considering an analytic solution of the time-dependent Schrödinger equation. It is found that
the buildup exhibits a purely exponential behavior in a finite time interval followed by a clear transition to
a nonexponential regime. The buildup of the probability amplitude in the nonexponential regime follows a
t−3/2 time dependence, in the same fashion as the survival amplitude in quantum decay. For incidence energies at
higher isolated resonances, E = εn with n > 1, it is found that the exponential regime is split into two exponential
subregimes: the first one is governed by the width �n of the resonance chosen for the incidence energy, and the
second one is dominated by the width �1 of the lowest resonance. The transition occurs directly from n to 1
without jumps to other intermediate resonant states. This dynamics is discussed in comparison with the (opposite)
and well-studied process of quantum decay, with which we find that there are striking similarities in both the
exponential and nonexponential regimes. We also analyze the buildup in systems with resonance doublets, where
the interference effects produced by the interacting resonances play an important role. In the latter case we find
that the buildup of the probability amplitude exhibits a complex oscillatory behavior that can be characterized by
a mix of oscillating contributions with well-defined Rabi type frequencies of the form |E − εn|/h̄, where εn are
the nearest resonances around the incidence energy E.
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I. INTRODUCTION

The study of transient phenomena in quantum tunneling
has received a great deal of attention in recent years [1],
motivated in part by the advent of technological advances
in the design of artificial quantum structures [2,3], which
opened new ways to study the time evolution of scattering
and decay in quantum systems. On the other hand, the
transients have frequently been studied per se due to their
interesting dynamics, and because they are often used to clarify
fundamental questions of time-dependent quantum processes.
In the context of resonant tunneling (RT), the understanding
of transients has become essential because they allow for the
exploration of the dynamics of tunneling phenomena at their
earliest stages, where there have been a number of recent works
studying transport processes and related issues [4–10].

The buildup of electronic states in quantum wells is one
of the most important transient processes in RT because it
governs the dynamics of electron transport. One of the first
studies of the filling up of the electronic probability density in
one-dimensional systems was performed by Kleber [11] in a
double-δ potential and provided analytical solutions for both
the internal and external regions of the system. There are also
studies of the buildup dynamics in double-barrier systems [10,
12–16] and multibarrier resonant structures using Gaussian
wave packets [17–19] that explore its transients. However,
the dynamics of the buildup has not been explored in such
depth as its counterpart, quantum decay. Unlike the buildup,
which deals with the flux of particles coming into the quantum
structure, quantum decay is related to particle escape out of an
interaction region with a confining potential, so in this sense
they are opposite processes. The study of the latter originated
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in the early days of quantum mechanics [20,21], establishing
the well-known exponential decay law. Subsequent work by
Khalfin [22] at the end of the 1950s led to the prediction
of nonexponential decay, confirmed experimentally in recent
years for both the short- and the long-time regimes [23,24].
Even though buildup and decay are quite different physical
processes, their dynamics exhibits striking similarities that
have not been fully explored. In Ref. [13] the existence of
exponential and nonexponential contributions in the buildup
process, in the same fashion as in quantum decay, is briefly
mentioned, but there has not been further study on this issue.

In this paper we study the dynamics of the buildup process
of the probability density in resonant tunneling structures
for cut-off incident plane waves. Two different situations
are considered in the present study: (i) the simple case of
incidence at an isolated resonance, with special emphasis on
the case of incidence at higher resonances (E = εn, n > 1);
(ii) incidence in the vicinity of a resonance doublet, which is
typical of systems of two quantum wells coupled through a
central barrier. Our study of the buildup has the characteristic
of being conducted in comparison with the quantum decay
phenomenon, pointing out the similarities as well as the
fundamental differences.

The paper is organized as follows. In Sec. II we present the
formal solution of the problem, and also the derivation of an
analytical expression for the probability density valid for the
exponential region. Section III deals with numerical examples
of the buildup dynamics in systems with isolated resonances
as well as in systems with resonance doublets. Finally, in
Sec. IV we present the concluding remarks.

II. FORMALISM

For this kind of analysis it is necessary to have an adequate
formalism that can provide detailed information about the
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contributions of each of the resonant states and their mutual
interference to the time-dependent probability density. In
the present study we use a resonance formalism capable of
providing us with this detailed information. In this section
we present a brief résumé of the resonant-state formalism
employed to describe the time evolution of the wave function
in the internal region of the system.

A. The formal solution

Our analysis is based on the solution of the time-dependent
Schrödinger equation(

ih̄
∂

∂t
− H

)
� = 0 (1)

for potentials of arbitrary shape that vanish outside the
region 0 � x � L, under the quantum-shutter initial condition,
represented by [25]

�(x,k; t = 0) =
{

eikx − e−ikx, −∞ < x � 0,

0, x > 0.
(2)

Once the shutter is suddenly removed at t = 0, the initial wave
is enabled to interact with the potential, allowing us to analyze
step by step the spatial and time evolution of the buildup of
the electronic probability density in the quantum wells of the
system. For this setup, the solution throughout the internal
region is given by [25]

�(x,k; t) = φ(x,k)M[y(k,t)] − φ∗(x,k)M[y(−k,t)]

−
∞∑

n=−∞
ρn(x,k)M[y(kn,t)], (3)

where kn ≡ an − ibn (an,bn > 0) are the poles of the outgoing
Green’s propagator of the problem in both the fourth (n >

0) and third (n < 0) quadrants of the complex k plane.
The function φ(x,k) is the solution of the time-independent
Schrödinger equation and hence represents the stationary situ-
ation at asymptotically long times. The coefficients of the sum,
ρn(x,k), are given in terms of the resonance eigenfunctions
un(x) and eigenvalues kn, by

ρn(x,k) = 2ik
un(0)un(x)

k2 − k2
n

. (4)

To compute these coefficients we basically need to calculate
the complex poles kn of the outgoing Green’s propagator and
the resonant states un(x), which are solutions of the time-
independent Schrödinger equation with outgoing boundary
conditions [26].

The time dependence of the solution given by Eq. (3) is
contained in the Moshinsky functions M(y), defined as

M(yq) = 1
2w(iyq), (5)

where w(z) = exp(−z2)erfc(−iz) is the complex error func-
tion [27]. The argument yq depends on the time through the
relation

y(q,t) = −e−iπ/4

(
m

2h̄t

)1/2 [
h̄q

m
t

]
, (6)

where q stands for ±k or k±n.

The formal solution, Eq. (3), involves the contribution of
the full resonant spectrum of the system, and can be used to
calculate the probability density |�(E,x; t)|2 for 0 � x � L,
at any time t and incidence energy E, provided that the relevant
sets of resonant states {un} and complex eigenvalues {kn} of
the system are known. This evaluation involves in principle an
infinite set of resonance terms, but in practice we use a finite
number N of resonance eigenfunctions un(x) and poles kn and
obtain an approximation �N (x,k; t) to Eq. (3), namely,

� ≈ �N ≡ φM[y(k,t)] − φ∗M[y(−k,t)]

−
N∑

n=1

{ρnM[y(kn,t)] + ρ−nM[y(k−n,t)]}. (7)

To evaluate the contributions of the third quadrant, we can
use the symmetry properties k−n = −k∗

n and the time-reversal
invariance of the eigenfunctions un i.e., u−n(x) = u∗

n(x) [10].

B. Exponential contributions

In this section we use some analytical properties of the
Moshinsky functions to derive a simple analytical formula
that describes the different exponential contributions to the
probability density associated with the resonant states and their
interferences. Using in Eq. (7) the N -term approximation to
the stationary wave function [26]

φ(x,k) ≈ φN (x,k) ≡
N∑

n=1

ρn(x,k), (8)

and the symmetry relation [10]

M(y) = ey2 − M(−y) (9)

of the Moshinsky functions M[y(k,t)] and M[y(kn,t)], and
noting that −y(q,t) = y(−q,t), we can obtain an expression
for �N where all the Moshinsky functions have complex
arguments y = |y| exp iθ that have a phase lying in the
interval −π/2 < θ < π/2. This kind of Moshinsky function
can be represented by a series expansion of the form M(y) ∼
(1/2)[1/(π1/2y) − 1/(π1/2y3) + · · ·], which is a decreasing
function of time. Therefore, an alternative expression for �N

is

�N =
N∑

n=1

ρn(x,k)

[
e[y(k,t)]2 − e[y(kn,t)]2

]
+ B(x,k; t), (10)

where B(x,k; t) is a background term that contains the
nonexponential contribution through the M functions, which
can be represented by the above series expansion and hence are
also decreasing functions of time as inverse powers of t [10].

After simple algebra, an analytic expression for the
probability density can be calculated from Eq. (10), which
becomes

P (E,x,t) ≈
N∑

n=1

Pn(E,x,t) +
N∑

n<m

Pmn(E,x,t), (11)

where we have ignored all the nonexponential contributions
coming from B(x,k; t). Here, Pn(E,x,t) and the interference
terms Pmn(E,x,t) are given, respectively, by

Pn(E,x,t) = |ρn|2χn(E,t) (12)
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and

Pmn(E,x,t) = 2Re[ρnρ
∗
mξmn(E,t)], (13)

where the time dependence is contained in the functions

χn(t) = 1 − 2e−�nt/2h̄ cos ω̂nt + e−�nt/h̄, (14)

ξmn(t) = 1 − e−iω̂nt e−�nt/2h̄ − eiω̂mt e−�mt/2h̄

+ eiω̂mnt e−(1/2)(�m+�n)t/h̄. (15)

We have defined ω̂n = (E − εn)/h̄ and ω̂mn = (εm − εn)/h̄;
their absolute values are Rabi-type frequencies. Here, εn and
�n are the energy and width of the nth resonance En ≡ εn −
i�n/2 = h̄2k2

n/2m.
Notice that the probability density given in Eq. (11), in

the limit of asymptotically long times, gives (for x = L) the
transmission coefficient. That is, P (E,L,t → ∞) → T (E),
where

T (E) =
N∑

n=1

Tn(E) +
N∑

n<m

Tmn(E), (16)

which coincides with Eq. (5) of Ref. [26]; Tn(E) and Tmn(E)
have exactly the expressions given by Eqs. (6) and (10) of that
reference.

III. EXPONENTIAL AND NONEXPONENTIAL BUILDUP

The buildup dynamics at a given incidence energy E

crucially depends on how the system’s resonances near E

are distributed. Quite different behaviors are expected, for
example, for incidence at an isolated resonance and at a
resonance doublet, or at something more complex such as
a miniband where various resonances are packed together.
In the following two sections we treat separately the case of
incidence at a single isolated resonance and the case where
the resonances are grouped in pairs. We shall analyze the
behavior of the quantity � = |1 − |�/φ|| as a function of
time t , which measures how close is |�(x,t)| to reaching its
asymptotic limit |φ(x)| at a given position and time. It turns out
to be convenient to plot the logarithm of � to distinguish more
clearly the exponential from the nonexponential behavior in
the dynamics of the buildup process.

A. Incidence at an isolated resonance

We analyze here the exponential and nonexponential
contributions to the buildup for the special case of incidence
at a given resonance energy of the system, E = εn. Let us first
consider the case of incidence at the lowest resonance, n = 1.
The cases with n > 1 exhibit different behavior and are treated
separately below.

Let us consider the double-δ system with barrier intensities
λ = 5.0 eV nm and barrier separation b = 8.0 nm. The
resonance energies and widths of the first few resonances are
ε1 = 83.02 meV, �1 = 0.398 meV, ε2 = 332.22 meV, �2 =
3.154 meV, ε3 = 747.98 meV, �3 = 10.47 meV, ε4 = 1.33 eV,
�4 = 24.28 meV, ε5 = 2.08 eV, and �5 = 46.15 meV. For
incidence energy at the lowest resonance E = ε1, we show in
Fig. 1(a) the evolution of |�/φ|2 as a function of time at a
fixed position x = L/2. As we can see, the probability density
exhibits a smooth gradual increase towards its asymptotic

value |φ|2. The inset shows snapshots of the buildup of the
probability density inside the system at different times (blue
dashed lines) and compared with the stationary probability
density |φ|2 (red solid line). As we can see, the buildup is
characterized by a monotonic increase.

In order to exhibit the exponential and nonexponential
contributions, we present in Fig. 1(b) a plot of ln � vs
t at x = L/2 = 4.0 nm, using Eq. (7) with N = 1000
resonance terms of the series. We clearly appreciate in this
graph that there exists a time regime where ln � exhibits
a linear time dependence that perfectly coincides with the
straight line with slope m1 = −�1/2h̄ (red dashed line). The
above means that the buildup is purely exponential in this
time interval and governed by �1. At long enough times,
the buildup departs from this purely exponential behavior
occurring a transition from exponential to a (nonexponential)
power law (at approximately 80 ps). As is well known, in
quantum decay the nonexponential regime of the survival
amplitude A(t) at long times is characterized by the time
dependence |A(t)| ∼ t−3/2 [28]. In order to investigate whether
the buildup process follows a similar time dependence in
the non-exponential region, we use the auxiliary function

FIG. 1. (Color online) (a) Time evolution of |�/φ|2 at x =
L/2 = 4.0 nm for incidence energy at the first resonance, E = ε1 =
83.02 meV, in a symmetrical double-δ potential. The inset shows
snapshots of |�|2 vs x at different fixed times (blue dashed lines),
where the stationary probability density |φ|2 is included for compar-
ison (red solid line). (b) Plot of ln |1 − |�/φ|| vs t at x = L/2. The
exponential regime is dominated by the first resonance as is evident
from the red dashed straight line (included to help the eye) which has
slope m1 = −�1/2h̄. The green dash-dotted curve (also included to
help the eye) is the logarithm of a function f (t) that varies as t−3/2.
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ROMO, HERNÁNDEZ, AND VILLAVICENCIO PHYSICAL REVIEW A 87, 022121 (2013)

FIG. 2. (Color online) Exponential and nonexponential contri-
butions to the buildup process for incidence at different resonance
energies: (a) E = ε2, (b) E = ε3, and (c) E = ε5. In all cases the
exponential regime is split into two exponential subregimes, the first
dominated by the resonance at incidence and the second by the first
resonance. The red dashed straight lines have slopes −�n/2h̄ and
−�1/2h̄, respectively, and are included to help the eye.

f (t) = (1 + αt)−3/2 where α = 1.53 × 105 ps−1 is a fitting
parameter. The comparison of the ln � vs t graph (blue solid
line) with the graph of ln f (t) vs t (green dash-dotted line)
shows that the nonexponential regime of the buildup also varies
as t−3/2. Other striking similarities with the decay process also
occur in the exponential regime and are discussed below.

Let us consider now incidence at higher resonances (n >

1). In Fig. 2 we present the results for the cases (a) E = ε2,
(b) E = ε3, and (c) E = ε5. In contrast to the case E = ε1

of the previous figure, we clearly see that the exponential
regime here is split into two subregimes: the first one coincides
with the straight line with slope mn = −�n/2h̄ (green dash-

dotted lines) where n is the selected resonance for the incidence
energy, and the second one coincides with the straight line with
slope m1 = −�1/2h̄ (red dashed line), associated with the
lowest resonance. As we can see, these straight lines perfectly
fit as envelopes of the ln � vs t graph in the two exponential
subregimes. The above means that the buildup in the quantum
well starts at the relatively high rate established by �n, and
then is suddenly slowed down at a transition point where the
exponential buildup continues at the slower (still exponential)
rate dictated by the first resonance width �1, up to a second
transition where it is slowed down again and enters into the
nonexponential regime.

The most striking aspect of the observed behavior is the fact
that the change occurs directly from the nth state to the ground
state without jumping to intermediate states m (1 < m < n).
Interestingly, a quite similar behavior occurs in quantum decay.
There, when the initial state is placed at a higher resonance
level (n > 1), it results in an exponential regime split into
two exponential subregimes with a clear transition between
them, followed by the well-known transition to nonexponential
decay at long times. It was shown in Ref. [29] that the survival
amplitude in the first exponential interval is governed by the
resonance width �n of the chosen initial state, while the second
becomes governed by the resonance width �1 of the ground
state without intermediate transitions, and finally the decay
is slowed down again, continuing at a nonexponential rate
characterized by a t−3/2 dependence. This is an interesting
parallel between the two physical processes, considered as
opposites in the sense that one deals with the incoming
of electrons to the quantum wells and the other with their
escape out of the system. The genesis of the common features
between the buildup and the decay dynamics lies in the fact
that the time evolution of both processes is described by
the same kind of function, the Moshinsky functions. In our
case, the exponential part was explicitly separated from the
nonexponential contribution using the symmetry relation (9)
in the functions M[y(kn,t)] and M[y(k,t)]. As a result, two
exponential terms appear in Eq. (10), namely, e[y(k,t)]2

and
e[y(kn,t)]2

. The former of these two terms is related to the
incident wave, and hence is not present in the decay case.
This is a fundamental difference, which leads to Rabi-type
frequencies that involve the incidence energy E in the buildup
process, as we shall show in the next section. We discuss below
the origin of this behavior in the buildup case.

The existence of the two exponential subregimes exhibited
in Fig. 2 can be explained using the analytic formulas given in
Sec. II B. For the double-δ system, we have the hierarchy
�1 < �2 < · · · < �n, which implies e−�1t/2h̄ > e−�nt/2h̄ at
any time t > 0. However, each of these exponentials has in
Eq. (12) a prefactor |ρn|2 whose value depends on the
difference E − εn, according to the expression

|ρn(x,E)|2 = 2h̄2E

m

|un(0)|2|un(x)|2
(E − εn)2 + �2

n/4
. (17)

It is clear that the factor |ρn(x,E)|2 has a maximum value when
E = εn, and hence for incidence at the nth resonance we have
|ρ2

n| � |ρ2
1 |. As a consequence of the above, at the beginning

of the exponential regime we have P1(E,x,t) < Pn(E,x,t),
explaining the existence of the first exponential subregime
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(dominated by �n). As time goes on, the dominance of the
exponential e−�1t/2h̄ over e−�nt/2h̄ becomes so strong that
the roles are inverted so that after a certain time we have
P1(E,x,t) > Pn(E,x,t), giving rise to the second exponential
subregime (governed by �1). Only two states are capable
of giving the leading contribution to the probability density,
the state of incidence (for which |ρn|2 attains a maximum
value) and the ground state (which has the leading expo-
nential). For example, in the case of E = ε5 of Fig. 2(c),
we have |ρ5/ρ4|2 = 2.1 × 1034, |ρ5/ρ3|2 = 737.0, |ρ5/ρ2|2 =
5.4 × 1031, and |ρ5/ρ1|2 = 11.5, which explains why only
the states n = 5 and n = 1 are important here, and why
the transition occurs directly from n = 5 to n = 1 without
intermediate jumps. The extremely small values of ρ2 and
ρ4 are due to the fact that the eigenstates u2(x) and u4(x)
have a node at L/2. There are, however, situations where
two (or more) resonances are so close that the corresponding
coefficients have comparable values, and consequently two
or more resonances share the leading contribution in the first
exponential subregime. We discuss one example of these cases
in the next section.

1. Incidence at a resonance doublet

We are now interested in analyzing the situation where
more than one resonance take part in the process. This occurs
when two or more resonances are so close to each other that
the interference contributions in the probability density cannot
be ignored. An appropriate example to explore this case is a
system with two quantum wells coupled by a central barrier.
We use here a symmetrical triple-δ potential with barrier
intensities λ = 5.0 eV nm, and barrier separations b = 8.0 nm,
whose corresponding distribution of resonances in the complex
energy plane is illustrated in Fig. 3 (solid dots). Instead of
isolated resonances, we see that the spectrum is characterized
by pairs of neighboring resonances of similar positions and
widths.

In order to analyze the exponential and nonexponential
contributions, Fig. 4(a) illustrates the behavior of ln � vs t

FIG. 3. (Color online) First ten poles En = εn − i�n/2 of the out-
going Green’s function propagator on the complex energy plane for a
symmetrical triple-δ potential with barrier intensities λ = 5.0 eV nm
and barrier separations b = 8.0 nm. The resonance energies and
widths of the first few resonances are ε1 = 80.77 meV, �1 =
0.188 meV, ε2 = 85.36 meV, �2 = 0.211 meV, ε3 = 323.30 meV,
�3 = 1.49 meV, ε4 = 341.53 meV, and �4 = 1.66 meV.

FIG. 4. (Color online) (a) Exponential and nonexponential contri-
butions to the buildup process for incidence at E = ε3 (solid blue line)
and E = ε4 (dashed red line) of a triple-barrier resonant structure, as
pictured in the inset. (b) The same as in (a) in a shorter interval in
the first exponential region. The linear behaviors have similar slopes
m3 ≈ m4 since �3 ≈ �4. The insets show the stationary (asymptotic)
probability density for each of the incidence energies; they look
almost identical but one of them has three nodes and the other only
two (red solid circles).

at the fixed position xf = 10.0 nm for incidence at E = ε3

(solid blue line) and E = ε4 (dashed red line) as pictured
in the inset. The behavior is essentially the same for both
incidence energies, for the corresponding graphs are almost
indistinguishable as seen in Fig. 4(a). Only if we make
an amplification of the graphs in a shorter interval can
the curves be distinguished one from the other, as we can
see in the expanded view shown in Fig. 4(b), where linear
behaviors with tiny oscillations for both incidence energies
can be clearly appreciated. In contrast to the double-δ case
of the previous section where the resonances widths are quite
different, here we have �3 ≈ �4 and hence the corresponding
slopes mn = −�n/2h̄ of the curves almost coincide, m3 ≈ m4.
These exponential behaviors, governed by �3 and �4, end at
approximately t = 7 ps, where another exponential regime
(governed by �1) begins, which, as shown in Fig. 4(a), is
characterized by an oscillating curve modulated by a straight
line with a (less pronounced) slope m1. These lines are
extended to approximately t = 60 ps, where a transition to
a nonexponential regime occurs.

The explanation of these transitions is similar to the
one given in the previous section for the case of isolated
resonances, but with an important difference: instead of a
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FIG. 5. (Color online) (a) Exponential and nonexponential con-
tributions to the buildup process for off-resonance incidence at E =
(1/2)(ε3 + ε4) = 332.42 meV of a triple-barrier resonant structure.
(b) The same as in (a) in a shorter interval.

single coefficient ρn there are two coefficients favored by
the incidence energy E (ρ3 and ρ4 in our example), such
that the first exponential subregime is dominated by these
two resonances. This becomes clearer when we choose the
incidence energy E at intermediate points between ε3 and ε4,
as we illustrate below.

Consider the special case of incidence just in the middle
of the two resonances of the doublet, E = (1/2)(ε3 + ε4).
The ln � vs t graph for this case at x = 10.0 nm is shown
in Fig. 5(a), and the detail of the first exponential domain
is displayed in Fig. 5(b). In this case, |ρ4/ρ3|2 = 1.05,
implying that the resonances n = 3 and n = 4 share the
leading contribution in the first exponential subregime. We
now see in the ln � vs t graph an enhanced oscillatory
structure with a well-defined period, which is indicated by
T in Fig. 5(b) as the separation of two consecutive maxima
of the probability density (note that the absolute value taken
in the difference 1 − |�/φ| duplicates the frequency in the
ln � vs t graph, and hence the period T is taken in the form
illustrated in the figure). A direct measurement on the graph
gives the numerical value T = 453.4 fs, which corresponds to
a frequency of � = 0.0138 57 fs−1. On the other hand, if we
calculate a Rabi-type frequency from the difference between
the incidence energy and the nearest resonance (in this case
ε3 and ε4 since E is equidistant from both resonance levels)
we obtain w = |E − ε3|/h̄ = |E − ε4|/h̄ = 0.0138 54 fs−1.
The two frequencies are essentially the same. This numerical
agreement shows that the buildup oscillations have exactly the

FIG. 6. (Color online) (a) Exponential and nonexponential con-
tributions to the buildup process for off-resonance incidence at
E = ε3 + 2�3 = 326.28 meV of a triple-barrier resonant structure.
(b) The same as in (a) in a shorter interval.

frequency associated with the difference between the incidence
energy and the nearest resonance. The dramatic enhancement
of the oscillations is due to a constructive interference of two
oscillatory contributions with the same frequency.

As a final example, let us consider an arbitrary off-
resonance incidence energy in the region between the two
resonances ε3 and ε4, say, E = ε3 + 2�3 = 326.28 meV. The
plot of ln � vs t at the fixed position xf = 10.0 nm for
this incidence energy is shown in Fig. 6(a). The detailed
structure of the first exponential domain is further emphasized
in the amplification shown in Fig. 6(b) using a shorter time
interval within the region of the first exponential subregime. In
contrast to the previous cases, here the buildup exhibits a more
complicated oscillatory pattern with irregular oscillations.
However, as we show below, this apparently complicated
behavior is a mix of periodic oscillations with well-defined
frequencies that can be characterized by the differences
between the incidence energy E and the interacting resonances
εn lying in the vicinity of E. In order to clarify this, we
include in this case calculations of the probability density in
Fig. 7(a) where we measure the period of the main different
contributions.

In Fig. 7(a) we plot |�/φ|2 vs t at the fixed position xf =
10 nm. The buildup exhibits wide oscillations of period T3

around the stationary value, and secondary oscillations of
smaller amplitude and period T4 embedded on the main curve
can also be appreciated. Direct measurements on the graphs of
these periods give the values T3 = 1.376 ps and T4 = 265.1 fs,
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FIG. 7. (Color online) (a) Time evolution of |�/φ|2 at the fixed
position x = 10 nm for incidence at E = ε3 + 2�3 (blue solid line).
The inset shows an expanded view of the curve. (b) Snapshots of |�|2
vs x at different fixed times (blue dashed lines) and incidence energy
above the third resonance, E = ε3 + 2�3. The stationary probability
density |φ|2 is included for comparison (red solid line).

which correspond respectively to the frequencies �3 =
0.004 567 fs−1 and �4 = 0.0237 fs−1. On the other hand, if
we calculate the Rabi-type frequencies from the difference
between the incidence energy E and the nearest resonances,
we obtain ω3 = |E − ε3|/h̄ = 0.004 564 fs−1 and ω4 = |E −
ε4|/h̄ = 0.0231 fs−1. As we can see, the Rabi-type frequencies
ωn are in excellent agreement with the measured ones �n. An
even finer oscillating structure is made evident in the expanded
view of the curve shown in the inset of Fig. 7(a), in which
we measure the period T2 in the same fashion. We obtain the
value T2 = 17.014 fs, which gives �2 = 0.369 fs−1, while
the frequency obtained from the difference between E and the
next-nearest-neighbor resonance becomes ω2 = |E − ε2|/h̄ =
0.366 fs−1, showing that the finer oscillations on the graph
are produced by the interference of the incoming wave with
faraway resonances belonging to the other doublet.

These frequencies are the absolute values of the quantities
ω̂n that are explicitly given in Eqs. (14) and (15). Actually,
if we plot P (E,x,t)/|φ| vs t using Eq. (11) with just
N = 4 terms, we can reproduce almost exactly the graph of
Fig. 7(a). Notice that other Rabi frequencies that come from
the difference between resonance levels ω̂mn also appear in
these equations; however, their role is very small. In quantum
decay, on the other hand, only Rabi frequencies of the
form ωmn = |ω̂mn| = |εm − εn|/h̄ are observed in the survival
amplitude [29]. The Rabi-type oscillations with frequencies

ωn = |E − εn|/h̄ exhibited in our calculations occur only in
the buildup process because they come from the interaction
of the system’s resonances and the incident wave of energy
E, and physically correspond to oscillations of the probability
density in the quantum wells of the system in a “breathing
mode” at each point of the internal region during the buildup
around the stationary value |φ|2, as illustrated in Fig. 7(b).

IV. CONCLUDING REMARKS

The exponential and nonexponential regimes of the buildup
process in resonant tunneling structures were analyzed using
explicit solutions of the time-dependent Schrödinger equation.
For incidence at an isolated resonance, the buildup process
exhibits a purely exponential behavior in a finite time interval,
followed by a clear transition to a nonexponential time depen-
dence. We show that the buildup of the probability amplitude
in the nonexponential regime follows a time dependence that
varies as t−3/2, behaving exactly like the survival amplitude in
quantum decay in the long-time regime [28]. In the exponential
regime we distinguish two different situations depending on
whether the incidence is chosen at the first resonance (E = ε1)
or at higher resonances (E = εn with n > 1). In the former
case, the exponential regime is dominated by the single
resonance E = ε1, and the probability amplitude grows at a
rate dictated by the width �1 of this resonance. For incidence
at a higher isolated resonance, E = εn (n > 1), it is found that
the exponential regime is split into two subregimes: the first
one is governed by the width �n of the resonance chosen for
the incidence energy, and the second one dominated by the
width �1 of the lowest resonance. The jump is directly from n

to 1, and no intermediate stages associated with other resonant
states m (with 1 < m < n) are observed. The explanation of
this behavior is given in our analysis in terms of the interaction
of the incident wave with the system’s resonances, represented
by explicit coefficients in the analytic expression for the
probability density derived in this work. Interestingly, this kind
of dynamical behavior is quite similar to the time evolution of
the survival amplitude in quantum decay when the initial state
is placed at a higher resonance (n > 1) [29].

We also analyzed the buildup process in situations of
incidence at resonance doublets. In this case, the exponential
regime is also split into two subregimes, but the first one is
dominated by two resonances instead of one, and the second
subregime is governed by the width of the lowest resonance
�1. The competition of these two resonances for domination
in the first exponential subregime is manifested as a mix of
oscillations in the probability amplitude, with well-defined
Rabi-type frequencies of the form ωn = |E − εn|/h̄, where
εn are the nearest resonances around the incidence energy
E. Physically they correspond to oscillations around the
stationary value |φ|2 of the probability density in the quantum
wells of the system in a breathing mode at each point of the
internal region during the transient regime of the buildup.

Our study was conducted in comparison with the well-
known phenomenon of quantum decay, pointing out the
similarities in the dynamical behavior of the relevant quantities
of each case. Although there are striking similarities, there
is an important difference worth stressing. Oscillations with
frequencies of the form ωmn = |εm − εn|/h̄ are present in both
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the buildup and decay, but the Rabi-type oscillations with
frequencies ωn = |E − εn|/h̄ exhibited in our calculations
occur only in the buildup process. The reason is simple: in
quantum decay we have no incident wave of energy E.

The analysis presented here for the cases of N = 2 and N =
3 can be straightforwardly extended to describe the buildup
dynamics in superlattices, where the process is expected to be
much more complex due to the multiple interactions of the
N resonances packed together in each miniband. This kind of
analysis is relevant to a better understanding of the physics of

how the electronic states are filled up with the incoming flux
of particles in a quantum system according to its particular
distribution of resonances.
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