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Unitary quantum gates, perfect entanglers, and unistochastic maps
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Nonlocal properties of ensembles of quantum gates induced by the Haar measure on the unitary group are
investigated. We analyze the entropy of entanglement of a unitary matrix U equal to the Shannon entropy of
the vector of singular values of the reshuffled matrix. Averaging the entropy over the Haar measure on U (N2)
we find its asymptotic behavior. For two-qubit quantum gates we derive the induced probability distribution of
the interaction content and show that the relative volume of the set of perfect entanglers reads 8/3π ≈ 0.85.
We establish explicit conditions under which a given one-qubit bistochastic map is unistochastic, so it can be
obtained by partial trace over a one-qubit environment initially prepared in the maximally mixed state.
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I. INTRODUCTION

Unitary quantum gates form key ingredients of any quan-
tum algorithm, so they are widely used in the theory of
quantum information [1]. A unitary gate acting on a bipartite
system A ⊗ B is called local, if the unitary matrix has
a form of the tensor product, U = UA ⊗ UB . To process
quantum information between both subsystems one needs to
use nonlocal gates, which are not of the product form.

Classification of unitary quantum gates is a subject of
a considerable interest [2–5]. Quantification of the nonlocal
properties of unitary gates has been initiated by Zanardi and
co-workers [6–8], while several other measures of nonlocality
were introduced and analyzed in a seminal paper of Nielsen
et al. [9]. Since local unitary gates cannot produce quantum
entanglement, the nonlocal properties of a given gate U

may be characterized by the average (or maximal) degree of
entanglement of a transformed separable state |ψ ′〉 = U |ψsep〉.
For instance, the average linear entropy of a random product
state transformed by a bi-partite unitary gate leads to its
entangling power, introduced by Zanardi et al. [6] and later
investigated for various models in [10–16]. An alternative
approach to the problem of nonlocality based on the minimal
Frobenius distance of an analyzed global unitary matrix to
the closest local gate was recently discussed in [17], where a
relation to matrix product operator formalism was established.

A given unitary gate U is called a perfect entangler, if there
exists a separable state transformed by U into a maximally
entangled state [18]. Another class of maximally entangling
unitary gates was characterized in [19,20].

Two unitary gates are called locally equivalent if they
coincide up to local transformations. The general problem of
finding necessary and sufficient conditions for local equiva-
lence remains open. The full answer is known in the simplest
case of a twoqubit system, since a canonical form of a unitary
gate of size four is established and any gate can be uniquely
described by a three-component vector called information
content [2,21–23].
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In this work we analyze properties of a “typical” quantum
gate. In other words, we are going to average quantities
characterizing each gate over a unique, unitarily invariant
Haar measure on the space of unitary matrices. An ensemble
generated according to this measure is often referred to as
circular unitary ensemble (CUE), the spectrum belongs to the
unit circle, and the ensemble is invariant with respect to unitary
transformation. An exemplary algorithm of generating unitary
matrices from this ensemble was discussed in [24]. To study
the set of quantum gates we found it useful to define a special
circular unitary ensemble (SCUE) containing special matrices
with determinant equal to unity.

One of the main results of this paper consists of deriving
the probability distribution P (�a) for the information content of
a random two-qubit gate, induced by the Haar measure on the
unitary group. As an application of this result we compute the
relative volume of the set of perfect entanglers with respect to
this natural measure. Basing on numerical results performed
for unitary gates of larger dimensionalities we are in position
to predict asymptotic behavior of the average entanglement
entropy of a random unitary gate.

Furthermore, we analyze the class of unistochastic opera-
tions, introduced in [25], which can be described by a coupling
with an M-dimensional environment initially in the maximally
mixed state,

ρ ′ = �U (ρ) = Trenv

[
U

(
ρ ⊗ 1

N

)
U †

]
. (1)

The partial trace is performed over the environment described
in the Hilbert space HM . If the dimension N of the principal
system and the dimension M of the ancillary system are
equal, the map is called unistochastic, while it is called
k-unistochastic if M = kN . Thus, a unistochastic map �U

is determined by a unitary matrix U of size N2, while any
k-unistochastic map is given by a matrix of size Nk+1.

By construction any unistochastic map is bistochastic,
since the maximally mixed state is preserved, �U (1/N) =
TrE(1N2 )/N2 = 1N/N . On the other hand, the converse is not
true, and in this paper we determine sufficient and necessary
condition for a one-qubit bistochastic map to be unistochastic.

The name of this class of maps is related to the clas-
sical case, in which probability vectors are transformed by
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stochastic matrices. The matrix is called bistochastic (or
doubly stochastic) if it preserves the uniform (maximally
mixed) probability vector. A bistochastic matrix B is called
unistochastic if there exists a unitary V of the same size
such that Bij = |Vij |2. For N = 2 all bistochastic matrices are
unistochastic, but this is not the case already for N = 3. For
higher dimensions the problem finding necessary and sufficient
conditions for unistochasticity remains open [26].

In analogy to the classical case, any quantum map de-
termined as in (1) by an orthogonal matrix will be called
orthostochastic. In [25] it was shown that for any unistochastic
map the spectrum of the corresponding dynamical matrix is
given by the Schmidt coefficients of the unitary matrix U

treated as an element of the composite Hilbert-Schmidt space.
This implies that the entropy of such an operation S(�U ) is
equal to the entanglement entropy of the unitary matrix. In
other words, a link between nonlocal properties of a unitary
gate acting on a bipartite system and the decoherence induced
by an associated unistochastic map acting on a single system
can be established.

It is appropriate to mention that the class of quantum maps
for which the system is coupled with the environment in
the maximally mixed state was already investigated in the
literature. Such maps were discussed in the context of quantum
information processing [27,28] and under the name “noisy
maps” while studying reversible transformations from pure
to mixed states [29]. Moreover, Haagerup and Musat [30]
analyzed properties of a related class of factorizable quantum
maps introduced in [31]. In fact, k-unistochastic operations
coincide with a subset of these quantum maps called exactly
factorizable. In general, this set is not convex, and its convex
hull defines a larger set of maps called strongly factorizable.

Note that a given unitary matrix U of a composite dimension
d = N2 may play very different roles in the theory of
quantum information. Let us specify here three most natural
applications.

(a) U ∈ U (N2) describes a quantum gate acting on a
N × N bipartite system, and its operator Schmidt decomposi-
tion characterizes the nonlocal properties [3,4,9,21].

(b) U ∈ U (N2) determines by Eq. (1) a unistochastic
quantum operation, ρ ′ = �U (ρ), acting on an N -level system
[25].

(c) U ∈ U (N2) defines a maximally entangled state of a
composite, N2 × N2 system [32,33], as |ψ〉 = (U ⊗ I)|ψ+〉,
where |ψ+〉 = 1

N

∑N2

j=1 |j,j 〉.
The paper is organized as follows. Unistochastic operations

are analyzed in Sec. II. As any one-qubit unistochastic map is
determined by a unitary matrix of order four, we analyze in
Sec. III the set of all two-qubit unitary gates. This allows us to
characterize the set U2 of one-qubit unistochastic maps, which
forms a nonconvex subset of the tetrahedron of bistochastic
maps spanned by three Pauli matrices and the identity map.
In Sec. IV the ensemble of random two-qubit quantum gates
is described. It is based on an ensemble of special unitary
matrices of size four. The probability distribution of purity
(nonlocality) for this ensemble is computed. Furthermore, we
derive the probability that a generic gate belongs to the class
of perfect entanglers, so it can transform a product state into
a maximally entangled Bell-like state. Unitary gates acting on
N × N systems are investigated in Sec. V. For completeness,

some basic properties of the operator Schmidt decomposition
and related algebra of reshuffling of a matrix are reviewed in
Appendix A.

II. UNISTOCHASTIC MAPS

Any unitary matrix U of size N2 describes a unitary gate
acting on the bipartite system. Alternatively it may be used
to define a unistochastic map [25] acting on a single system
of size N according to Eq. (1). In other words, the principal
system is coupled to the ancilla of the same size, M = N ,
prepared initially in the maximally mixed state. Unless the
gate U is local so that U = Ua ⊗ Ub, the partial trace leads to
a nonunitary evolution of the density matrix ρ.

Any such discrete map can be written in the Kraus form
[34],

ρ ′ = �(ρ) =
k∑

i=1

AiρA
†
i . (2)

To preserve the trace, Trρ ′ = Trρ = 1, the Kraus operators
need to satisfy the completeness relation

k∑
i=1

A
†
i Ai = 1. (3)

A trace-preserving map � written in the form (2) is called
stochastic. It can be represented by the dynamical matrix
D� = N (� ⊗ I)|ψ+〉〈ψ+|, also called Choi matrix.

To perform the partial trace over the environment in the
definition (1) let us apply the operator Schmidt decomposition
of U recalled in (A3). making use of the notation introduced
in the Appendix the map � can be rewritten as

ρ ′ = �Uρ = Trenv

[
U

(
ρ ⊗ 1

N
1N

)
U †

]

= Trenv

⎡
⎣N2∑

i=1

N2∑
j=1

√
�i�j (B ′

iρB
′†
j ) ⊗

(
1

N
B ′′

i B
′′†
j

)⎤⎦

= 1

N

N2∑
i=1

�iB
′
iρB

′†
i . (4)

The standard Kraus form is obtained by rescaling the opera-
tors, Ai = √

�i/NB ′
i , where B ′

i , which arise by reshaping the
eigenvectors of (UR)†UR according to (A4). Reshaped Kraus
operators are eigenvectors of the Hermitian dynamical matrix
Dmμ

nν
of size N2, which determines [35] the map

ρ ′ = �(ρ) so ρ ′
mμ = Dmn

μν
ρnν. (5)

Taking into account an appropriate normalization we obtain
the dynamical matrix corresponding to the unistochastic map

D�U
= 1

N
(UR)† UR. (6)

Hence, the rescaled Schmidt coefficients �i/N of any unitary
matrix U treated as an element of the composite space of
matrices of size N2 provide the spectrum of the dynamical
matrix D representing the action of the unistochastic map �U .

The matrix D is normalized according to TrD =∑N2

i=1
1
N

�i = N . Therefore, the entanglement entropy (A8)
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characterizing the nonlocal properties of U is equal to the
entropy of an operation �U [25]. For instance, the entropy
vanishes for any local U , which induces a unitary �U and is
equal to 2 ln N for the Fourier matrix (A10), corresponding
the the maximally depolarizing channel, �F (ρ) = 1/N .

The environmental representation (1) may be generalized
by allowing a larger size of the environment. Their physical
motivation is simple: Not knowing anything about the en-
vironment (apart from its dimensionality), one assumes that
it is initially in the maximally mixed state. In particular, one
can define generalized, K-unistochastic maps determined by a
unitary matrix U (NK+1), in which the environment of size NK

is initially in the state 1NK /NK . By definition, a 1-unistochastic
map is unistochastic.

A map � is called bistochastic if it preserves the trace and
keeps the maximally mixed state invariant, �(1/N) = 1/N .
The definition (1) implies that both these conditions are
satisfied, so any unistochastic map is bistochastic. In the
following sections of this work we demonstrate that the
converse is not true.

In the simplest case of one-qubit maps any bistochastic map
is called a Pauli channel, since it can be brought by means of
unitary rotations into the form [36]

ρ → ρ ′ =
3∑

i=0

λi σiρ σi, with
3∑

i=0

λi = 1. (7)

Here σi denote Pauli matrices while σ0 = 1. The Pauli matrices
satisfy σj = −i exp(iπσj/2), so the extreme points of the set
of the bistochastic maps represent rotations of the Bloch ball
around the corresponding axis by the angle π .

Describing density matrices through their Bloch vectors,
ρ = 1

21 + �τ · �σ , we can write any bistochastic map ρ ′ = �ρ

in the form

�τ ′ = t �τ = O1η OT
2 �τ . (8)

Here t denotes a real matrix of size 3, which we bring to a
diagonal form by orthogonal transformations O1 and O2. As
we permit only unitary rotations of the qubit represented by
orthogonal matrices from SO(3) (reflections are not allowed),
some elements of the diagonal matrix η may be negative. The
elements of the diagonal matrix η are called the damping vector
�η = (η1,η2,η3), because the transformation (8) takes the Bloch
ball to an ellipsoid with three axes given by �η.

Writing the superoperator � of a Pauli channel and reshuf-
fling this matrix according to (A6) we obtain the dynamical
matrix D. For any bistochastic maps the dynamical matrix D

splits into two blocks and its eigenvalues are

d1,4 = 1
2�1,4 = 1

2 [1 + ηz ± (ηx + ηy)],
(9)

d2,3 = 1
2�2,3 = 1

2 [1 − ηz ± (ηx − ηy)].

Due to the Choi theorem the map � is completely positive
if the dynamical matrix D is positive definite. This is the
case if all eigenvalues di = �i/2 are not negative, which is
true for the damping vector �η satisfying the Fujiwara-Algoet
conditions [37]

(1 ± η3)2 � (η1 ± η2)2. (10)

These four inequalities assure that the corresponding positive
map ��η is CP. They define a regular tetrahedron whose extreme

points are �η = (1,1,1), (1,−1,−1), (−1,1,−1), (−1,−1,1).
The first point represents the identity operation while the three
others correspond to unitary rotations by one of three Pauli
matrices. As shown in Sec. III B there are bistochastic maps
given by �η inside the tetrahedron, for which the representation
(1) does not exist, so they are not unistochastic.

III. TWO-QUBIT UNITARY GATES

Treating unitary matrices as quantum gates we need not
to care about an overall phase, since physical states differing
by such a phase are identified. Discussing gates acting on a
bipartite system we may thus fix this phase and restrict our
attention to matrices pertaining to the special unitary group
SU(N2).

In this section we are going to analyze the simplest case
of two-qubit unitary gates. Hence, we set N = 2 and study
matrices of the group SU(4). A choice of two subspaces
distinguishes a subgroup SU(2) ⊗ SU(2). From the physical
point of view it corresponds to selection of two distinct
subsystems.

A. Canonical form

Consider unitary matrices U and V of size N2 × N2,
which act in the composite Hilbert space HN ⊗ HN . Two
such matrices are locally equivalent, written U ∼loc V , if there
exist local operations, WA ⊗ WB and WC ⊗ WD , such that
V = (WA ⊗ WB)U (WC ⊗ WD).

It is known [2,18,21] that any unitary matrix U of size 4 is
locally equivalent to some matrix of the following canonical
form,

V = exp

(
i

3∑
k=1

αkσk ⊗ σk

)
:= exp(iHint), (11)

where σk stand for the Pauli matrices and αk are real for
k = 1,2,3. Here Hint denotes a Hermitian operator of order
four, called the interaction Hamiltonian of the two-qubit gate.

The two-qubit gate V is periodic in each parameter αk with
period π/2. Thus, the space of parameters characterizing the
gate has a structure of a 3-torus T 3. However, the coefficients
αk are not determined unambiguously. Due to the symmetries
of the problem out of a cube spanned by three components of �α
one can distinguish a smaller subset, called the Weyl chamber,
such that the correspondence between its points and the local
orbits is one to one [21]. For instance, it is possible to bring
locally the Hamiltonian Hint into a form in which [4]

π

4
� α1 � α2 � α3 � 0 or (12)

π

2
� α1 >

π

4
,

π

2
− α1 � α2 � α3 � 0. (13)

These restrictions imply that the Weyl chamber has a structure
of a tetrahedron, which forms a 1/24th part of the cube; see
Fig. 1(a).

The three-component vector �α, called the interaction con-
tent of the gate, characterizes the purely nonlocal interaction
Hamiltonian Hint. By construction, two unitary gates are
locally equivalent if and only if they are characterized by the
same interaction content.
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LOCAL
(0, 0, 0) DCNOT

( π
4 , π

4 , 0)

SWAP
( π
4 , π

4 , π
4 )

α1

α2

α3

(0, π
2 , π

2 )

(0, 0, π
2 )

( π
2 , π

2 , π
2 )

( π
2 , π

2 , 0)

A1( π
2 , 0, 0)

≈ LOCAL

(a)

LOCAL
(0, 0, 0)

DCNOT
( π
4 , π

4 , 0)

SWAP
( π
4 , π

4 , π
4 )

M

N
Q

P

CNOT
( π
4 , 0, 0)

A1( π
2 , 0, 0)

≈ LOCAL

(b)

FIG. 1. (a) Any orbit of locally equivalent two-qubit unitary gates intersects the Weyl chamber, forming a tetrahedron in the cube of vectors
�α representing the interaction content. (b) The set of perfect entanglers forms a polytope inside the Weyl chamber with corners at points
P,Q,N,M , CNOT, and DCNOT [4]. Note that point P represents

√
SWAP.

For completeness we present a direct algorithm of finding
the information content �α of any two-qubit unitary gate
U based on [3,21]. It relays on the fact from the group
theory, SU(2) × SU(2) ∼ SO(4), which implies that any local
operation from SU(2) × SU(2) forms in the so-called magic
basis an orthogonal matrix O ∈ SO(4) [38]. Therefore, any
unitary U written in this basis can be brought to the canonical
form (11) by an orthogonal rotation,

V = OT UO. (14)

The algorithm works for any U ∈ U (4) and consists of five
steps.

(i) Find U ′ = Ue−iχ/4 with χ equal to the phase of the
detU , such that U ′ ∈ SU(4).

(ii) Write it down in the magic basis, i.e., find W =
MU ′M†, where M = 1√

2

( 0 −i −i 0
1 0 0 1
−i 0 0 i

0 1 −1 0

⎞
⎠, contains (row-wise)

four Bell states forming the magic basis {−i|ψ+〉,|φ+〉,
−i|φ−〉,|ψ−〉}.

(iii) Compute WWT and find its spectrum, which we write
in the form {e−2iδ1 ,e−2iδ2 ,e−2iδ3 ,e−2iδ4}.

(iv) Find vector �δ by dividing eigenphases of WWT by
minus two. Pay attention to the total phase: By construction∑

i δi should be equal to zero, so if this is not the case replace
δmax by δmax − π or δmin by δmin + π , which corresponds to
another choice of the signs in

√
e2iδ .

(v) Change variables to obtain the information content �α,

α1 = (δ1 + δ2 − δ3 − δ4)/4 = (δ1 + δ2)/2,

α2 = (δ1 − δ2 + δ3 − δ4)/4 = (δ1 + δ3)/2, (15)

α3 = (−δ1 + δ2 + δ3 − δ4)/4 = (δ2 + δ3)/2.

Alternatively, the vector δ can be defined as the spectrum of
the Hamiltonian Hint entering the canonical form (11). The
Hamiltonian Hint is traceless and diagonal in the magic basis.
Its four eigenvalues δi depend on the information content �α in

a linear way. An inverse of (15) gives

δ1 = α1 + α2 − α3,

δ2 = α1 − α2 + α3,
(16)

δ3 = −α1 + α2 + α3,

δ4 = −α1 − α2 − α3,

so one may easily switch between both representations.
Note that the existence of the canonical form (11) for N = 2

is due to the fact that the group SU(2) is homomorphic to
SO(3). However, for higher dimensions SU(N ) is homomor-
phic to a measure zero, (N2 − 1)-dimensional proper subset of
the (N2 − 1)(N2 − 2)/2-dimensional group SO(N2 − 1), and
no direct analog of such a canonical form is known.

B. Schmidt coefficients

By definition (A3) the Schmidt vector �λ = ��/4 is invariant
with respect to local unitary operations. To find its a relation
with the information content �α of an arbitrary unitary matrix of
size N = 4 it suffices to take U in its canonical form (11) and
find singular values of the reshuffled matrix UR . Their squares
appear in the spectral decomposition of a positive, Hermitian
matrix,

UR
can

(
UR

can

)† = �1I ⊗ I + �2σ1 ⊗ σ1

+�3σ2 ⊗ σ2 + �4σ3 ⊗ σ3. (17)

Simple algebra gives the connection between local
invariants:

�1 = (1 + cos 2α2 cos 2α3 + cos 2α1 cos 2α3

+ cos 2α1 cos 2α2),

�2 = (1 + cos 2α2 cos 2α3 − cos 2α1 cos 2α3

− cos 2α1 cos 2α2),

�3 = (1 − cos 2α2 cos 2α3 + cos 2α1 cos 2α3 (18)

− cos 2α1 cos 2α2),

�4 = (1 − cos 2α2 cos 2α3 − cos 2α1 cos 2α3

+ cos 2α1 cos 2α2).
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Introducing new variables

η1 := cos 2α2 cos 2α3,

η2 := cos 2α1 cos 2α3, (19)

η3 := cos 2α1 cos 2α2,

we realize that relations (18) are equivalent to (9). Thus,
the coordinates �η used above represent the damping vector
which enters Eq. (8) and characterizes the corresponding
unistochastic map �U . Note that the vector �� of Schmidt
coefficients of U determines the eigenvalues di = �i/N of the
dynamical matrix DU associated with �U , while λi = �i/N

2

describes the weights in the Pauli channel (7).
To see which damping vectors �η correspond to unistochastic

maps we have to describe the image of the Weyl chamber (13)
with respect to transformation (19). We may invert this relation

α1 = 1

2
arccos

η2η3

η3
,

α2 = 1

2
arccos

η1η3

η2
, (20)

α3 = 1

2
arccos

η1η2

η3
,

if the absolute value of arguments of arc cosine are smaller
than unity. This leads to the following restrictions for the set
U of damping vectors corresponding to unistochastic maps

η1η2 � η3,

η2η3 � η1, (21)

η3η1 � η2.

A bistochastic one-qubit map ��η is unistochastic, if the
vector �η satisfies the set of three conditions (21), so relation
(20) gives the interaction content �α and the explicit form (11)
of the unitary matrix defining the map.

The set U2 of one-qubit unistochastic maps forms a proper
subset of the tetrahedron of bistochastic maps bounded by three
parabolic hyperboloids η1 = η2η3, η2 = η1η3, and η3 = η1η2.
Note that the set U2 is not convex: It contains all four corners
and six edges of the tetrahedron, but its center, the point �η = 0,
belongs to the boundary of U2; see Fig. 2. Thus we may model
U2 by pressing symmetrically four faces of a tetrahedron with
rigid edges in such a way that they all touch in the center;
see Figs. 2 and 3.

Let us now try to invert relations (19) and (20) to obtain the
vector �α as function of the components of the Schmidt vector,

α1 = 1

2
arccos

√
w1, where

w1 = (�1 + �4 − 2)(�1 + �3 − 2)

2(�1 + �2 − 2)
,

α2 = 1

2
arccos

√
w2, where

(22)
w2 = (�1 + �4 − 2)(�1 + �2 − 2)

2(�1 + �3 − 2)
,

α3 = 1

2
arccos

√
w3, where

w3 = (�1 + �2 − 2)(�1 + �3 − 2)

2(�1 + �4 − 2)
.

FIG. 2. (a) The set U2 of one-qubit unistochastic maps forms a
proper subset of the tetrahedron of bistochastic maps. (b) The part of
the Weyl chamber of nonequivalent unistochastic maps.

The choice of the sign of the square root determines the
sign of α3. Constraints for unistochasticity (21) imply that
|wi | � 1 for i = 1,2,3 so the function arccos is well defined.
Alternatively, these inequalities provide constraints �λ has to
satisfy to represent a Schmidt vector of a N = 4 unitary matrix.
The choice (13) of the domain containing �α implies that the
elements of the Schmidt vector are ordered nonincreasingly,
�1 � �2 � �3 � �4.

A local unitary operation (�α = 0) is of rank 1, while a
generic two-qubit unitary gate has Schmidt rank 4. As noted
by Dür and Cirac [22] and Nielsen et al. [9], there are no
unitary matrices of Schmidt rank 3. Indeed, by setting �4

FIG. 3. A model of the set U2 of one-qubit unistochastic maps
which forms a nonconvex subset of the tetrahedron of bistochastic
maps. The model relays on the fact that the hyperboloids (21) can be
ruled by straight lines.
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to zero, Eqs. (22) impose �3 = 0 as well. Interestingly, for
two-qutrit composite systems there exist unitary gates of size
9 with Schmidt rank equal to r for each r = 1, . . . ,9 [39].

Observe that expressions (22) are ill defined if all com-
ponents are equal, ��∗ = (1,1,1,1). Hence, one may expect
that this degenerated Schmidt vector of the maximal entropy,
S = 2 ln 2, corresponds to different, nonlocally equivalent
gates. This fact, discussed in [22], may be demonstrated
with explicit examples. Let us define the following two-qubit
unitary gates:

UCNOT =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ , UDCNOT =

⎡
⎢⎣

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎦ ,

USWAP =

⎡
⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎦ . (23)

Their names are related to applications in the theory
of quantum information [1]. The gate CNOT performs the
control-NOT operation: UCNOT|a,b〉 = |a,a ⊕ b〉 where a is the
control bit, b is the target bit and the sum is understood
modulo two. Defining a symmetric CNOT operation with the
role of bits reversed, UCNOT′ |a,b〉 = |a ⊕ b,a〉, one defines the
double CNOT gate by the composition UDCNOT = UCNOTUCNOT′ .
The SWAP gate may be written as a product of three CNOT

gates, USWAP = UCNOT′UCNOTUCNOT′ , while its action on any two
qubits, USWAP|a,b〉 = |b,a〉 explains its name. Characterization
of nonlocal properties of these exemplary two-qubit gates
is provided in Table I, complementary to the data listed
in [40]. For comparison we include also the so-called B gate
which interpolates between CNOT and DCNOT and is optimal to
simulate an arbitrary two-qubit gate [41].

The data presented in the table may be easily obtained for
an arbitrary unitary matrix U : The spectrum of UUR gives
the Schmidt vector �, the phases UUT (normalized in such
a way that their sum vanishes) provide vector �δ, while the
information content �α follows from relations (15).

Note that the matrices UDCNOT and USWAP are invariant with
respect to reshuffling, so the reshuffled matrix is unitary and
all four of its singular values are equal to unity. Reshuffled
Fourier matrix remains unitary, so it has the same singular

values. Hence, the Fourier matrix, the gates DCNOT and SWAP,
are characterized by the same, maximally mixed Schmidt
vector ��∗ = (1,1,1,1), but they carry different information
content, and thus are not locally equivalent [22]. Making use
of (22) we infer that any gate with the information content
�α = (π/4,π/4,x) with an arbitrary x is characterized by the
same maximally mixed Schmidt vector �∗.

For comparison we have provided the data for matrices
representing

√
CNOT and

√
SWAP, which may be obtained by

replacing the fragments of (23) containing the NOT gate UNOT =
[0 1
1 0] by U√

NOT := 1
2 [1 + i i − 1

1 − i 1 + i]. In these cases taking the square
root of a gate corresponds to dividing its interaction content by
two, �α(U√

SWAP) = 1
2 �α(USWAP). More generally, among several

possibilities of taking a kth root of an unitary matrix U

described by �α one can select an unitary matrix U 1/k such
that its interaction content equals �α/k.

Let us mention here that the entangling power of integer
roots of the SWAP gate were investigated in [42]. Another
possibility to characterize nonlocal properties of unitary gates
by so-called Frobenius fidelity was recently investigated
in [17].

IV. SCOE(4): ENSEMBLE OF TWO-QUBIT
UNITARY GATES

In this section we study random two-qubit unitary gates
described by unitary matrices of size N = 4. An ensemble of
unitary matrices generated according to the Haar measure is
called [43] CUE.

We aim to derive the probability distributions of local
invariants of unitary matrices of size 4. Since quantum states
are defined up to a global phase, we may restrict our attention
to the set of special unitary matrices SU(4) with detU = 1. An
ensemble containing special unitary matrices with detU = 1
induced by the Haar measure is called SCUE.

To find the distribution P (�α) we use a magic basis and the
representation given by Eq. (14). The Haar measure on CUE(4)
induces in a set of symmetric unitary matrices Y = UUT the
measure

dHY = dH OT YO, (24)

invariant with respect to orthogonal similarity Y → OT YO.
A set endowed with such invariant volume is called circular

TABLE I. Nonlocal properties of two-qubit unitary quantum gates; s± = 2 ± √
2, t = 1/

√
2. Perfect entanglers: no (N); yes, inside the set

(Y); yes, at the boundary (B).

Information Hamiltonian Schmidt Schmidt Damping Perfect
Gates content �α eigenvalues �δ vector �� rank vector �η entangler

Local gate (0,0,0) (0,0,0,0) (4,0,0,0) 1 (1,1,1) N√
CNOT π

8 (1,0,0) π

8 (1,1,−1, −1) (s+,s−,0,0) 2 (1,t,t) N

CNOT π

8 (2,0,0) π

8 (2,2,−2, −2) (2,2,0,0) 2 (1,0,0) B

B gate π

8 (2,1,0) π

8 (3,1,−1, −3) 1
2 (3,3,1,1) 4 1

2 (1,0,0) Y

DCNOT π

8 (2,2,0) π

8 (4,0,0,−4) (1,1,1,1) 4 (0,0,0) B√
SWAP π

8 (1,1,1) π

8 (1,1,1,−3) 1
2 (5,1,1,1) 4 1

2 (1,1,1) B

SWAP π

8 (2,2,2) π

8 (2,2,2,−6) (1,1,1,1) 4 (0,0,0) N

Fourier π

8 (2,2, −1) π

8 (5,−1, −1, −3) (1,1,1,1) 4 (0,0,0) N
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orthogonal ensemble (COE), so the ensemble of symmetric
unitary matrices with a determinant equal to unity is called
SCOE.

It is known [43] that random symmetric unitary matrices of
COE are characterized by the following joint distribution of
eigenphases �i

P (�1,�2,�3,�4)

= N δ(�1 + �2 + �3 + �4)
∏

1�m<n�4

|ei�n − ei�m |, (25)

where N is the normalization constant.
Integrating over �4 we obtain

P (�1,�2,�3)

= N ′|ei(−�1−�2−�3) − ei�3 ||ei(−�1−�2−�3) − ei�2 |
× |ei(−�1−�2−�3) − ei�1 ||ei�3 − ei�2 |
× |ei�3 − ei�1 ||ei�2 − ei�1 |. (26)

The angles π/2 � �i � π/2, i := 1,2,3,4 are the eigenvalues
of Y = UUT ; hence, �i = 2δi [3]. Thus,

α1 = 1
4 (δ1 + δ2 − δ3 − δ4) = 1

4 (�1 + �2) , (27)

α2 = 1
4 (δ1 − δ2 + δ3 − δ4) = 1

4 (�1 + �3) , (28)

α3 = 1
4 (−δ1 + δ2 + δ3 − δ4) = 1

4 (�2 + �3) ; (29)

i.e.,

�1 = 2(α1 + α2 − α3), (30)

�2 = 2(α1 − α2 + α3), (31)

�3 = 2(−α1 + α2 + α3). (32)

In this way we obtain one of the main results of this paper: the
joint probability distribution for the interaction content vector
�α, induced by the Haar measure on SU(4),

P (α1,α2,α3) = N ′′|sin[2(α1 + α2)]||sin[2(α1 + α3)]|
× |sin[2(α2 + α3)]||sin[2(α1 − α2)]|
× |sin[2(α1 − α3)]||sin[2(α2 − α3)]|. (33)

The resulting normalization constant N ′′ can be easily calcu-
lated to be 2/π by integrating over the cube −π � �i � π ,
i.e., −π/2 � ci � π/2, i = 1,2,3.

Making use of (19) one can change variables and get the
probability distribution of the damping vector �η,

P (η1,η2,η3) =
∣∣ η1η2

η3
− η3η1

η2

∣∣∣∣ η3η1

η2
− η2η3

η1

∣∣∣∣ η2η3

η1
− η1η2

η3

∣∣∣∣1 − η2η3

η1

∣∣∣∣1 − η1η2

η3

∣∣∣∣1 − η1η2

η3

∣∣ , (34)

defined for vectors �η satisfying constraints (21). This expres-
sion shows that the density is concentrated in vicinity of the
boundary of the set U2 inscribed inside the tetrahedron of
one-qubit bistochastic maps. Alternatively, one may easily
get the analytical expression P (λ) for the density inside the
Schmidt simplex induced by the Haar measure on SU(4), but
we found it more convenient to work in the �η representation
and to use (34).

0.25 0.5 0.75 1
r

0

1

2

3

4

5

P
(r

)

FIG. 4. Probability distribution of purity r of random unitary
matrices distributed according to the Haar measure on SU(4). The
solid line represents the numerical integration of distribution (34),
while the black dots show the histogram obtained by a Monte Carlo
approach.

This distribution may be applied to compute average values
of various measures of nonocality of random two-qubit unitary
gate. Consider, for instance, the purity r (locality) related to
the linear entropy of the Schmidt vector,

r := λ2
1 + λ2

2 + λ2
3 + λ2

4 = 1
4

(
1 + η2

1 + η2
2 + η2

3

)
. (35)

The average purity of a unitary matrix distributed according
to the Haar measure on U (N2) was computed by Zanardi [7],

〈r〉N = 2

N2 + 1
, (36)

so in the case of two-qubit gates this average reads 〈r〉2 = 2/5.
Making use of the joint distribution (34) we can go a step

further and get the entire probability distribution P (r) as a
triple integral. Two integrals are easy to perform analytically,
but the last integral had to be computed numerically. Results
shown as a line in Fig. 4 are compared with the Monte
Carlo calculations in which 105 random unitary matrices of
size 4 were generated and the distribution of their locality
collected into the histogram denoted by black dots. Results
obtained with both methods agree well and show that a typical
random unitary gate has low purity, so it is strongly nonlocal.
There exists a large class of quantum gates with the linear
entropy r ∼ 3/8, close to the value for which the analyzed
probability distribution P (r) achieves its maximal value. All
these gates represent a “generic” behavior in the entire set
of two-qubit unitary quantum gates, but it is hardly possible
to distinguish out of them a single gate with some special
properties.

V. THE SUBSET OF PERFECT ENTANGLERS
OF TWO-QUBIT UNITARY GATES

Among all two-qubit gates represented by unitary matrices
of size 4, one may distinguish so-called perfect entanglers,
which can produce from a product state a maximally entangled,
Bell-like state. A gate U belongs to this class if its numerical
range (for a normal matrix equal to the convex hull of the
spectrum) includes the eigenvalue z = 0 [18]. In terms of the
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parameters α1,α2,α3 the condition reads [4]

π

4
−

∣∣∣∣π4 − α1

∣∣∣∣ � π

8
−

∣∣∣∣π8 − α2

∣∣∣∣ � α3 � 0. (37)

In the latter work the authors have shown that the relative
volume of the set of perfect entanglers is equal to 1/2. How-
ever, they used the uniform measure in the three-dimensional
space of the vectors representing the information content (or
rather its relevant part, called Weyl chamber), which does not
correspond the natural Haar measure on the set of unitary
matrices.

In this section we redo the calculations using the measure
P (α1,α2,α3) induced by the Haar measure on U (N ) and given
by Eq. (33).

As explained in Sec. III the set of nonequivalent gates
is parametrized by α1,α2,α3 restricted by inequalities (13),
i.e., belonging to the tetrahedron T0 with vertices O =
(0,0,0), A = (π/2,0,0), UDCNOT = (π/4,π/4,0), and USWAP =
(π/4,π/4,π/4). Hence, its volume with respect to the measure
(33) equals

Vw =
∫ π/4

0
dα1

∫ α1

0
dα2

∫ α2

0
dα3P (α1,α2,α3)

+
∫ π/2

π/4
dα1

∫ π/2−α1

0
dα2

∫ α2

0
dα3P (α1,α2,α3)

= N
24

. (38)

The set of the perfect entanglers (PEs) given by (37)
is the convex polyhedron with vertices: L = (π/4,0,0),
M = (3π/8,π/8,0), UDCNOT, Q = (π/8,π/8,0), N = (3π/8,

π/8,π/8), and P = (π/8,π/8,π/8), and a straightforward
calculation of its volume with respect to the measure (33)
gives

Vpe = N
9π

. (39)

Hence, the relative volume of the PEs reads

Vpe

Vw

= 8

3π
≈ 0.85 (40)

and gives the probability with which a typical two-qubit gate is
a PE. This value, much larger than one-half, is consistent with
the earlier observations that a generic unitary gate is highly
nonlocal.

In the set of two-qubit gates one distinguishes also the set
of special perfect entanglers (SPEs), which can maximally
entangle a set of four product states which form an orthogonal
basis [44]. Special perfect entanglers form a one-dimensional
set of gates interpolating between CNOT and DCNOT, so the
natural measure of this set is equal to zero. The interpolating
gate B, introduced in [41], is located inside of the set of PE
and belongs as well to SPE; see Fig. 5, which shows a sketch
of the set of two-qubit unitary gates.

VI. N × N SYSTEMS AND TWO QUNITS UNITARY GATES

Studying nonlocal properties of a unitary gate U of an
arbitrary size N × N of higher dimensions we have to relay on

FIG. 5. A sketch of the set of two-qubit unitary quantum gates.
The set of perfect entanglers (PE) occupies approximately 85%
of the entire volume and contains the set SPE of measure zero.
The complementary set of nonperfect entanglers (NPE) consists of
two (connected) parts which include local gates (Loc) and a SWAP

operation, respectively.

its Schmidt decomposition, since for N � 3 no direct analog
of the canonical form (11) exists. The Schmidt vector, equal
to the squared singular values of the reshuffled matrix UR , in
several cases may be found analytically.

A. Schmidt vectors for exemplary gates

Analyzing, for instance, the general case of the swap
operator USWAP acting now in the space of two quNits,
SWAP|a,b〉 = |b,a〉, we see that UR

SWAP = USWAP. Hence, the
reshuffled matrix is unitary, so all N of its singular values
are equal to unity and the entanglement entropy is maximal,
S(USWAP) = 2 ln N . Selecting one element out of N in each
block of the first N rows of U it is straightforward to write the
other N ! − 1 permutation matrices, which are invariant with
respect to the reshuffling transformation, so their entanglement
entropy is maximal.

The same property is also characteristic of the Fourier
matrix of order N2 with entries Fkl = 1

N
exp(2πkl/N2). Also

in this case it is enough to see that the reshuffled matrix FR

remains unitary, which implies S(F ) = 2 ln N . This result was
earlier established in [9,39]. The fact that the entropy of the
SWAP gate and of the Fourier matrix are maximal, does not
imply that both gates are locally equivalent. Up until now
the general question which unitary gates of size KN > 4 are
locally equivalent remains open.

Among other two-quNits gates let us mention two possible
generalizations of the CNOT (XOR) gate [45],

U+|i,j 〉 ≡ |i,i ⊕ j 〉 and U−|i,j 〉 ≡ |i,i � j 〉, (41)

where i,j = 0,1, . . . ,N − 1 and both operations are taken
modulo N .

Since addition and subtraction of bits modulo two are
equivalent, both gates coincide for N = 2 with the standard
CNOT gate defined in (23). The gate U− may be called a
“controlled rotation,” because the target bit j gets rotated
depending on the value of the control bit i and (U−)d = 1.
Inasmuch as the gate U+ is symmetric and forms an involution,
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(U+)2 = 1, it was called the generalized XOR gate by Alber
et al. [46], who demonstrated that U+ is capable of performing
various tasks of quantum information processing and proposed
a physical realization of this gate based on nonlinear optical
elements.

Both gates are permutation matrices with the block diagonal
structure. In both cases all blocks of size N reshaped
into vectors of length N become mutually orthogonal, so
the matrix UR

± (UR
± )† is diagonal and consist of exactly N

nonzero elements, each of them equal to N . This fact implies
that the entanglement entropy of both gates is equal and
reads

S(U+) = S(U−) = ln N. (42)

B. Random gates and average values

The Haar measure on the set of matrices of a composite
size MN determines a natural measure on the set of unitary
quantum gates. A gate taken randomly with respect to this
measure will be nonlocal with probability equal to one,
since the set of local gates of the tensor product structure,
U1(N ) ⊗ U2(M), forms only a zero measure in U (NM). On
the other hand, one may ask to what extend a generic unitary
gate is nonlocal. Formulating this question more precisely, we
investigate mean values of entropies of entanglement averaged
with respect to the Haar measure.

The average purity (36) implies that the average linear
entropy E = 1 − ∑N2

i=1 λ2
i reads 〈E〉N = (N2 − 1)/(N2 + 1)

[7]. Interestingly, this average is equal to the mean purity of
squared components of a random complex vector of size N2,
distributed according to the natural, unitarily invariant measure
on the space of pure states. However, we demonstrate that both
distributions are different. In particular, our numerical results
show that the average entropy of entanglement (A8), behaves
like

〈S〉U ∼ 2 ln N − 1
2 , (43)

while the mean entropy of a random vector of the size N2

reads

〈S〉φ = �(N2 + 1) − �(2) =
N2∑
k=2

1

k
≈ 2 ln N − 1 + γ.

(44)

In this formula, derived in [47], �(x) denotes the digamma
function while γ ≈ 0.5772 is the Euler constant.

To characterize statistical distribution of the distribution of
Schmidt vectors of random unitary gates we computed the
average moments 〈∑i λ

q

i 〉 and the average Rényi entropy
(A9). Our results show that the average entropy for the
N × N unitary gates behaves as 〈Sq〉 ≈ 2 ln N − cq ; see Fig. 6.
Since the dimension N is plotted in the logarithmic scale,
relations (44) correspond to straight lines in the graph. The
values of the constants cq agree with predictions c1 = 1/2,
c2 = ln 2 ≈ 0.69, c4 = (ln 14)/3 ≈ 0.88 derived in [48] for
the average Renyi entropy of mixed quantum states of size
N2 obtained by a partial trace of random pure states of an
extended system. This fact shows that a random positive matrix
UR(UR)† has properties of a Wishart random matrix: For a

 3.5

4

 4.5

5

 5.5

10 14 18 22

S

N

FIG. 6. Mean Rényi entropies of entanglement averaged over
unitary matrices acting on symmetric N × N systems: • represents
the mean Shannon entropy 〈S〉, while �, ∗, and × denote average
Renyi entropy 〈Sq〉 for q equal to 2, 4, and 8, respectively. Dimension
N is plotted in the log scale, and solid lines represent the asymptotic
behavior.

large matrix size the unitarity of U hardly influences statistical
property of the corresponding reshuffled matrix UR , which
can be treated as a typical non-Hermitian matrix from the
Ginibre ensemble [49], as their statistical properties coincide
asymptotically.

A generic quantum pure state |ψ〉 of a bipartite N × N

system is typically highly entangled, so the corresponding
reduced density matrix, ρ = TrN |ψ〉〈ψ |, is highly mixed and
its von Neumann entropy is close to the maximal value, ln N .
This known fact [48,50] is directly related to properties of
random unitary operation: A generic unitary gate U acting
on N × N system is highly nonlocal and the corresponding
unistochastic operation �U is strongly depolarizing.

The above observations hold also for a general case of
k-unistochastic channels or quantum gates acting on N × M

systems. The Haar measure on the unitary group U (NM)
induces a certain measure on the simplex �N2 containing
all possible Schmidt vectors of size N2. The larger the size
M of the auxiliary subsystem, the larger is the average
Shannon entropy of the Schmidt vector �′, equal to the average
entangling power of the quantum gate. In the limit M → ∞
the average entanglement entropy tends to the maximal value,
2 ln N .

VII. CONCLUDING REMARKS

In this paper we have analyzed the ensemble of unitary
quantum gates distributed uniformly with respect to the Haar
measure on the unitary group. As the overall phase of the
matrix does not influence its action on a quantum state, we
restricted our attention to unitary matrices with determinant
equal to unity and considered matrices from SCUE.

A generic unitary gate U , acting on a bipartite N × N

system, was shown to be strongly nonlocal. For instance, its
entanglement entropy S(U ) (also called Schmidt strength [9])
behaves as 2 ln N − 1/2, which is also characteristic of random
density matrices of size N2, distributed according to the flat
measure [48].

Any bipartite quantum gate U , represented by a unitary
matrix of size N2, determines a unistochastic operation �U ,
in which the initial state of size N is coupled by U with
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the environment of the same size, prepared in a maximally
mixed state [25]. The entanglement entropy of a gate S(U ),
equal to the entropy S(�U ) of the corresponding unistochastic
channel (4), is given by the Shannon entropy of the eigenvalues
of UR(UR)†/N2. The reshuffled matrix UR is non-Hermitian
and for a Haar random unitary U , its statistical properties are
shown to coincide with predictions of the Ginibre ensemble.
Thus, the spectral density of a normalized, Wishart-like matrix
UR(UR)†/N2 is asymptotically described by the Marchenko-
Pastur distribution.

Analyzing in particular the set of two-qubit unitary gates we
derived an explicit formula for the joint probability density (33)
for the interaction content vector �α characterizing a quantum
gate, and the distribution (34) for the damping vector �η. Having
these results at hand we were in position to analyze the subset
of bipartite quantum gates consisting of PEs, unitary gates
capable of transforming a separable state into a maximally
entangled Bell-like state. Using the known conditions for a
two-qubit gate to be a PE [4,18], we found that according
to the natural Haar measure on the unitary group the set of
PEs occupies approximately 85% of the entire volume of the
space of unitary matrices of order four. This observation gives
a concrete argument supporting the claim that local gates are
rather exceptional, while a generic unitary gate is strongly
nonlocal.

Although any two locally equivalent unitary matrices
possess the same set of the Schmidt coefficients and generate
the same unistochastic map, the reverse is not true. For
instance, as shown in Table I, the two-qubit gates SWAP and
DCNOT and the Fourier matrix are characterized by the uniform
vector � of the Schmidt coefficients so their entanglement
entropy is equal to 2 ln 2. Although these unitary matrices
are characterized by different information content α, so they
are not locally equivalent, these gates generate the same
unistochastic map: the maximally depolarizing channel.

Any unistochastic operation, determined by a unitary matrix
acting on an extended space, is by construction bistochastic.
However, not every bistochastic operation is unistochastic and
can be obtained by a partial trace over the environment of the
same size, initially prepared in the maximally mixed state.
In the case of one-qubit maps, there are no unistochastic
maps of rank 3, represented by a point belonging to the face
of the tetrahedron of bistochastic maps, spanned by three
Pauli matrices and identity; see Fig. 3. This is consistent
with the known fact that there is no two-qubit unitary gates
of Schmidt rank 3 [9,22]. For instance, the symmetric Pauli
channel,

ρ → ρ ′ = 1

3

3∑
i=1

σiρσi (45)

at the center of the face of the tetrahedron of bistochastic maps
is located as far from the set U2 of one-qubit unistochastic
operations as possible.
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APPENDIX: SCHMIDT DECOMPOSITION
OF A UNITARY OPERATOR

1. Matrix algebra: Reshaping

Consider a rectangular matrix Aij , j = 1, . . . ,N and i =
1, . . . ,M . Equivalently, one may put its elements row after row
into a vector �ak of size MN ,

Aij = �a(i−1)N+j . (A1)

For instance, a unitary matrix U of size M × M will be thus
transformed into a vector �u with M2 components.

Let HN denote an N -dimensional complex Hilbert space
and HHS the corresponding N2-dimensional Hilbert-Schmidt
space of all linear operators acting on HN . It is equipped with
a scalar product A · B = 〈A|B〉 := trA†B, where A and B are
arbitrary complex matrices of size N × N .

Let V denote an auxiliary unitary matrix of size N2.
Unitarity of V implies that its N2 columns �bm = Vim (or rows
�bm = Vmi), m,i = 1, . . . ,N2 reshaped into square N × N

matrices Bm as in (A1), form an orthonormal basis in HHS ,
since 〈Bm|Bn〉 := TrB†

mBn = δmn. Note that the matrices Bm

need not to be unitary.
Consequently, the tensor products (Bm ⊗ Bn), m,n =

1, . . . ,N2, span an orthonormal basis in the composite Hilbert-
Schmidt space HHS ⊗ HHS of size N4 in which acts the
original N2 × N2 unitary matrix V .

2. Operator Schmidt decomposition

Take a given unitary matrix U of size N2 × N2 we wish to
investigate. It belongs to the composite Hilbert-Schmidt space
HHS ⊗ HHS and will be occasionally denoted as |U 〉. Let us
write its representation in the basis defined above,

|U 〉 =
N2∑

m=1

N2∑
n=1

Cmn|Bm〉 ⊗ |Bn〉, (A2)

where Cmn = tr[(Bm ⊗ Bn)†U ]. The complex matrix C of size
N2 × N2 need not be Hermitian nor normal. The Schmidt
decomposition of |U 〉 reads

|U 〉 =
N2∑
k=1

√
�k|B ′

k〉 ⊗ |B ′′
k 〉, (A3)

where
√

�k are the singular values of C (square roots
of eigenvalues of the positive matrix C†C), and the basis
is transformed by a local unitary transformation Wa ⊗ Wb.
Thus, |B ′〉 = Wa|B〉 and |B ′′〉 = Wb|B〉, where Wa and Wb

are matrices composed of eigenvectors of C†C and CC†,
respectively. In a typical case of a nondegenerate spectrum of
CC†, the Schmidt decomposition is unique up to two unitary
diagonal matrices, up to which the matrices of eigenvectors
Wa and Wb are determined.

Note that the matrix C depends on the initial basis,
{Bm ⊗ Bn}Nm,n=1, in which the analyzed matrix U is rep-
resented, while the Schmidt coefficients �k are basis
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independent. Thus, for convenience we may analyze the spe-
cial case in which the basis in HHS is generated by the identity
matrix of size N2 × N2. Then each of the N2 basis matrices
Bn of size N × N has only one nonvanishing element which
equals unity. Let us denote Bk = Bmμ = |m〉〈μ|, where k =
N (m − 1) + μ. In this case the matrix of the coefficients C has
a particularly simple form, Cmμ

nν
= Tr(Bmμ ⊗ Bnν)U = Umn

μν
.

3. Matrix algebra: Reshuffling

This particular reordering of a matrix, called reshuf-
fling [25], will be denoted as UR := C. In general, the notion
of reshuffling is well defined if a matrix X acts on a composite
Hilbert space, HM ⊗ HN . The symbol UR has a unique
meaning if a concrete decomposition of the total dimension,
L = MN , is specified. Similar reorderings of matrices were
considered by Hill et al. [51,52] while investigating CP maps
and also in [53–57] to analyze separability of mixed quantum
states.

The Schmidt coefficients of U are equal to the squared
singular values of the reshuffled matrix, UR . Therefore, the
operator Schmidt decomposition (A3) of an arbitrary matrix
X may be summarized by

{
√

�k}N2

k=1 = singular values of XR,

|B ′
k〉 = reshaped eigenvectors of (XR)†XR, (A4)

|B ′′
k 〉 = reshaped eigenvectors of XR(XR)†.

Note that the singular values of the reshuffled matrix,
SV(XR), are equal to square roots of eigenvalues of a positive
matrix (XR)†XR . The initial basis is transformed by a local
unitary transformation Wa ⊗ Wb, where Wa and Wb are
matrices of eigenvectors of matrices (XR)†XR and XR(XR)†,
respectively. If and only if the rank K of XR(XR)† is equal
to one, the operator can be factorized into a product form,
X = X1 ⊗ X2, where X1 = Tr2X and X2 = Tr1X.

To get a better feeling of the reshuffling transformation,
observe that reshaping each row of the initial matrix X of
length N2 according to (A1) into a submatrix of size N and
placing it according to the lexicographical order block after
block produces the reshuffled matrix XR . Let us illustrate this
procedure for the simplest case N = 2, in which any row of
the matrix X is reshaped into a 2 × 2 matrix,

Ckj = XR
kj :=

⎡
⎢⎣

X11 X12 X21X22

X13X14 X23 X24
X31 X32 X41X42

X33X34 X43 X44

⎤
⎥⎦ . (A5)

The operation of reshuffling could be defined in an alternative
way. Instead of reshaping the vectors of X into square matrices
of size N one can reshape columns of X, which leads to another
reshuffled matrix XR′

. In the four indices notation introduced
above (Roman indices running from 1 to N correspond to the
first subsystem; Greek indices correspond to the second one),
both operations of reshuffling take the form

XR
mμ
nν

:= Xmn
μν

and XR′
mμ
nν

:= Xνμ
nm

. (A6)

However, both reshuffled matrices are equivalent up to a
certain permutation of rows and columns and transposition,
so the singular values of XR′

and XR are equal. It is easy

to see that (XR)R = X. In general, N3 elements of X do not
change their position during the operation of reshuffling [these
typeset boldface in (A5)]; the other N4 − N3 elements do. The
space of complex matrices with the reshuffling symmetry is
thus 2N4 − 2(N4 − N3) = 2N3 dimensional. Note that if X is
Hermitian the reshuffled matrix XR needs not to be Hermitian.

4. Entanglement entropy

The Hilbert-Schmidt norm of any unitary matrix is ||U || =√〈U |U 〉 = √
N . Computing the norm of the right-hand side

of (A3) we obtain

N2∑
k=1

�k = N2. (A7)

Thus, the normalized vector �λ of the squared singular values,
λk := �k/N

2, lives in the (N2 − 1)-dimensional simplex and
may be interpreted as a probability vector. If and only if there
exists only one nonzero singular value, λ1 = 1, then the unitary
matrix has a product form, U = Ua ⊗ Ub. In such a case U

is called a local gate and both operators obtained by partial
tracing, Ua = TrbU and Ub = TraU , are unitary.

In general, the vector of the Schmidt coefficients of an
unitary matrix U acting on a composite N × N system conveys
information concerning the nonlocal properties of U . To
characterize quantitatively the distribution of �λ one uses the
Shannon entropy,

S(U ) := S(�λ) = −
N2∑
k=1

λk ln(λk), (A8)

called in this context entanglement entropy of U [7] (or
Schmidt strength [9]), and the generalized, Rényi entropies,

Sq(U ) := Sq(�λ) = − 1

1 − q
ln

⎡
⎣ N2∑

k=1

(λk)q

⎤
⎦ , (A9)

which tend to S in the limit q → 1. The entropy S0, sometimes
called Hartley entropy, is equal to ln L, where L denotes the
number of positive coefficients λi and is called Schmidt rank
(or Schmidt number).

The second-order Renyi entropy S2 is closely related to the
linear entropy E(U ) = 1 − exp(−S2) used by Zanardi in [7].
The quantity r = ∑N2

k=1(λk)2 is called purity while analyzing
the vector of eigenvalues of an arbitrary density matrix ρ: the
larger the coefficient r , the more pure the state. The maximal
value, r = 1, is attained if and only if the state ρ is pure. In the
present analysis of the unitary matrices, we stick to this name,
although in this context r could be termed locality: The gate
U is local if and only if r = 1. Another quantity called inverse
participation ratio is useful: R = 1/r = exp(S2) varies from
unity (local gates) to N2 for the Fourier unitary matrices of
size N2 defined by

F
(N2)
kl := 1

N
exp(i2πkl/N2). (A10)

To demonstrate this fact it is sufficient to notice that the
reshuffled matrix FR remains unitary, so all its singular values
are equal to unity; hence, the Schmidt vector contains N2
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equal components and is maximally mixed. Some examples of
unitary two-qubit gates and their Schmidt vector are collected
in Table I.

5. Local equivalence

By virtue of the Schmidt decomposition if two gates are
locally equivalent, their Schmidt coefficients (and thus the

entanglement entropy) are equal. However, the opposite is
not true: There exist unitary gates with the same set of
Schmidt coefficients, which are not locally equivalent [22].
Hence, equality of Schmidt vectors characterizing two unitary
matrices of size N2 is a necessary but not sufficient condition
for their local equivalence. Sufficient conditions for local
equivalence are known [2,4,21] only for N = 2.
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[33] A. Wójcik, A. Grudka, and R. Chhajlany, Quantum Inf. Proc. 2,

201 (2003).
[34] K. Kraus, Ann. Phys. 64, 311 (1971).
[35] E. C. G. Sudarshan, P. M. Mathews, and J. Rau, Phys. Rev. 121,

920 (1961).
[36] M. B. Ruskai, S. Szarek, and E. Werner, Linear Algebra Appl.

347, 159 (2002).
[37] A. Fujiwara and P. Algoet, Phys. Rev. A 59, 3290 (1999).
[38] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
[39] J. E. Tyson, J. Phys. A 36, 10101 (2003).
[40] S. Balakrishnan and R. Sankaranarayanan, Phys. Rev. A 79,

052339 (2009).
[41] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, Phys. Rev. Lett.

93, 020502 (2004).
[42] S. Balakrishnan and R. Sankaranarayanan, Phys. Rev. A 78,

052305 (2008).
[43] M. L. Mehta, Random Matrices, 2nd ed. (Academic Press,

New York, 1991).
[44] A. T. Rezakhani, Phys. Rev. A 70, 052313 (2004).
[45] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999).
[46] G. Alber, A. Delgado, N. Gisin, and I. Jex, J. Phys. A 34, 8821

(2001).
[47] K. R. W. Jones, J. Phys. A 23, L1247 (1990).
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