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1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann–Str. 1, D-85748 Garching, Germany
2M5, Zentrum Mathematik, TU München, L.-Boltzmannstr. 3, D–85748 Garching, Germany

(Received 3 August 2012; published 13 February 2013)

We propose a quantum optical implementation of a class of dissipative spin systems, including the XXZ

and Ising model, with ultracold atoms in optical lattices. By employing the motional degree of freedom of the
atoms and detuned Raman transitions, we show how to obtain engineerable dissipation and a tunable transversal
magnetic field, enabling the study of the dynamics and steady-states of dissipative spin models. As an example
of effects made accessible this way, we consider small spin chains and weak dissipation and show by numerical
simulation that steady-state expectation values display pronounced peaks at certain critical system parameters.
We show that this effect is related to degeneracies in the Hamiltonian and derive a sufficient condition for its
occurrence.
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I. INTRODUCTION

Quantum spin models play a fundamental role for the
theoretical and experimental study of quantum many-body
effects. They represent paradigmatic systems exhibiting, e.g.,
quantum phase transitions and peculiar forms of matter [1].
They also provide toy models for description of many solid
state systems. Ultracold atoms in optical lattices [2] have
emerged as a system that is especially suited to study the
low-energy sector of quantum spin systems with the promise
to eventually simulate theoretical models in large, controlled
quantum systems.

To observe these effects, coupling to uncontrolled degrees
of freedom has to be kept to a minimum, since it leads to
dissipation and decoherence [3,4] which can mask or destroy
the quantum effects. But in recent years, it has been shown how
the coupling to an environment can be harnessed to generate
useful quantum states [5–9] or perform quantum information
tasks [9,10]. Moreover, the study of the phase diagram of
open quantum systems has turned into a fruitful direction itself
[11–16].

Our aim in the present work is twofold: In the first part
of the paper, we propose a scheme to realize a quantum spin
system using ultracold atoms in an optical lattice in which
both coherent interaction and dissipation can be engineered
and controlled, enabling the study the nonequilibrium and
steady-state physics of open and driven spin systems. In the
second part, we highlight a peculiar feature of the steady-state
diagram for small spin chains: in the limit of weak dissipation,
abrupt changes of steady-state expectation values for certain
critical values of the system parameters are observed. We
explain this feature and relate it to degeneracy properties of
the system Hamiltonian and derive a sufficient condition for
the occurrence of sharp peaks at critical system parameters.

II. PHYSICAL IMPLEMENTATION OF
ONE-DIMENSIONAL SPIN CHAIN

UNDER DISSIPATION

Ultracold bosonic atoms in optical lattices are ideal can-
didates to simulate spin Hamiltonians. Different theoretical
and experimental approaches [17] have been employed to

simulate quantum spin chains in optical lattices; for example,
by optical driving of two hyperfine levels of cold bosons in the
Hubbard regime [18]. Recently, a one-dimensional chain of
interacting Ising spins has been implemented experimentally
using a Mott-Insulator of spinless bosons in a tilted optical
lattice [19].

In the following, we show theoretically how to add
engineered dissipation to the toolbox of these systems [20,21].
Specifically, we show how to implement a system with the
following properties: (i) dissipative dynamics of Lindblad
form, (ii) a tunable magnetic field in x direction and (iii) an
effective spin Hamiltonian such as, e.g., the XXZ, Heisenberg,
or Ising model. In the next sections, we first introduce the
setup and explain qualitatively how such a one-dimensional
spin chain in a tunable magnetic field under engineerable
dissipation can be realized with cold atoms in optical lattices.
In the subsequent sections we give specific requirements and
parameters and details of the derivation for (i)–(iii).

A. Setup and qualitative description

The system we consider is an optical lattice populated
with a single atomic bosonic species. We assume to be in
the Mott-insulator regime with filling factor 1, where the
on-site interaction is much larger than the tunneling (hopping)
between neighboring lattice sites. In this regime, the atoms
are localized such that each lattice potential is occupied with
one atom. We aim to use the motional ground and first-excited
state of the atom (denoted by |0〉 and |1〉 [22], respectively)
to realize an effective spin- 1

2 system in each lattice site. To
access the motional degree of freedom optically, we work in the
Lamb-Dicke regime where the motion of the atom is restricted
to a region small compared with the laser wavelength. We
make use of the anharmonicity of the lattice potential and,
as explained in the following, of decay of the atoms that
leads to cooling of the system, to restrict the dynamics to the
two-dimensional subspace of {|0〉,|1〉} [23] (see Fig. 1). For the
optical manipulation, we assume that the atoms have internal
degrees of freedom that can be addressed with laser fields. We
consider a � scheme with two ground states |g〉 and |r〉 (both
trapped by the same optical lattice potential) and an excited
state |e〉. The level scheme of the internal states of the atoms
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FIG. 1. (Color online) Relevant level structure and coupling and
decay terms of single atom trapped at a lattice site. The upper-left
part shows the internal levels of the atom: � system |g〉, |r〉, |e〉,
off-resonantly driven by lasers. The right part shows motional states
in the lattice potential. Lower part: After adiabatic elimination of |e〉,
an effective two-level system with tunable decay rate � and dephasing
rate γ is obtained.

is shown in Fig. 1. Off-resonant laser fields drive transitions
between the two ground states |g〉 and |r〉 and the excited state
|e〉. The system decays fast into the ground states and, as we
show below, effectively decays into the state |g〉. Therefore,
the atoms are optically pumped to the state |g〉 ⊗ |0〉 and the
states |r〉 and |e〉 can be adiabatically eliminated. Eliminating
the excited state |e〉 leads to the effective two-level system in
the lower part of Fig. 1 with designable decay rates. Further
elimination of the state |r〉 leads to an effective description in
the internal ground state |g〉 (see Fig. 2). The optical couplings
by laser fields give rise to effective Hamiltonians and effective
dissipation (cooling) in the ground state |g〉 at each lattice
site. Details are given in Sec. II B. In summary, we obtain
an effective two-level system at each lattice site with Hilbert
space spanned by |g〉 ⊗ |0〉 and |g〉 ⊗ |1〉 as depicted in Fig. 3.

In the following sections, we show that engineering the
optical couplings as above leads to an effective master equation

|0 ⊗ |r

|0 ⊗ |g

|1 ⊗ |g
Γ

γ

Ωeff

δr

FIG. 2. (Color online) Effective two-level system |g〉-|r〉 in the
optical lattice potential with motional states |0〉 and |1〉. Choosing
resonance conditions as explained in Sec. II B, the atoms are selec-
tively excited from |g〉 ⊗ |1〉 to the state |r〉 ⊗ |0〉 and spontaneously
decay into |g〉 ⊗ |0〉.

|0
|1

A−|g

FIG. 3. (Color online) Decay of the effective two-level system
{|0〉},{|1〉} as described by the effective master equation derived in
Sec. II B. The dissipation strength A− is given in Eq. (7).

for the two-level system |0〉, |1〉 that describes (i) decay from
|1〉 to |0〉 and (ii) an effective magnetic field in x direction.
In the Mott insulator regime, tunnel couplings between
neighboring lattice wells can be treated as a perturbation,
which (iii) leads to an effective spin Hamiltonian. The resulting
master equation [24] is given by

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+) − i[H,ρt ]. (1)

Here, σ+
k = |1〉〈0|k is the operator that excites an atom at lattice

site k from the motional state |0〉 to state |1〉 and σ−
k = (σ+

k )†.
The sum runs over all N sites of the optical lattice potential.
The first part in Eq. (1) describes decay from state |1〉 into state
|0〉 as depicted in Fig. 3. It is derived in Sec. II B. The decay
parameter A− can be tuned by changing the Rabi frequencies
of the lasers and the detunings and is given by Eq. (18) in
Sec. II E. The Hamiltonian is given by H = HB + Hspin, where
HB describes the magnetic field in x direction given by

HB =
∑

k

Bx(σ+
k + σ−

k ), (2)

where Bx is proportional to an effective magnetic field in the
x direction. It is derived in Sec. II C. The Hamiltonian Hspin

describes the spin Hamiltonian

Hspin =
∑

k

α1
(
σx

k σ x
k+1 + σ

y

k σ
y

k+1

) + α2σ
z
k σ z

k+1, (3)

as derived in Sec. II D. The parameters α1 and α2 depend on
the properties of the optical lattice potential and can be tuned.
Therefore, the Hamiltonian Hspin describes the XXZ model,
the Ising model, or the Heisenberg model. In the following
three sections, we employ a perturbative approach to derive a
master equation comprising dissipation of Lindblad form (i) as
in Eq. (1), a magnetic field in x direction (ii) as in Eq. (2), and
an effective spin Hamiltonian (iii) as in Eq. (3). For the sake of
clarity, we derive (i)–(iii) in three separate steps employing the
approximation of independent rates of variation as explained
in Ref. [25].

B. Optical couplings of internal atomic states:
dissipation of Lindblad form

In this section, we show that optically addressing the atoms
with suitably tuned lasers allows to engineer decay as in
Eq. (1).

We consider the internal levels |g〉, |r〉, |e〉 of an atom at site
k. The ground states |g〉 and |r〉 can be coupled via the excited
state |e〉 by a detuned Raman transition of two standing-wave
laser fields with Rabi frequencies �1 and �2. Eliminating the
excited state |e〉 leads to an effective coupling between |g〉
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and |r〉 (see Fig. 1) with �eff = �1�2/δre where δre is the
detuning with respect to |e〉 (for details see Appendix A). To
induce controlled dissipation, we couple |r〉 and |e〉 by an
additional off-resonant laser field (indicated by a red arrow) in
Fig. 1. Then adiabatic elimination of the excited state |e〉 leads
to an effective two-level system (as shown in the lower part of
Fig. 1) with states |r〉 and |g〉 which has designable decay rates
� and γ as derived in [26] (see also Appendix A). Thereby, the
excited state |e〉 that is broadened by spontaneous emission is
eliminated, and the effective two-level system |g〉-|r〉 allows
the motional states |0〉 and |1〉 of the lattice potential to be
resolved (note that we are in the Lamb-Dicke regime), as can
be seen in Fig. 2. Under appropriate resonance conditions that
will be specified in the following, the atoms are excited from
state |1〉 ⊗ |g〉 to state |0〉 ⊗ |r〉 and spontaneously decay into
the state |0〉 ⊗ |g〉 as shown in Fig. 2. Adiabatically eliminating
the state |r〉, this corresponds to an effective decay from state
|1〉 ⊗ |g〉 into |0〉 ⊗ |g〉. Thus the atoms effectively remain in
the internal ground state |g〉, such that the decay can be written
as an effective decay from state |1〉 to |0〉 as depicted in Fig. 3.

In Appendix A, we derive in a perturbative approach (that
corresponds to an adiabatic elimination of the state |r〉) a
master equation that describes the dynamics of the two-level
system |0〉, |1〉 of the atom. Assuming that the driving of level
|r〉 is sufficiently weak such that

|�eff| � �,γ,ν,|δr |, (4)

and that the level broadening remains small

� + γ < ν, (5)

the master equation is given by

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+)

+ A+(2σ+
k ρtσ

−
k − {σ−

k σ+
k ,ρt }+) − i

[
H

(1)
eff ,ρt

]
. (6)

Here, A+ determines the strength of the heating terms and
A− the strength of the decay terms. For simplicity, A± are
chosen to be independent of the lattice site k. A± can be made
dependent on the lattice site k by choosing different phases
of the driving lasers as explained in Appendix A. Note that
A+ � A− is required for the validity of the approximation
that restricts to the |0〉 and |1〉 subspace. A− and A+ are given
by

A± = �2
effη

2
1

(� + γ )

(� + γ )2 + (δr ± ν)2
. (7)

Here, δr is the effective detuning given by Eq. (A5) in
Appendix A, η1 = k1/

√
2Mν is the Lamb-Dicke parameter

where k1 is the wave number of the laser with Rabi frequency
�1, M is the atomic mass, and ν denotes the energy difference
between the motional state |0〉 and |1〉 of the lattice potential.
The Hamiltonian H

(1)
eff in the last term in Eq. (6) is given by

H
(1)
eff =

∑
k

ν|1〉〈1|k + HS, (8)

where HS describes ac Stark shifts on the motional levels that
are �ν and are given in more detail in Appendix A. Now we
have everything at hand to implement dissipation. If

δr ≈ ν,

which can be achieved by choosing the laser frequency ωl

in δr = ωr − ωl accordingly, the strength of the dissipation is
much larger than the strength of the heating:

A+ � A−. (9)

Then, the master equation has only decaying terms and is of
the form

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k , ρt }+) − i

[
H

(1)
eff ,ρt

]
. (10)

It describes decay of the atoms from state |1〉 into |0〉, while the
atoms effectively remain in the internal state |g〉. By adiabatic
elimination of the internal state |r〉, we have thus shown that
a master equation can be derived that can be tuned such that it
describes almost pure decay.

C. Optical couplings of internal atomic states:
Effective magnetic field in x direction

To derive the effective magnetic field in x direction, we
consider a detuned Raman transition. Two standing-wave laser
fields with Rabi frequencies �a and �b couple the internal
ground state |g〉 and the excited state |e〉 of the atoms, as de-
picted in Fig. 4. The coupling is described by the Hamiltonian

Hab =
∑

k

�a cos (kaxk)|e〉〈g|k

+ �b sin (kbxk)|e〉〈g|k + H.c., (11)

where ka , kb denote the wave numbers of the lasers and xk is
the displacement from the equilibrium position of the atom at
lattice site k. As we are in the Lamb-Dicke regime, sin (kbxk) ≈
ηb(σ−

k + σ+
k ) [27] and cos (kaxk) ≈ 1. Under the condition

|�a|, |�b| � |δe|, (12)

where δe is the detuning of the driving lasers, as depicted in
Fig. 4, the excited state |e〉 can be adiabatically eliminated
and we get an effective Hamiltonian

H
(2)
eff = HB =

∑
k

Bxσ
x
k , (13)

which describes a tunable magnetic field in x direction, where
Bx is proportional to the effective magnetic field strength in
x direction, which is given by

Bx = 2�a�bηb

δe

.

|0 ⊗ |g

|1 ⊗ |g

|e

ΩbΩa

δe

|0 ⊗ |g

|1 ⊗ |g
Bx

FIG. 4. (Color online) Level scheme and transitions used to
implement the transverse magnetic field. Left: A detuned Raman
transition couples the internal ground state |g〉 and the excited state
|e〉 of the atom. Right: Adiabatic elimination of the excited state |e〉
leads to an effective magnetic field in x direction (see Sec. II C),
which drives transitions between the motional states |0〉 and |1〉.
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|0

|1

t0

t1

FIG. 5. (Color online) Tunneling between neighboring lattice
wells with tunnel amplitudes t0 and t1. States with two atoms per
lattice well are treated in perturbation theory in Sec. II D, as the
on-site interaction is much larger than the tunneling amplitudes.

Thus, we have derived an effective magnetic field in x

direction that drives transitions between the motional states
|0〉 and |1〉 (as depicted on the right side of Fig. 4), while the
atoms remain in the internal ground state |g〉.

D. Effective spin Hamiltonian

In the Mott-insulator regime, bosonic atoms trapped by
a lattice potential with two motional states are described by
the two-band Bose-Hubbard model [28] (see Appendix B).
We denote the on-site interaction by U01, U00, and U11 [29]
and by t0 (t1) the amplitudes for atoms in state |0〉 (|1〉) to
tunnel to neighboring lattice sites. We assume that the on-site
interaction U01, U00, U11 � t0, t1 such that tunneling between
neighboring wells, which leads to states with two atoms in one
lattice well, can be treated as a perturbation (see Fig. 5). Using
second-order perturbation theory [25] (for a detailed derivation
see Appendix B), we derive an effective spin Hamiltonian Hspin

given by

H
(3)
eff = Hspin + Bz

∑
k

|1〉〈1|k, (14)

with

Hspin =
∑

k

α1
(
σx

k σ x
k+1 + σ

y

k σ
y

k+1

) + α2σ
z
k σ z

k+1, (15)

where α1 = −4t0t1/U01, α2 = 2[(t2
0 + t2

1 )/(2U01) − t2
0 /U00 −

t2
1 /U11], and the magnetic field in z direction is

Bz = t2
0 /U00 − t2

1 /U11, (16)

using the Pauli spin matrices σx
k , σ

y

k with σx
k = (|0〉〈1|k +

|1〉〈0|k)/2. The Hamiltonian given by Eq. (14) is an effective
spin Hamiltonian that is tunable by changing the lattice
properties. If α1, α2 > 0, H (3)

eff corresponds to the XXZ model
with a magnetic field in z direction. If the lattice properties
can be tuned such that one of the tunneling constants t0 or
t1 → 0, Hspin is an Ising Hamiltonian with a magnetic field in
z direction. For α1 = α2, Hspin corresponds to the Heisenberg
model.

E. Dissipative one-dimensional spin chain in magnetic field

In the previous sections, we showed—for the sake of clarity
in separate steps—that optical couplings of the internal levels
can be engineered such that we obtain a master equation of
Lindblad form [Eq. (6)] fulfilling the demands (i)–(iii) of
tunable dissipation, spin-interaction, and tunable transverse
field. Combining these results, one has to carefully consider

the order of magnitude of each term. Doing so, we find that the
magnetic field Bz in z direction in Eq. (14) and the Stark shifts
in Eq. (8) can be of the same order of magnitude as ν. Stark
shifts and Bz lead to an effective energy difference between
the motional states |0〉 and |1〉 given by

ν̃ = ν + Bz + s− − s+,

where Bz is defined in Eq. (15) and s−, s+ are the ac Stark shifts
in Eq. (8) (see Appendix A). Therefore, combining all results,
the laser detuning δr that enters in A± has to be adjusted to δ̃r

such that δ̃r − ν = δr − ν̃, which means that δ̃r = δr ± (Bz +
s− − s+).

Then, combining the results from Eqs. (6), (13), and (14),
the master equation reads

ρ̇t =
∑

k

A+(2σ+
k ρtσ

−
k − {σ−

k σ+
k ,ρt }+)

+ A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+) − i[H,ρt ], (17)

where the rates A± are modified by the renormalized δ̃r :

A± = �2
effη

2
1

(� + γ )

(� + γ )2 + (δ̃r ± ν)2
. (18)

The Hamiltonian part of the master equation is given by

H = Hspin + HB + ν̃
∑

k

|1〉〈1|k, (19)

where Hspin is given by Eq. (15) and HB by Eq. (13). The
magnetic field in z direction and Stark shifts have been
included in ν̃. For δ̃r ≈ ν, as shown before, decay dominates
over heating: A− � A+. Then, the master equation has only
decaying terms and Eq. (17) describes a dissipative XXZ

spin chain in a magnetic field with both x and z components.
However, only Bx is fully tunable, while Bz is large (compared
to Bx,A

±) and required to be so by the conditions for adiabatic
elimination, cf. Eq. (4). However, an effective dissipative XXZ

chain without any field in z direction would be advantageous
for observing critical behavior in the steady-state dynamics
that we study in the next sections. Therefore, we transform to
a frame rotating with ν̃. In the rotating frame, HB becomes time
dependent. To obtain a time-independent field in x direction,
the detuned Raman lasers that lead to the effective magnetic
field Bx have to be chosen time dependent, adapted to the
rotating frame (i.e., suitably detuned from the two-photon
resonance). This then yields a time-independent transversal
magnetic field, and the master equation in the rotating frame
is then given by

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+)

− i[Hspin + HB, ρt ]. (20)

It corresponds to the master equation given by Eq. (1). In
summary we have shown how to implement a one-dimensional
spin chain with nearest-neighbor interaction described by the
XXZ or the Ising model and a tunable effective magnetic
field in x direction under dissipation. This system is an ideal
test bed for studying steady-state dynamics of dissipative spin
models, as discussed in the next section. Note that since we
are in a rotating frame, observables other than the collective
spin operator 〈Jz〉 become explicitly time dependent.
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FIG. 6. (Color online) XXZ model with 4 spins, α1 = 1
4 α2 and

open boundary conditions under local dissipation of form given by
Eq. (20). Upper part: Steady-state expectation value 〈J x〉 plotted
versus the magnetic field Bx/α2. Peaks are observed that narrow for
decreasing the dissipation strength. Lower part: Spectrum of XXZ

chain in the magnetic field Bx plotted versus Bx/α2. Peaks in the
steady-state expectation value (upper part) appear at crossing points
of the Hamiltonian that are marked with black circles.

F. Steady-state behavior: Discontinuous steady-state behavior
related to spectrum of Hamiltonian

A particular important characterization of dissipative dy-
namics is through their steady state: if it is unique (or
distinguished by some conserved quantity) it allows for robust
preparation of these states. Abrupt changes in the steady
state as system parameters are varied may signal dissipative
quantum phase transitions [12–16,30,31]. We study the steady-
state behavior of short spin chains under dissipation in a
magnetic field in the x direction by numerical simulations.
We find that the one-dimensional XXZ model with four
spins, as given by Eq. (15) where we chose as a typical
example α1 = 1

4α2, shows a surprising behavior: Changing
the external magnetic field in the x direction makes peaks
occur in the steady-state expectation values of the collective
spin operators J x/z = ∑

k σ
x/z

k for weak dissipation; see
Fig. 6. Here, we considered dissipation as in Eq. (20) with
equal dissipation strength on each spin. We find that, upon
decreasing the strength of the dissipation, the peaks become
more narrow and each peak height approaches a finite value.
For small γ we observe very narrow peaks. This indicates a
discontinuity in the steady-state expectation values of the spin
operators. We find that these narrow peaks appear exactly
at points where the Hamiltonian becomes degenerate. In
the following section we study this phenomenon in more
generality.

III. DISCONTINUITIES IN STEADY-STATE DYNAMICS OF
GENERAL CLASS OF ONE-DIMENSIONAL SPIN

MODELS UNDER DISSIPATION

In the previous section we saw that, for the one-dimensional
XXZ model, peaks in the steady-state expectation values of
the collective spin operators appear, that are closely related to
the spectrum of the Hamiltonian. In the following, we study in
more generality and independent of a physical implementation
local one-dimensional spin Hamiltonians under dissipation of
different kinds. We present a condition that elucidates the
discontinuous behavior of the steady state at degeneracy points
of the Hamiltonian. Next, we study and explain this condition
in more detail for Ising Hamiltonians.

A. Numerical studies of discontinuous behavior in steady state

We numerically simulate short spin chains. First, we
study the one-dimensional Ising model with open boundary
conditions, described by the Hamiltonian

H = Hzz + HB, (21)

with

Hzz = α3

∑
k

σ z
k σ z

k+1, (22)

and HB as in Eq. (2) subject to local or collective decay with
Lindblad operators ∝σ−

k or
∑

k σ−
k , respectively. The master

equation describing the full system with local dissipation is
given by

ρ̇t =
∑

k

γk(2σ−
k ρtσ

+
k − {σ+

k σ−
k , ρt }+) − i[H,ρt ]. (23)

Changing the magnetic field Bx , we find that for weak dissi-
pation the steady-state expectation values of the spin operators
〈J x〉 and 〈J z〉 change abruptly at particular values of Bx ; see
Fig. 7. Here, we considered dissipation as in Eq. (23) with equal
dissipation strength on each spin, γk = γ . Upon decreasing the
strength of the dissipation, i.e., decreasing γ , the peaks become
more narrow and their height converges to some finite value,
while the expectation value vanishes elsewhere. For γ → 0,
we observe very narrow peaks, which indicates discontinuities
in the steady-state expectation values of the spin operators. We
find that these narrow peaks appear only at degeneracy points
of the spectrum of the Hamiltonian. That is, for every peak
found at some value of Bx = x0 for γ → 0, at least one pair
of degenerate eigenvalues λ1,λ2 of the local spin Hamiltonian
Hzz can be found, i.e., λ1(x) = λ2(x) at x = x0. Note that the
discontinuities in the steady state at critical system parameters
are only observed for γ �= 0. That is, the (weak) dissipation al-
lows us to gain information about the Hamiltonian’s properties
that is not readily accessible in the case of γ = 0.

This effect can be observed for different kinds of spin
Hamiltonians such as, for example, the XXZ model (see
Fig. 6), both for periodic and open boundary conditions.
Moreover, changing the type of dissipation, the observed
behavior does not change qualitatively. For example, collective
dissipation, which describes the dynamics of spins all coupled
to the same bath and leads to the master equation

ρ̇t = γ (2J−ρtJ
+ − {J+J−, ρt }+) − i[H,ρt ], (24)
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FIG. 7. (Color online) Ising model with 4 spins with open
boundary conditions in a transverse magnetic field Bx and under
local dissipation of form given by Eq. (23). Upper part: Steady-state
expectation value 〈J x〉 plotted versus Bx/α3. Peaks are observed
that become more narrow for decreasing dissipation strength. Lower
part: Spectrum of the Hamiltonian plotted versus Bx/α3. Peaks in
the steady-state expectation value (upper part) appear at degeneracy
points of the Hamiltonian that are marked with black circles.

where J± = ∑
k σ±

k also leads to discontinuous behavior in
the steady-state expectation values, as shown in Fig. 8 for the
Ising model. Choosing an “inhomogeneous” dissipation which
is of the form of the dissipative part in Eq. (23), where now the
strengths of the dissipation γk are different for each spin, peaks
can be observed for an even larger class of spin Hamiltonians:
For γk = γ and H = HH + HB , where HH is the Heisenberg
spin Hamiltonian, we do not observe any peaks. However, if
we choose different dissipation strengths γk for each spin, we
find peaks at the degeneracy points of the Hamiltonian, as can
be seen in Fig. 9.

B. General condition for discontinuities in steady state

Since the Liouvillian depends smoothly on the system
parameters, the observed discontinuities must be related to
degeneracies in the spectrum of L. As we shall see, in the
weak-dissipation limit they are directly related to degeneracy
points of the Hamiltonian.

We consider a system described by the master equation

ρ̇(t) = Lρ ≡ [L0(x) + γL1]ρ(t), (25)

where

L0(x)(ρ) = −i[H (x), ρ],

with a Hamiltonian H (x) depending (analytically) on a
parameter x. For simplicity, we consider the case in which
H0(x) is nondegenerate for x �= x0. The term L1 contains
dissipative terms and is independent of x. We are interested in

0.02

0

0
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0 0.4 0.6 0.8 1 1.2 1.4

-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.01

2

0.2

4

FIG. 8. (Color online) Ising model with 6 spins with periodic
boundary conditions in a magnetic field Bx and under collective
dissipation of the form given by Eq. (24) in the translation and
reflection symmetric subspace T = R = 1. Upper part: Steady-state
expectation value 〈J x〉 plotted versus Bx/α3. Lower part: Spectrum
of the Hamiltonian plotted versus Bx/α3.

the limit of weak dissipation (γ → 0) and in the change of the
steady state at the degeneracy point x = x0.

The steady state ρss(x) is determined byL(x)ρss(x) = 0 and
can be determined perturbatively. The kernel ofL0(x) is highly

1.50.5 1 20
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−410
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FIG. 9. (Color online) Heisenberg model with 4 spins with open
boundary conditions in a magnetic field Bx and under local dissipation
as given by Eq. (23) with different dissipation strengths γk . Upper
panel: steady-state expectation value 〈J x〉 plotted versus the Bx/α3.
Lower part: Spectrum of the Hamiltonian plotted versus Bx/α3.
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degenerate, being spanned by all eigenprojectors |λi(x)〉〈λi(x)|
of the (nondegenerate) H0(x). This degeneracy is lifted by L1

and the steady state for γ → 0 is for x �= x0 given by

PD(x)L1PD(x)ρss(x) = 0, (26)

where

PD(x)ρ =
∑

i

|λi(x)〉〈λi(x)|ρ|λi(x)〉〈λi(x)|. (27)

The possibility of discontinuous behavior of ρss(x) at
x = x0 arises from the enlargement of the kernel of L0(x)
at this point: if λi and λj become degenerate at x = x0

then coherences between the corresponding eigenvectors [i.e.,
|λi(x)〉〈λj (x)|,i �= j ] become stationary at x = x0. We denote
by P � the projector on these additional elements in the kernel
of L0(x0) [32]. As we show in Appendix C, a discontinuity
ρss(x0) �= limx→x0 ρss(x) arises if

P�L1 lim
x→x0

ρss(x) �= 0, (28)

i.e., if L1 couples the steady state to the newly available
subspace P � in the kernel of L0. For simplicity, we made
the assumption that the Hamiltonian is nondegenerate for
x �= x0. If the Hamiltonian does have degeneracies outside
x0, but additional eigenvectors become degenerate at x = x0

the argumentation follows identical lines, as also in this
case, L1 can couple the steady state to a newly available
subspace P �.

Let us have another look at Figs. 6–9 in the light of the
previous paragraph. Clearly, all the sharp isolated peaks occur
for values of Bx (which plays the role of the parameter x), at
which a degeneracy occurs, satisfying a necessary condition
for Eq. (28). However, not all degeneracy points lead to
discernible peaks, e.g., in Fig. 6. This can show that L1 does
not couple the steady state to P � or that the discontinuity
is not witnessed by the expectation value of J x . For most
peaks studied here, however, the reason is simply that the
corresponding peaks are too small and sharp to be resolved in
the plot.

These points are illustrated in Fig. 10, which shows that the
steady state changes abruptly at all degeneracy points of H for
the four-spin XXZ model with local dissipation except for two
such points (at Bx ≈ 0.16, 0.24), where L1 does not couple to
the coherences. To measure how quickly ρss changes with
Bx we use (in analogy to the ground-state fidelity introduced
in Ref. [33] for the study of quantum phase transitions)
the “steady-state infidelity” IδB (Bx) ≡ 1 − F (ρ(Bx), ρ(Bx +
δB)). Here F (ρ,σ ) = tr[(σ 1/2ρσ 1/2)1/2]2 ∈ [0,1] denotes the
Uhlmann fidelity [34] between two density matrices, which
measures how similar ρ and σ are. Peaks in IδB(Bx) (for small
δB) indicate that the steady state changes abruptly with Bx . For
weak dissipation this happens close to all degeneracy points
of the Hamiltonian when Eq. (28) holds.

Note also that, in Figs. 6–9, a large feature appears in the
steady-state expectation value 〈J x〉 around Bx = 0. It narrows
for decreasing γ , but is not a sharp peak for any of the
parameters used for γ . This broad peak represents the effect
of one (or several, cf. Figs. 6 and 9) unresolved degeneracies
around Bx = 0: Note that for all spin models considered, the
degeneracy of their respective Hamiltonian is very high at

FIG. 10. (Color online) (Upper part) Steady-state infidelity
IδB (Bx) (see text) for the four-spin XXZ model in transverse field
Bx with local dissipation (cf. Fig. 6) for δB = 3 × 10−6 and weak
dissipation γ = 0.5 × 10−4. (Lower part) Spectrum of Hspin, dashed
vertical lines indicate degeneracy points (encircled). Peaks in IδB

line up with degeneracy points of H (Bx), except for two (colored
green) for which condition (28) does not hold. The inset shows the
vicinity of Bx ≈ 0.25, where three crossings of eigenvalues occur:
(λ5,λ6), (λ1,λ2), and (λ13,λ14). The dash-dotted horizontal lines show
the 2-norm (scaled by 7 × 10−7) of the left-hand side of Eq. (28)
Ci,j = ‖P�i,j L1 limx′→x ρss(x ′)‖2 for the three relevant projectors
P�i,j , (i,j ) = (1,2) (green), = (5,6) (blue), and = (13,14) (magenta).
C5,6 vanishes at the crossing of (λ5,λ6), hence there is no peak in IδB ,
while the other two lead to a peak in IδB , since Ci,j is finite.

Bx = 0 and is lifted slowly (certain eigenvalues touch and do
not cross as Bx → 0). Therefore, the finite values of γ used
in the plots are not much smaller than all energy differences
and we are not in the weak-dissipation limit. As γ is reduced,
additional peaks are resolved (cf. Fig. 9).

C. Steady-state behavior for Ising Hamiltonians

To get a better insight into how the condition given by
Eq. (28) explains the peaks seen in Fig. 8, we now specialize
to the Ising model under collective dissipation given by
Eq. (24). Then we see that the steady state apart from the
degeneracy points and the condition for discontinuity becomes
very simple. For a detailed derivation of what follows, see
Appendix C.

The Hamiltonian in Eq. (21) with periodic boundary
conditions is in general degenerate due to translational and
reflection symmetry. To obtain a nondegenerate H , we restrict
our consideration to a specific subspace with eigenvalue 1
for the translation operator T and the reflection operator
R [35]. Note that the Hamiltonian is also symmetric under
the spin-flip operation F = σ⊗N

x , i.e., FHF † = H . Using
the properties of L1 and F invariance of H , we find that,
if the system has a unique steady state of L(x), it is, in the
limit of weak dissipation, given by the maximally mixed
state ∝1: plugging 1 into Eq. (26) we obtain PDL1(1) =∑

i |λi(x)〉〈λi(x)|J z|λi(x)〉〈λi(x)| and flip invariance of H

implies 〈λi(x)|J z|λi(x)〉 = 0 for the eigenstates of a nonde-
generate Hamiltonian H (see Appendix C).
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Thus if the steady state is unique, it is always maximally
mixed outside degeneracy points and we see a discontinuity at
x = x0 if for the degenerate eigenstates |λ1(x0)〉,|λ2(x0)〉 we
have

〈λ1|J z|λ2〉 �= 0. (29)

This can be checked to hold for the points at which peaks are
observed in Fig. 8.

For the Ising model in a transverse magnetic field, for larger
N the peaks decrease in height and disappear in the limit
N −→ ∞. The spectrum for the Ising model in a transverse
field is known analytically [36]. For large N , the spectrum
is very dense and degeneracy points are so closely spaced
that peaks are no longer resolvable (and vanish in the thermo-
dynamic limit as bands develop). Nevertheless, for small spin
systems, these features provide a method to dissipatively study
degeneracies of the applicable Hamiltonian—anywhere in the
spectrum, not just in the ground state. To the extent that L1 is
tunable, it even provides access to the nature of the degenerate
states via Eq. (28).

IV. CONCLUSIONS

We have shown that using cold atoms in an optical lattice
in the Mott-insulator regime, dissipative spin chains with
Hamiltonians such as the XXZ model, the Ising model, or the
Heisenberg model can be realized. Optical driving of internal
atomic states allows for the realization of a tunable transversal
magnetic field and engineered dissipation.

This system is an ideal test bed for studying steady-state
dynamics of dissipative spin models. We have discovered a
peculiar feature of the steady-state diagram for small spin
chains: in the limit of weak dissipation, the expectation values
of the collective spin operators exhibit abrupt changes that
hint at discontinuities in the steady state. These discontinuities
occur at degeneracy points of the Hamiltonian. We have
studied this phenomenon for different spin models with open
and periodic boundary conditions subject to individual and
collective dissipation. Finally, we have presented conditions
that elucidate the discontinuous behavior of the steady state
at degeneracy points of the Hamiltonian. Therefore, measure-
ments of the steady-state dynamics of cold atoms in optical
lattices would allow us to draw conclusions about the spectrum
of the respective spin model.
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APPENDIX A: DERIVATION OF EFFECTIVE DISSIPATIVE
MASTER EQUATION

The internal levels of the atom that we consider are |g〉, |r〉,
|e〉. Adiabatically eliminating the excited state |e〉 as discussed
in Sec. II B, we get an effective two-level system |g〉 and |r〉 that
is coupled with the effective Rabi frequency �eff , as depicted
in Fig. 1.

In the following, we derive in detail the master equation
given by Eq. (6) in Sec. II B. The internal levels of the atom
that we consider are |g〉, |r〉, |e〉, as depicted in the upper part
of Fig. 1. The states |g〉-|r〉 are coupled by a detuned Raman
transition via the excited state |e〉 by two standing-wave laser
fields. The coupling is described by the Hamiltonians

Hl1 =
∑

k

�1 cos (k1xk)(|e〉〈g|k + H.c.), (A1)

and

Hl2 =
∑

k

�2 sin (k2xk)(|r〉〈g|k + H.c.), (A2)

where �1 and �2 are the Rabi frequencies of the two lasers and
k1 and k2 are the wave numbers of the lasers and k denotes the
lattice site. xk is the displacement from the equilibrium position
x0

k of the atom at lattice site k. The phase of the lasers is,
for simplicity, chosen such that cos [k1(xk + x0

k )] = cos (k1xk)
and cos [k2(xk + x0

k )] = sin (k2xk). Choosing different phases
of the lasers makes A± in Eq. (7) dependent on the lattice site
k. Adiabatic elimination of the excited state |e〉 leads to an
effective coupling

H1 =
∑

k

�effη1(σ−
k + σ+

k )(|r〉〈g| + H.c.), (A3)

with �eff = �1�2/δre where δre is the detuning with respect
to |e〉 and η1 is the Lamb-Dicke parameter. Here, we have
expressed the deviation from the equilibrium position xk

in terms of harmonic oscillator operators truncated to the
two lowest-lying levels sin(k1xk) ≈ η1(σ−

k + σ+
k ) where σ+

k =
|1〉〈0|k and σ−

k = |0〉〈1|k and cos (k2xk) ≈ 1. The effective
coupling with Rabi frequency �eff between states |r〉 and |g〉
is shown in Fig. 1.

Coupling the state |r〉 to the excited state |e〉 with a third
standing-wave laser field with Rabi frequency �er , depicted
with a red arrow in Fig. 1, we can derive an effective two-level
system |g〉-|r〉 with designable decay rates as done in Ref. [26].
Here, we briefly review this result. Following Ref. [26], the
upper level |e〉 can be adiabatically eliminated if the saturation
parameter for the transition |r〉 and |e〉 is small:

sr,e = (�re/2)2

δ2
re + (�er + �eg)2/4

� 1. (A4)

According to Ref. [26], the effective detuning and the effective
decay rates are given by

δr = δgr − δre

(�re/2)2

[(�eg + �er )/2]2 + δ2
re

, (A5)

� = (�re/2)2

[(�eg + �er )/2]2 + δ2
re

�eg, (A6)

γ = (�re/2)2

[(�eg + �er )/2]2 + δ2
re

�eg + �er

2
; (A7)

see also the lower part of Fig. 1. The effective two-level system
|g〉-|r〉 with the effective decay rates �, γ and the effective
detuning δr is the starting point of the following discussion.
The full Hamiltonian describing the system is given by

Hfull = H1 + H0, (A8)
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where H1 describes the atom-light interaction given by
Eq. (A3) and H0 defines the energies of the system

H0 =
∑

k

δr |r〉〈r|k + ν|1〉〈1|k. (A9)

The effective dynamics of the system can be derived
considering contributions to the Liouvillian up to second order
in a perturbative approach. The full system is described by a
Liouvillian given by

ρ̇(t) = (L0 + L1)ρ(t), (A10)

where L0 is given by

L0ρ(t) =
∑

k

� (2|g〉〈r|kρ(t)|r〉〈g|k − {|r〉〈r|k,ρ(t)}+)

+ γ (2|r〉〈r|kρ(t)|r〉〈r|k − {|r〉〈r|k,ρ(t)}+)

− i[H0, ρ(t)]. (A11)

The first part of the Liouvillian is the decay part with the
effective decay rate � from state |r〉 to |g〉 and the dephasing
rate γ . The projector

Pg = |g〉〈g| ⊗ (|0〉〈0| + |1〉〈1|) (A12)

is stationary under L0. The perturbative part of the Liouvillian
is given by

L1ρ(t) = −i[H1, ρ(t)], (A13)

where H1 is given by Eq. (A3) and describes the interaction
of the two-level system with the effective laser field. Treating
L1 as a perturbation, we derive an effective Liouvillian in the
stationary subspace of L0. The projection onto this subspace
reads

P ρ̇(t) = PLPρ(t) + PLQρ(t), (A14)

where Pρ = |g〉〈g| ⊗ (|0〉〈0| + |1〉〈1|)ρ|g〉〈g| ⊗ (|0〉〈0| +
|1〉〈1|) and Q = 1 − P . Projecting onto the subspace we want
to eliminate, we get

Qρ̇(t) = QLρ(t). (A15)

In the following, we integrate Eq. (A15) to get the time
evolution of the density matrix in the fast space, Qρ(t). We
insert the result in Eq. (A14) to get an equation of motion for
the density matrix in the slow space. Therefore, we first go
into the interaction picture, where the density matrix is given
by ρ̃(t) = e−L0t ρ(t). The equation of motion in the fast space
reads

Q ˙̃ρ(t) = QWI (t)ρ̃(t), (A16)

with WI (t) = eL0tL1e
L0t . Solving this equation by iteration

[37], we get

Qρ(t) =QeL0t

[∫ t

0
dsWI (s)P ρ̃(0)

+
∫ t

0
ds1

∫ s1

0
ds2WI (s1)WI (s2)P ρ̃(0)

]
. (A17)

At time t = 0, ρ̃(0) = ρ(0) and we assume that at t = 0, the
population is in the ground state, i.e., ρ̃(0) = P ρ̃(0). Higher-
order integrals are neglected with the assumption that

|�eff| � �, γ, |δr |, ν. (A18)

We denote the first integral in Eq. (A17) by R1(t) and the
second integral by R2(t) such that

Qρ(t) = R1(t) + R2(t). (A19)

Inserting in Eq. (A14) leads to

P ρ̇(t) = PLPρ(t) + PL0R1(t) + PL1R1(t)

+ PL0R2(t) + PL1R2(t). (A20)

The term PL0R1(t) = 0, and PL1R2(t) is a third-order
term and can be neglected. Neglecting terms rotating with
exp(±iνt) we get the master equation given by Eq. (6) with ac
Stark shifts given by

HS = s−σ+
k σ−

k + s+σ−
k σ+

k , (A21)

where

s± = �2
effη

2
1

(δr ± ν)

(� + γ )2 + (δr ± ν)2
.

APPENDIX B: DERIVATION OF SPIN HAMILTONIAN

In the Mott-insulator regime, bosonic atoms trapped by a
lattice potential with two motional states are described by the
two-band Bose-Hubbard model

HBH = H0 + Ht. (B1)

Here, the sum runs over the N sites k of the optical lattice. The
unperturbed Hamiltonian H0 is given by

H0 =
∑

k

(
U01

2
n̂k0n̂k1 +

∑
x=0,1

Uxx

2
n̂kx(n̂kx − 1) + νn̂k1

)
,

where Uxx ′ is the on-site repulsion of two atoms on lattice site
k, where one atom is in motional state |x〉 and the other one is in
|x ′〉 with x, x ′ = 0, 1, respectively. The operator n̂kx = |x〉〈x|k
counts the number of atoms at lattice site k in the motional
states x = 0, 1 and ν is the energy difference between ground
and first-excited motional states. We assume the system to be
prepared in the ground state |0〉. Due to the anharmonicity of
the potential, we do not leave the subspace of n = 0 and n = 1
excitations.

The perturbative part of the Hamiltonian describes the
tunneling between neighboring lattice sites and is given by

Ht =
∑

k

t0c
†
k,0ck+1,0 + t1c

†
k,1ck+1,1 + H.c. (B2)

Here, the operators ckx with x = 0, 1 are bosonic destruction
operators for atoms in the two motional states |0〉 and |1〉 at
lattice site k. t0 (t1) are the tunneling amplitudes from state |0〉
(|1〉) at lattice site k to state |0〉 (|1〉) at k + 1.

As the on-site interaction Uxx ′ � t0, t1, tunneling between
neighboring wells that leads to states with two atoms in one
lattice well can be treated as a perturbation. For that, we
consider two neighboring lattice sites k and k + 1 and write
the effective Hamiltonian in the basis of eigenvectors of H0,
|xk,yk+1〉, where for example |0k,1k+1〉 is the notation for the
state with one particle in well k in state |0〉, and one particle
in well k + 1 in state |1〉. In perturbation theory [25], the
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second-order effective Hamiltonian can be evaluated in the
following way:

〈xk,yk+1|H (3)
eff |x ′

k,y
′
k+1〉

= 1

2

∑
χ

〈xk,yk+1|Ht |χ〉 1

E′ 〈χ |Ht |x ′
k,y

′
k+1〉, (B3)

where

1

E′ = 1

Exy − Eχ

+ 1

Ex ′y ′ − Eχ

,

and |χ〉 are eigenstates of H0 with two particles in one well
(and no particle in the other one). Exy = 〈xk,yk+1|H0|xk,yk+1〉
and Eχ = 〈χ |H0|χ〉 are the unperturbed energies. Evaluating
Eq. (B3) leads to the effective spin Hamiltonian H

(3)
eff given by

H
(3)
eff = Hspin + Bz

∑
k

|1〉〈1|k, (B4)

with

Hspin =
∑

k

α1
(
σx

k σ x
k+1 + σ

y

k σ
y

k+1

) + α2σ
z
k σ z

k+1. (B5)

Here,

α1 = −4t0t1

U01
, α2 = 2

(
t2
0 + t2

1

U01
− t2

0

U00
− t2

1

U11

)
,

and Bz, the magnetic field in z direction, is

Bz = t2
0

U00
− t2

1

U11
.

Thus, we have derived an effective XXZ-spin Hamiltonian
with a magnetic field in the z direction.

APPENDIX C: CONDITION FOR DISCONTINUOUS
BEHAVIOR

Here, we first derive a general condition for the discon-
tinuous behavior in the steady state at a degeneracy point
of a large class of spin Hamiltonians. Next, we focus on
more specific Hamiltonians. We study the steady state of
flip-invariant Hamiltonians outside the degeneracy point and,
starting with the general condition for finding discontinuities
in the steady state, we derive a more precise condition for
flip-invariant Hamiltonians.

1. General condition for discontinuities in steady state

Here, we derive a general condition for discontinuous
behavior in the steady state at the degeneracy point x = x0

of a general Hamiltonian H , where H = H (x) is an analytic
function of x. We consider a system described by the master
equation

ρ̇(t) = (L0 + L1)ρ(t), (C1)

where the Hamiltonian part of the Liouvillian is given by
L0(x) = L0 = −i[H (x),·] and depends on a parameter x, and
the local decay Liouvillian is

L1ρ(t) =
∑

k

γk[2σ−
k ρ(t)σ+

k − {σ+
k σ−

k ,ρ(t)}+]. (C2)

First, we want to describe the system outside the degeneracy
point, i.e., for x �= x0. We assume that in the vicinity of
x0, the Hamiltonian is nondegenerate (for x �= x0) and that
the dissipation is weak. The steady state ρss(x) defined by
(L0(x) + L1)ρss(x) = 0 is, in the limit γ → 0, given by

PD(x)L1PD(x)ρss = 0, (C3)

where PD(x) is the projector onto the kernel(L0). As the kernel
of L0 is spanned by the eigenprojectors |λi(x)〉〈λi(x)| of H

we have for arbitrary A

PDA =
∑

i

|λi(x)〉〈λi(x)|A|λi(x)〉〈λi(x)|, (C4)

where |λi(x)〉 are eigenstates of the Hamiltonian H (x) which
is assumed to be nondegenerate.

Now, let us consider the case that at x = x0, the Hamiltonian
has a degeneracy point at which two or more eigenvalues cross.
At this degeneracy point, we expect a discontinuous behavior
of the steady state that leads to the peaks we observe in our
numerical simulation (see Figs. 6–9). At x = x0 the projector
onto the kernel of L0 has to be extended. It now also projects
onto coherences between eigenstates of H : |λ1〉,|λ2〉 which are
eigenvectors to the degenerate eigenvalues λ1 = λ2. Therefore
the projector on the coherences reads

P�A = |λ1〉 〈λ1| A |λ2〉 〈λ2| + H.c. (C5)

It is convenient to define a continuous extension of the
projector PD at x = x0, which reads

PD(x0) = lim
x→x0

PD(x). (C6)

Thus, at x = x0, the full projector onto the kernel of L0 reads
PD(x0) + P �. Now the condition for the steady state ρss(x =
x0) at the degeneracy point is given by

[PD(x0) + P�]L1[PD(x0) + P�]ρss(x0) = 0. (C7)

We want to find a sufficient condition for the steady state to
change discontinuously. This means that

ρss(x0) − lim
x→x0

ρss(x) �= 0, (C8)

where limx→x0 ρss(x) is the continuous extension of
ρss(x) ∀ x �= x0 to x = x0.

A discontinuity in the steady state as described by Eq. (C8)
can occur only if

[PD(x0) + P�]L1[PD(x0) + P�] lim
x→x0

ρss(x) �= 0 (C9)

holds, since otherwise the continuous extension limx→x0 ρss(x)
would be a steady state as well. The last part of Eq. (C9) can
be simplified using

[PD(x0) + P�] lim
x→x0

ρss(x) = lim
x→x0

ρss(x),

which holds since limx→x0 ρss(x) is per definition in the space
onto which PD(x0) projects and P � is orthogonal to that space.
By Eq. (C3) we then see that Eq. (C9) reduces to the condition

P�L1 lim
x→x0

ρss(x) �= 0. (C10)

If this condition is fulfilled, then ρss(x0) −
limx→x0 ρss(x) �= 0 which means that the steady state
shows discontinuous behavior at the degeneracy point x = x0.

022110-10
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2. Condition for discontinuous behavior for Ising Hamiltonians

Here, we want to get a better insight into how the condition
given by Eq. (C10) relates to the peaks observed in our
numerical simulation. In the following, we will apply it to the
Ising model in a transverse magnetic field. In the numerical
simulation (see Fig. 8) for the Ising Hamiltonian with periodic
boundary conditions under collective dissipation described by
Eq. (24), we restrict our consideration to a specific subspace
with eigenvalue 1 for the translation operator T and the
reflection operator R: T = R = 1. First, we want to prove
that if the steady state is unique, then it is the fully mixed state
outside the degeneracy points as indicated by our numerical
simulation. Then we show that, starting from the condition
given by Eq. (C10), specialization to the Ising model allows us
to derive a more precise condition for finding a discontinuity
in the steady state at the degeneracy points.

First, we show that 1 satisfies (L0 + L1)1 = 0 outside the
degeneracy point x �= x0. Therefore, for systems with a unique
steady state, it is given by the fully mixed state for x �= x0 in the
limit γ → 0. The Hamiltonian given by Eq. (21) is assumed to
be nondegenerate for x �= x0 and invariant under the spin-flip
operator F = σ⊗N

x , i.e., FHF † = H . Thus, we want to show
that, for x �= x0,

PDL11 = 0, (C11)

where P D is given by Eq. (C4). Then,

PDL1(1) = 2γ (J−J+ − J+J−) ∝ γ J z. (C12)

Therefore, Eq. (C11) reads

PDL1(1) = PDJ z =
∑

i

|λi〉〈λi |J z|λi〉〈λi | = 0. (C13)

If we can show that Eq. (C13),

〈λi |J z|λi〉 = 0 ∀ i, (C14)

then we have shown that the fully mixed state is a steady state of
our system outside the degeneracy points of the Hamiltonian.

As the Hamiltonian is nondegenerate and invariant under the
flip-operator F , the eigenvectors of H are eigenvectors of F :
F |λi〉 = αi |λi〉. Let |α〉 denote an arbitrary eigenvector of H

with F eigenvalue α. Since the spectrum of F is {±1}, we have
|α〉 = α2|α〉 = αF |α〉. Moreover, the flip F changes the sign
of J z, i.e, J z and F anticommute: {F,J z}+ = 0. Therefore,
we can write Eq. (C14) as

〈α|J z|α〉 = α〈α|J zF |α〉
= −α〈α|FJ z|α〉 = −〈α|J z|α〉, (C15)

where we have used α2 = 1. It follows that

〈α|J z|α〉 = 0. (C16)

Consequently, PDL1(1) = 0 and we have shown that in the
limit of weak dissipation, the steady state, if it is unique, is the
fully mixed state. For the Ising model with up to eight atoms
and collective dissipation, we know from our numerics that
the steady state is unique.

To see that the steady state shows discontinuous behavior
at the degeneracy point x = x0, we need now only to show
that the fully mixed state is not the steady state of the system.
Thus, we need to show that

P�L1(1) = P�J z =
′∑

i,j,i �=j

|λi〉〈λi |J z|λj 〉〈λj | �= 0, (C17)

where P� is given by Eq. (C5) and
∑′ sums over the labels of

degenerate eigenvalues. Since the eigenvectors are orthogonal,
Eq. (C17) holds if ∃ i �= j such that

〈λi |J z|λj 〉 �= 0. (C18)

Therefore, Eq. (C18) gives a condition for finding
discontinuous behavior of the steady state of the Ising
model in a transverse field under collective dissipation. Note
that this derivation can be easily extended to all nondegenerate
Hamiltonians that are flip invariant.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, MA, 1999).

[2] I. Bloch, Nat. Phys. 1, 23 (2005).
[3] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[4] B. Baumgartner and H. Narnhofer, Rev. Math. Phys. 24, 1250001

(2012).
[5] A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B.

Plenio, and V. Vedral, J. Mod. Opt. 47, 2583 (2000).
[6] F. Benatti, R. Floreanini, and M. Piani, Phys. Rev. Lett. 91,

070402 (2003).
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HEIKE SCHWAGER, J. IGNACIO CIRAC, AND GÉZA GIEDKE PHYSICAL REVIEW A 87, 022110 (2013)

[23] E. Charron, E. Tiesinga, F. Mies, and C. Williams, in Quantum
Communication, Computing, and Measurement 3, edited by
P. Tombesi and O. Hirota (Kluwer, New York, 2002),
pp. 227–230.

[24] For details see Eq. (20).
[25] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-

Photon Interactions (Wiley Intersciences, New York, 1992).
[26] I. Marzoli, J. I. Cirac, R. Blatt, and P. Zoller, Phys. Rev. A 49,

2771 (1994).
[27] Note that sin (kbxk) ≈ ηb(ck + c

†
k) where ck are bosonic op-

erators that describe the harmonic oscillator states of the
trapping potential. As explained before, we work in the truncated
subspace of |0〉 and |1〉 due to the anharmonicity of the trap
and the cooling to the ground state such that the ηb(ck + c

†
k) =

ηb(σ−
k + σ+

k ).
[28] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

Phys. Rev. Lett. 81, 3108 (1998).
[29] Uxx′ is the on-site repulsion of two atoms on lattice site k, where

one atom is in motional state |x〉 and the other one in |x ′〉 with
x, x ′ = 0, 1, respectively.

[30] P. Werner, K. Völker, M. Troyer, and S. Chakravarty, Phys. Rev.
Lett. 94, 047201 (2005).
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(2006).

[34] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
[35] If initialized in this subspace (e.g., by optically pumping it to the

fully polarized states |0〉⊗N ), the system will remain there since
both L0 and L1 respect these symmetries.

[36] P. Pfeuty, Ann. Phys. (NY) 57, 79 (1970).
[37] A. Messiah, Quantenmechanik Band 2 (de Gruyter, Berlin,

1985).
[38] T. Kato, Perturbation Theory for Linear Operators (Springer,

Berlin, Heidelberg, 1995).

022110-12

http://dx.doi.org/10.1103/PhysRevA.49.2771
http://dx.doi.org/10.1103/PhysRevA.49.2771
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.94.047201
http://dx.doi.org/10.1103/PhysRevLett.94.047201
http://dx.doi.org/10.1103/PhysRevE.83.011108
http://dx.doi.org/10.1103/PhysRevE.74.031123
http://dx.doi.org/10.1103/PhysRevE.74.031123
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1016/0003-4916(70)90270-8



