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Incoherent excitation of thermally equilibrated open quantum systems
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Under natural conditions, excitation of biological molecules, which display nonunitary open system dynamics,
occurs via incoherent processes such as temperature changes or irradiation by sunlight or moonlight. The
dynamics of such processes is explored analytically in a non-Markovian generic model. Specifically, a system S
in equilibrium with a thermal bath TB is subjected to an external incoherent perturbation BB (such as sunlight)
or another thermal bath TB′, which induces time evolution in (S + TB). Particular focus is on (i) the extent to
which the resultant dynamics is coherent, and (ii) the role of “stationary coherences” established in the (S + TB)
equilibration in response to the second incoherent perturbation. Results for systems with parameters analogous
to those in light-harvesting molecules in photosynthesis show that the resultant dynamical behavior is incoherent
beyond a very short response to the turn on of the perturbation.

DOI: 10.1103/PhysRevA.87.022106 PACS number(s): 03.65.Yz, 05.70.Ln, 37.10.Jk

I. INTRODUCTION

The dynamics of open quantum systems (e.g., molecules
of interest in contact with an environment) in the presence
of an external perturbation is of great current interest and
applicability. Two general circumstances can be envisioned,
one where the external perturbation is “designed” and a
second one where it occurs naturally. Within the framework of
electromagnetic perturbations, popular examples of the former
include pulsed-laser studies of molecular dynamics in the
laboratory [1,2], laser-based scenarios for quantum control
and quantum information, various spectroscopies, etc. These
artificial light sources are often characterized by pulses of short
temporal duration and significant coherence times.

By contrast, natural light-induced processes such as vision
or photosynthesis are induced by virtually stationary chaotic
blackbody light sources such as the sun, which have signifi-
cantly different properties [3–8]. Similarly, natural processes,
like ion transport through membranes [9] may be induced by
temperature changes. Both perturbations, temperature change
and excitation by natural light, are fully incoherent. That is,
they are both associated, as outlined below, with a perturbation
described by a density matrix that is a mixture of stationary
states.

A proper treatment of the systems described above requires
that the system S of interest be first equilibrated with a
background thermal bath TB, after which it is subjected
to a second perturbation comprising a second thermal bath
(denoted TB′) or blackbody radiation (denoted BB). Our focus
here, in this two-step process, is on the role of coherences in
the dynamics.

One motivation for this work lies in recent studies of
coherent quantum dynamics in model photosynthetic light-
harvesting systems [1,10] and in vision [2,4,5]. Coherent
dynamics of this kind is observed in experiments in which
the system is excited with coherent laser light, and the
timescales for the decay of the coherence, generated by the
system interacting with its environment, is then measured.
Principal among the observations on molecules involved in
photosynthesis is that the coherent dynamics associated with

electronic energy transfer persists, at room temperature, on
considerably longer time scales (e.g., 400 to 2000 fs) than
is expected from earlier results on other systems [11–14] or
from theories of decoherence [15]. A number of computational
results have been obtained and theories advanced as to why
such longevity occurs. For example, we have identified a
number of physical conditions under which such long-lived
electronic coherence persists [16,17].

The relevance of these results for realistic photosynthetic
systems, or for the operation of devices that mimic photosyn-
thesis, however, depends heavily on the relationship between
the dynamics observed in the experiments, which use pulsed
coherent light, and dynamics under natural light, such as that
from the sun. Both recent [7] as well as earlier studies [3] on
this relationship for isolated molecules (i.e., molecules that are
not in contact with an environment) show that whereas pulsed
coherent light induces dynamics in the molecule, natural
stationary chaotic light does not. Rather, irradiating an isolated
molecule with such natural light over long natural time periods
creates a stationary mixture of molecular eigenstates.

However, natural-light–absorbing molecules of interest in,
e.g., photosynthesis and vision, are not isolated. Rather they
are in contact with an external environment through which
decoherence and relaxation occur. Hence, there is a need to
understand the response of a system + bath that is subject
to an incoherent excitation. A study of retinal excitation [5]
under these conditions confirmed that stationary eigenstates
resulted in this open system as well. An alternate study on
photosynthetic systems [6] simultaneously in contact in con-
tact with both (TB + BB) noted the appearance of off-diagonal
elements of the subsystem density matrix S and regarded them
as “stationary coherences,” a concept elucidated further below.
The relation of these stationary coherences to dynamics was,
however, unclear. Hence, clarifying the situation regarding
open systems under incoherent perturbation is well motivated.

As noted above and as emphasized, in this work it is
important to recognize that the natural processes noted above
occur in two distinct steps. That is, in the first step the
subsystem S thermally equilibrates with its surrounding bath,
yielding a result that we denote as (S + TB). In the second
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step this equilibrated system is placed in contact with a
source of incoherent light (BB) or another thermal bath TB′
with which the system interacts, giving an (S + TB) + BB
[or (S + TB) + TB′] system. As described in detail below
in Sec. II, the first generates “stationary coherences.” The
nature of the subsequent relaxation dynamics and the role
of the stationary coherences arising from the equilibration of
S with TB in the subsequent dynamics of (S + TB) + BB [or
of (S + TB) + TB′] are described below.

The existence of substantial stationary coherences requires
strong system-environment coupling (whether dissipative or
not) [18,19] and, as we will show, are largest in the low-
temperature regime. This regime of strong coupling and low
temperature is relevant in the context of, e.g., electronic energy
transfer [16,17]. Being in this regime prevents the application
of simplifying approximations to the evolution of the density
matrix, such as the Markovian approximation [20] or secular
approximation. That is why a thorough analysis of these
off-diagonal terms and their influence on the dynamics has
been elusive. Here we show that, by using an analytic model,
these off-diagonal terms can contribute to the dynamics of
the populations only when they enter as initial correlations
between the system and the thermal bath, and that in realistic
systems these contributions are small.

Note for clarity below the specific characteristics of the
natural process that are of interest. That is, we are focusing
on molecular systems that are, as in natural photosynthetic
processes, irradiated by blackbody radiation for time scales
that are far, far longer (e.g., hours) than the inverse of the
molecular energy level spacing, which would define the time
scale for coherent molecular dynamics. Results of this study
are found to extend the result previously obtained for the
isolated system to the open system. That is, “natural incoherent
chaotic light” is shown to be incapable of inducing coherent
dynamics in either isolated or open systems.

Note that the dynamics examined here takes place on
a single electronic surface. The extension of this analytic
influence functional approach to nonadiabatic processes is in
progress. However, the general conclusions obtained here are
expected to hold in the case of excitation from one electronic
surface to another.

The paper is organized as follows: Sec. II introduces
features of the first thermalization step, i.e., the process of
S + TB relaxing, with a focus on the concept of “stationary
coherences.” Section III provides the Hamiltonian under
consideration and associated computational results for the
(S + TB) relaxation. The case of (S + TB) interacting with
a second thermal bath is contained in Sec. IV, whereas the
case where the perturbation is incoherent light is discussed in
Sec. V. A short discussion and summary is provided in Sec. VI.

II. EQUILIBRATION OF (S + TB) AND
“STATIONARY COHERENCES”

The essence of open quantum systems lies in the interaction
between a part of interest, “the system,” with a component
which is not of interest “the environment” or “bath.” Consider
then the two components, a system ĤS with eigenbasis
{ni} defined on the Hilbert space HS and (in this section)
the thermal bath described by the Hamiltonian ĤTB with

eigenbasis {Ni} defined on the Hilbert space HTB. In the
absence of an interaction between them, the total Hilbert
space H = HS ⊗ HTB will be diagonal in the basis {ni ⊗ Ni}.
However, if the systems interact via a coupling term ĤST, then
H is no longer diagonal in this basis. To obtain information
on the system, we need then trace over the degrees of freedom
of the bath. It is then clear that the remaining sector HS is
no longer diagonal in the {ni} basis. Rather, the new effective
eigenbasis should “know about the thermal bath”; therefore
the resultant effective system basis should be a function of the
coupling to the bath and of the temperature.

In general, one is not interested in studying the dynamics
in terms of this coupling-and-temperature–dependent basis,
but rather in describing the dynamics in the system eigenbasis
of ĤS. Viewed in this basis, the coupling to a bath generates
off-diagonal elements in the system density matrix. Once the
(system + bath) have relaxed to equilibrium these off-diagonal
elements do not change with time and are not associated with
dynamics. Rather, they can be termed “stationary coherences.”
They are just a manifestation of our focus on the system rather
than on the coupled system + bath.

An alternate perspective on these stationary coherences is
that strong coupling to the environment causes overlap of
homogeneous line shapes associated with different energy
states of system S.

Given that the equilibrated S + TB composite is the natural
state in which one finds the system S in the cases of interest,
the relevant questions here are then (i) what are the nature and
times scales of the dynamics when this equilibrated (system +
bath) is exposed to an incoherent perturbation, and (i) what
is the role of the stationary coherences in this subsequent
dynamics? For example, it has been suggested [6], but not
explored quantitatively, that such terms are capable of inducing
coherent dynamics when the equilibrated S + TB is subject to
an additional perturbation.

Below we show how to properly address the incoherent
excitation of a system S in a thermal environment by, in
contrast with previous work [4–6], considering the excitation
in two steps. In particular, using an analytically soluble model
valid in the whole range of parameters, we study the role of
environment-generated coherences during (i) thermalization
of an initially isolated central system S in contact with a
thermal bath TB, and (ii) the subsequent dynamics induced
by the presence of a second thermal bath TB′ at different
temperature or by blackbody radiation BB. In the absence
of initial coherences in the system eigenbasis, we show
in situation (i) that, although time-dependent off-diagonal
elements could be detected, they are unrelated to the dynamics
of the diagonal terms. In situation (ii), coherences having
been initially generated in S by TB contribute naturally to
the dynamics of the populations of S toward the new steady
state.

III. COHERENCES AND DYNAMICS
TOWARD THERMALIZATION

The process described above is not a particular feature
of light-harvesting systems, but is a generic feature of open
quantum systems and is therefore ubiquitous. In order to
appreciate this in detail and to extract the relevant features
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m,TTB

FIG. 1. (Color online) The system S, initially described by ρ̂S(0),
is coupled to the thermal bath TB at temperature TTB and frequency
cutoff �TB. γTB denotes the strength of the cooling.

of the underlying physical situation, we consider a model: a
harmonic oscillator immersed in a dissipative environment
TB [21–23]. Although an idealization, it encompasses a
reasonable description of a wide variety of objects in nature
such as low-energy vibrational molecular modes, in addition
to artificial ones like nanomechanical oscillators, optical
and microwave cavities, and movable mirrors [24]. The
Hamiltonian of the system + environment can be written as
Ĥ = ĤS + ĤTB + ĤST, where ĤS is the Hamiltonian of the
unperturbed oscillator, ĤTB is the Hamiltonian of the thermal
bath TB, and ĤST describes the interaction of the system with
TB. In particular, we choose

Ĥ = ĤS +
∞∑
j

p̂2
j

2mj

+ mjω
2
j

2

(
q̂j − cj q̂x

mjω
2
j

)2

, (1)

and ĤS = 1
2m

p̂2
x + mω2

0
2 q̂2

x , where m and ω0 are the natural
mass and frequency of the oscillator while p̂x and q̂x denote
its canonical conjugate momentum and position coordinates,
respectively. Momenta and coordinates of bath mode j are
denoted p̂j and q̂j and cj denotes the coupling term to the j th
mode. In Fig. 1, we have depicted the physical situation.

The evolution of the system density-matrix can be analyti-
cally derived by means of the Feynman-Vernon influence func-
tional approach [21,22,25]. This approach allows exploring
any regime, low or high temperature, strong or weak damping,
etc. (For details on this approach see Refs. [21,22,25,26] or
Ref. [27].) At this point, we assume that initially the density
matrix of S and TB factorizes, i.e., ρ̂(0) = ρ̂S(0) ⊗ ρ̂TB(0),
and additionally that each mode of the bath is at thermal
equilibrium at the same temperature TTB [21,22,25].

Within this framework, the time evolution of the density
matrix is given by

〈q ′′
+|ρ̂S(t)|q ′′

−〉
=

∫
dq ′

+dq ′
−J (q ′′

+, q ′′
−, t, q ′

+, q ′
−, 0)〈q ′

+|ρ̂S(0)|q ′
−〉, (2)

where the q label denotes the system coordinate representation,
J (q ′′

+, q ′′
−, t, q ′

+, q ′
−, 0) is the influence functional, which is

given in terms of a path integral after tracing out the
environmental degrees of freedom (see Refs. [21,22,25,26]
or Ref. [27]). This solution does not provide direct insight into
the dynamics in the eigenbasis of ĤS. However, the solution
given in Refs. [21,22] can be analytically transformed into
the eigenbasis of ĤS (denoted by {|n〉} with eigenvalues {En})
giving the following expression:

〈n|ρ̂S(t)|m〉 =
∑

ν

Jnm;νν(t)〈ν|ρ̂S(0)|ν〉

+
∑
ν �=μ

Jnm;νμ(t)〈ν|ρ̂S(0)|μ〉, (3)

where Jnm;νμ(t) is the influence functional in the energy basis
representation, i.e.,

Jnm;νμ(t) =
∫

dq ′′
+dq ′′

−dq ′
+dq ′

−J (q ′′
+, q ′′

−, t, q ′
+, q ′

−, 0)

×〈n|q ′′
+〉〈q ′′

−|m〉〈q ′
+|ν〉〈μ|q ′

−〉. (4)

The result provides a remarkable linear map between the initial
system state and the final system state that (see below) even
holds in the case of initial system-bath correlations.

Of particular interest is the interplay between the diagonal
elements of the density matrix (state populations) and the
off-diagonal elements (coherences). In absence of coupling to
the environment the kernel Jnm;νμ(t) reduces to Jnm;νμ(t) =
e−i(Em−En)t/h̄δnνδmμ. The role of the δnνδmβ is twofold: it
prevents the transfer of initial population from 〈ν|ρ̂S(0)|ν〉 to
〈n|ρ̂S(t)|n〉 and, additionally, it eliminates any effect of initial
off-diagonal elements on the populations (i.e., the diagonal
elements). By contrast, in the presence of coupling to the
environment, the overlap of the system eigenstates generates
“new routes” for affecting populations, provided by terms of
the type Jnn;νν(t). These terms transfer the initial population
〈ν|ρ̂S(0)|ν〉 to 〈n|ρ̂S(t)|n〉 at time t . Additionally, any initial
off-diagonal elements contribute to the time dependence of the
populations through the nonzero Jnn;νμ terms.

For the system-bath bilinear coupling in Fig. (1), the
influence and nature of the bath is determined by a spectral
density J (ω) [21,22,25], which can be expressed in terms of the

bath mode parameters: J (ω) = π
∑ c2

j

2mj ωj
δ(ω − ωj ). In this

case, we assume an non-Markovian Ohmic spectral density

J (ω) = mγTBω�2
TB

/(
�2

TB + ω2
)
, (5)

where γTB is the strength coupling constant to the thermal bath
and �TB is a frequency cutoff. This spectral density generates
the following damping kernel:

mγ (t) =
∑

j

c2
j

2mjω
2
j

cos(ωj t)

= 2
∫ ∞

0

dω

π

JTB(ω)

ω
cos(ωt) = γTB�TB exp(−�TB|t |).

This kernel is responsible for the relaxation process and
describes, roughly, the rate at which energy is transferred to
the bath. In the limit when the cutoff frequency �TB tends
to infinity, γ (t) → 2γTBδ(t), which corresponds to Markovian
Ohmic dissipation.
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FIG. 2. (Color online) Time evolution of J00;00(t) (blue curves),
J11;00(t) (green curves), and J22;00(t) (red curves). Results are for
γTB = 0.1ω0, �TB = 20ω0, and h̄ω0/(kBTTB) = 8.2724 (continuous
curves), h̄ω0/(kBTTB) = 1.0341 (dashed curves), and h̄ω0/(kBTTB) =
0.5179 (dot-dashed curves).

If initially ρ̂S(0) = ∑
n |n〉〈n|, i.e., there is no initial

coherence, the second sum in Eq. (3) vanishes and the time
evolution of the diagonal terms depends exclusively on their
initial values. For example, for the particular case when
ρ̂S(0) = |0〉〈0|, the subsequent time evolution of the diagonal
elements of the density matrix can be expressed simply by

〈n|ρ̂S(t)|n〉 = Jnn;00(t). (6)

In Fig. 2, we have depicted Jnn;00(t) for some values of n. By
contrast to the unitary case where Jnn;00(t) = δn0δn0, here we
have the possibility of populating different energy levels. As
expected for a thermalizing system, the amount of population
transfer increases with increasing temperature (see Fig. 2). So
it is clear that the role of Jnn;00(t) is transferring of population
from 〈0|ρ̂S|0〉 to other eigenstates of S. This is a natural
consequence of the fact that the spectrum of open quantum
systems is broadened [21,22,25,26], so excitation of single
energy levels is not possible because of the overlap. These
environmentally induced new routes for population transfer
from different eigenstates have been extensively exploited in
the context of biological systems [28,29]. Here we can see that
they appear mediating thermal activation, with the process
being incoherent in nature.

Remarkably (see Fig. 3) this population transfer is accom-
panied by the generation of off-diagonal terms of the density
matrix, 〈n|ρS(t)|m〉 = Jnm;00(t). By contrast to the diagonal
terms, the asymptotic value of these off-diagonal terms are
seen to increase with decreasing temperature and hence they
become relevant at low temperature. For a harmonic bath, low
temperature is accompanied by non-Markovian decoherence
dynamics of the system. More importantly, the time decay
seen in Fig. 3 is not related to decaying coherences because
initially there was no coherence in the density matrix. Rather,
they reflect the fact that in the effective basis, the populations
are changing to reach the thermal state. It is worth noticing
that these off-diagonal terms cannot be related to the existence
of a coherent superposition of states, but to the overlapping
of energy eigenstates induced by the incoherent effect of the
bath.

Note, significantly, that terms like Jnm;00 shown in Fig. 3 do
not go to zero at long times. This implies that the associated

FIG. 3. (Color online) Time evolution of J02;00(t) (upper panel)
and J13;00(t) (lower panel). Results are for γTB = 0.1ω0, �TB = 20ω0,
and h̄ω0/(kBTTB) = 8.2724 (continuous blue curves), h̄ω0/(kBTTB) =
1.0341 (dashed green curves), and h̄ω0/(kBTTB) = 0.5179 (dot-
dashed red curves).

[See Eq. (3)] 〈n|ρ̂S(t)|m〉 matrix element assumes a long-time
constant nonzero value.

In order to understand the nature of these off-diagonal
terms, note that the density matrix is a double sided ob-
ject, which means that we can interpret Jnm;00(t) as the
influence-functional element associated with transitions from
|0〉 → |n〉 and 〈m| ← 〈0| mediated by thermal activation
(similar terms arise in optical nonlinear response [30]). At
high temperature, h̄ω0βTB 
 1 and 1

2h̄γTBβTB 
 1, we have
typically “symmetric” transitions, which are associated with
transitions of the type |0〉 → |n〉 and 〈n| ← 〈0|. “Asymmetric”
transitions, associated with transitions of the type |0〉 → |n〉
and 〈m| ← 〈0|, are less probable; however, they are enhanced
at low temperature, h̄ω0βTB � 1 and 1

2h̄γTBβTB � 1, as seen
in Fig. 3.

The fact that these off-diagonal terms survive at equilibrium
points out the possibility of deviations from “canonical
typicality” [31] [i.e., an equilibrium state that differs from the
canonical Boltzmann distribution] at low temperature [32].
From our discussion, we can note that these off-diagonal
terms are not attributable to interfering processes, but rather
are part of thermal activation induced by the coupling to the
bath, so they can take constant nonzero values at equilibrium
rather than just vanishing. Based on this description, we
should not call them coherences, but just static off-diagonal
terms. However, these have been called stationary coherences,
as noted in Sec. II and are simply static manifestations at
equilibrium of the system-bath coupling.

At equilibrium, the magnitude of the off-diagonal terms in
the system density matrix can be evaluated from the equilib-
rium density matrix [33], i.e., ρ̂β = Z−1

βTB
TrTB exp[−βTB(ĤS +

ĤST + ĤTB)], where ZβTB is a normalization factor and
TrTB denotes the trace over the bath. For this par-
ticular case, we can introduce the effective Hamilto-
nian Ĥeff = 1

2meff
p̂2

x + 1
2meffω

2
eff q̂

2
x with the effective mass

meff = ω−1
eff (〈p2〉〈q2〉−1)1/2 and the effective frequency ωeff =

2(h̄βTB)−1arccoth[ 2
h̄

(〈p2〉〈q2〉)1/2], while 〈q2〉 and 〈p2〉 are the
equilibrium variances [22,33]. This allows us to express ρ̂β
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as [33]

ρ̂β = Z−1
βTB

∞∑
n=0

exp(−Enβ
βTB)|nβ〉〈nβ |, (7)

with Enβ
= h̄ωeff(nβ + 1

2 ) being the eigenvalues and |nβ〉
being the eigenstates of the effective Hamiltonian Ĥeff , and
where ZβTB is the generalized partition function [33]. At
high temperature, h̄ω0βTB � 1 and 1

2h̄γTBβTB � 1, meff and
ωeff approaches their bare values m and ω0, respectively,
and ρ̂β tends to the canonical distribution [33,34] (with no
off-diagonal terms in the system energy eigenbasis). At low
temperatures, h̄ω0βTB 
 1 and 1

2h̄γTBβTB 
 1, they undergo
strong deviation due to damping [33,34].

Since we are interested in natural processes, we next
consider excitation of the equilibrated system S by (i) a
second thermal bath TB′ of the same nature as TB but at
a different temperature and different coupling constant, and
(ii) by blackbody radiation, denoted BB. For example, in the
particular case of biological processes, e.g., in electronic en-
ergy transfer in photosynthetic complexes [1,10], the coupling
to the environment is strong [35] and the effective temperature
is low [16,17]. So a question immediately follows: Do these
off-diagonal terms play any relevant role in any subsequent
dynamics of these systems? More specifically, in what way
do they contribute to any dynamics arising from subsequent
perturbation?

IV. DYNAMICS IN PRESENCE OF SECOND
THERMAL BATH

Equilibration of a system at temperature TTB, with another
bath at temperature TTB′ is of general interest. For example, for
biological systems, thermal activation of biological processes
by temperature changes can be found, e.g., in the context of
transport of Ca ions through membranes [9]. To examine such
processes, after thermalizing with TB, we couple the oscillator
to a second dissipative environment TB′. The Hamiltonian of
the system can now be written as

Ĥ = ĤS + ĤTB + ĤTB′ + ĤST + ĤST′ , (8)

where ĤTB′ is the Hamiltonian describing the second thermal
bath TB′, while ĤST′ describes the interaction of the system
with TB′. As in the previous case, we choose ĤTB′ as being
composed of a set of harmonic oscillators, so

Ĥ = ĤS +
∞,2∑
j,k

p̂2
j,k

2mj,k

+ mj,kω
2
j,k

2

(
q̂j,k − cj,kq̂x

mj.kω
2
j,k

)2

.

Note that the coupling is of the system S to the heat bath TB
and of the system to the heat bath TB′, as shown in Fig. 4.
There is no direct coupling between TB and TB′.

The resultant evolution of the system density matrix can
also be analytically obtained by using the influence functional
approach [27]. The evolution is of the form in Eq. (3), but with
ρ̂S(0) = ρ̂β and the Jnm;νμ(t)s containing information about the
effect of the initial correlation on the subsequent dynamics.

In our approach, we have exact analytical access to every
contribution to the dynamics. By contrast, for example,
when applying the secular approximation as in Ref. [6],

m,TTB TBB

FIG. 4. (Color online) After thermalizing with TB, the system S
is put in contact with a second thermal bath TB′ (or BB, as in the
plot) at different temperature and different coupling constant.

the contribution from the off-diagonal terms ν �= μ is
ignored.

It is important to note that in this case the initial condition is
ρ̂(0) = ρ̂S+TB(0) ⊗ ρ̂TB′(0), where ρ̂S+TB(0) is the equilibrium
density operator of (S + TB), and ρ̂TB′(0) denotes the thermal
density operator of the second bath at temperature TTB′ . We
describe the effect of the baths using, for both TB and TB′,
the functional form given in Eq. (5). In the absence of TB′,
the overall (S + TB) is time independent, as it should be in
thermal equilibrium [22,36,37].

During this second relaxation step, the off-diagonal ele-
ments of the system density matrix that were generated during
the first equilibration step affect the population dynamics (the
diagonal terms) because they now enter in the initial density
matrix [see Eq. (3)].

In the upper panel of Fig. 5, we present the time evolution
of 〈0|ρ̂S(t)|2〉 and 〈1|ρ̂S(t)|3〉 for the conditions indicated in
the figure caption. The off-diagonal terms are seen to reach
the same order of magnitude as the populations (not shown),
i.e., 10−1. The time evolution of, e.g., 〈0|ρ̂S(t)|2〉 is affected
by terms of the type J02,νν and J02,νμ. In particular, population
transfer is assisted by J02,νν and decay of the initial coherences
is mediate by J02,νμ. In the central and lower panels of
Fig. 5, we have depicted J02,νν and J02,νμ, respectively, for
various values of ν and μ. There we can see that while J02,νν

reaches an asymptotic finite value, J02,νμ goes to zero as time
evolves. Hence, it is clear that terms like J02,νμ are qualitatively
different from J02,νν-type terms. The former are related to the
decay of quantum coherences while the latter are related to
population transfer during the relaxation.

Figure 6 shows the time evolution of the ground state
population 〈0|ρ̂S(t)|0〉. The exact evolution is depicted by
the continuous blue curve, the evolution disregarding any
correlation with TB [i.e., using the canonical distribution
for ρ̂S(0)] is shown by the dot-dashed red curve and the
evolution neglecting the off-diagonal terms (i.e., the secular
approximation) in Eq. (3) is shown by the dashed green
curve. The fact that the dynamics in these three cases is
practically the same shows that, although off-diagonal terms
are present in Fig. 5, they need not imply a significant
contribution to the dynamics between eigenstates. That is, the
presence of off-diagonal terms in the density matrix of open
quantum systems in the system eigenstate representation is not
necessarily an indicator of coherent effects. The lower panels
in Fig. 6 show some of the nonvanishing J00;νμ(t) elements.
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FIG. 5. (Color online) Upper panel shows the exact time evolution
of 〈0|ρ̂S|2〉 and〈1|ρ̂S|3〉 with h̄ω0/(kBTTB) = 8.2724, γTB = 0.1ω0,
�TB′ = 20ω0, TTB′ = 2TTB, γTB = 2γTB, and �TB′ = 2�TB. Lower
panels show the time evolution of J02;νμ for some values of ν and μ.

It is worth noting that off-diagonal terms generated by
the presence of the second bath cannot manipulate the
dynamics of the populations by themselves. This can be
seen when projecting in the basis in which ρ̂β is diagonal,
i.e., 〈nβ |ρ̂S(t)|nβ〉 = ∑

νβ
Jnβnβ ;νβνβ

(t)〈νβ |ρ̂β |νβ〉. This means
that although off-diagonal terms are generated (see Fig. 5),
they do not participate in the evolution of the populations.
Only the combined action of the thermal baths, applied
sequentially, can lead to the possibility of altering the dynamics
of the populations. Connecting the system to the baths, either
separately or simultaneously, only leads to excitation of the
system.

V. DYNAMICS INDUCED BY BLACKBODY RADIATION

Consider now the case where the second thermal bath TB′
is replaced by blackbody radiation (BB). Here, a charged
harmonic oscillator is immersed in a dissipative environment
TB and coupled via dipole approximation to blackbody
radiation BB. This provides a generic model for a wide
variety of objects such as atoms, ions, electrons, molecules
in equilibrium, subjected to blackbody irradiation. Qualitative
results for this case are particularly relevant for natural light
incident on biomolecules.

The Hamiltonian of the total system is now of the form of
Eq. (8) where ĤB is the Hamiltonian describing the radiation
field and ĤSB′ describes the interaction of the system with
the blackbody radiation. In the dipole approximation, the

FIG. 6. (Color online) Upper panel shows the exact (continuous
blue curve), secular-approximated (dashed-green curve) time evolu-
tion of 〈0|ρ̂S|0〉. The evolution using the canonical distribution as
the initial state is depicted by the dot-dashed red curve. Lower panels
show the time evolution J00;νμ for some values of ν and μ. Parameters
are as in Fig. 5.

Hamiltonian for an oscillator interacting with a radiation field
and coupled linearly to its surrounding environment is

Ĥ = 1

2m

(
p̂x − e

c
Âx

)2

+ mω2
0

2
q̂2

x

+
∑

j

⎡
⎣ p̂2

j

2mj

+ mjω
2
j

2

(
q̂j − cj q̂x

mjω
2
j

)2
⎤
⎦

+
∑
k,s

h̄ck

(
â
†
k,s âk,s + 1

2

)
, (9)

where e/c is the coupling constant to the radiation, âk,s and
â
†
k,s are the annihilation and creation operators of the field

mode of momentum k and polarization s. The vector potential
is given by

Âx =
∑
k,s

[
hc

kV

] 1
2 [

f ∗
k âk,sek,s · q + fkâ

†
k,se

∗
k,s · q

]
, (10)

where e is the polarization vector, V is the volume of the
cavity, and fk is the electron form-factor (Fourier transform
of the charge distribution) which incorporates the electron
structure [23].

By defining mk = 4πe2f 2
k /(ωkV ) and ak,s = (mkωkqk,s +

ipk,s)/
√

2mkh̄ωk and applying the Power-Zienau’s
transformation (see Ref. [27] for details) we can rewrite
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Eq. (9) as

Ĥ = 1

2m
p̂2

x + 1

2
mω2

0q̂
2
x

+
∑
k,s

1

2mk

(
p̂k,s + mkωkq̂x

)2 + 1

2
mkω

2
k,s q̂

2
k,s

+
∑

j

p̂2
j

2mj

+ 1

2
mjω

2
j

(
q̂j − cj q̂x

mjω
2
j

)2

, (11)

where the oscillator is seen to be coupled to the momentum
coordinate p̂k,s . Since Êx = −∂Âx/∂t and based on the def-
inition of the annihilation and creation operators (see above),
one can show that this momentum coupling is equivalent to
the oscillator being coupled to the electric field of the radiation
with

Êx = i
∑
k,s

(
hc3

V

) 1
2 (

f ∗
k âk,sek,s · q + fkâ

†
k,se

∗
k,s · q

)
.

In order to describe the action of the blackbody radiation,
we need to consider, as in the previous case, that the modes
in the cavity are thermally populated (for more details see
Ref. [27]), i.e., each mode is characterized by an incoherent
density operator. This feature introduces the incoherent nature
of the radiation considered in this work. Based on this
description, we expect that the blackbody radiation generates
an incoherent evolution in contrast with the coherent evolution
induced by laser pulses.

Interestingly, the thermal fluctuations generated by the
blackbody radiation are characterized by a two-point electric-
field correlation function 〈Êx(t ′′)Êx(t ′)〉 that is not δ correlated.
This reveals the intrinsic non-Markovian character of the
radiation from both a statistical viewpoint [23,27,38] and from
the optics point of view [39]. The correlation time τ c

BB of the
randomly fluctuating electric field can be calculated from the
thermal time τ th

BB = h̄/(kBTBB) [39] and is expressed roughly
as τ c

BB ∼ τ th
BB. For blackbody radiation at TBB = 300 K, τ c

BB ∼
25.5 fs whereas for sunlight, TBB = 5900 K, τ c

BB ∼ 1.3 fs
and for moonlight, TBB = 4100 K, τ c

BB ∼ 1.86 fs. Thus, for
processes taking place on the order of, e.g., 1 ps (such
as electronic energy transfer in photosynthetic complexes
[1,10]) this coherence time is very short. Hence, under
illumination by sunlight, the perturbation is effectively cw and
incoherent.

From an open-quantum-system perspective, the influence
of the blackbody radiation on the system is condensed in the
spectral density [23,27,38]

JBB(ω) = MτBB ω3�2
BB

/(
�2

BB + ω2
)
, (12)

where M = m + MτBB�BB is the renormalized mass, τBB =
2e2/(3Mec

3) ∼ 6.24 × 10−24 s, and �BB is a frequency cutoff
[23]. This spectral density generates the following dissipative
kernel: γBB(t) = τBB�2

BB[2δ(t) − �BB exp(−�BB|t |)]. Note
that there is a fundamental limitation to the use of Eq. (12).
That is, in the limit �BB → ∞, we get the surprising
result, γBB(t) = 0, i.e., no relaxation. This corresponds to the
point-electron limit [f 2

k = �2
BB/(�2

BB + ω2
k) = 1 in Eq. (10)]

and is unphysical because, even for the electron, �BB remains
finite, although large. There is a natural upper limit given
by [40,41] �BB = τBB

−1, which corresponds to 2/3 of the
time for photon to traverse the classical electron radius
(re

cl = 2.818 × 10−15 m). Beyond this natural limit, causality
is violated [40] and the bare mass m takes negatives values
[40]. Note that one could consider another reasonable choice
of form factor, e.g., f 2

k = �4
BB/(�2

BB + ω2
k)2, corresponding

to a sharper cutoff [40]. This will lead to corrections in
the equation of motion of the order of τBB and τ 2

BB, which
compared with τ c

BB are negligible. Thus, following Ref. [40],
f 2

k = �2
BB/(�2

BB + ω2
k) can be considered as an excellent

approximation.
The exact analytic expression for the influence functional

for this case is derived in Ref. [27]. There we show that
the equations of motion are driven by a transient term that
is dependent on the initial conditions and proportional to
γBB. This term is absent in the former case above, and is a
consequence of the coupling to the momentum of the modes
rather than coupling through the coordinate of the modes
[cf. Eq. (11)]. So, in addition to the turn-on effect, present
in the former case, in the case of incoherent excitation by
blackbody radiation, we also have a driven transient term.

In order to gain insight into the strength of this transient
term and of the blackbody radiation, we examine results
in the limit when �BB → τ−1

BB and where the effect of the
radiation can be estimated by a constant damping kernel
given by γBB = ω2

0τBB [23]. Assuming a typical value of
electronic molecular structure (e.g., a carbon-carbon bound)
ω0 = 3 × 1014 Hz, we have that γBB = 1.8 × 10−9ω0. In
this case the excitation due to the radiation is too weak
to compete with the incoherent effect of TB and, in the
absence of TB, the thermalization would take far too long
(γ −1

BB = 1.85 μs) to be appreciable on, e.g., a picosecond time
scale. In order to see some sort of appreciable effect on the
picoseconds time scale would require a cutoff on the order of
�BB = 5 × 10−6τ−1

BB (γ −1
BB = 9 ps).

As an example of the dynamics, Fig. 7 shows the time
evolution of the ground state and some propagating elements
J00,νμ(t) and Fig. 8 provides the corresponding results for the
first-excited state. In order to see some sort of appreciable
effect, we have used here the artificial value of �BB = 5 ×
10−6τ−1

BB and additionally strong coupling to the environment
γTB = 10−1ω0. With these parameters, we have that in Figs. 7
and 8, TTB = 277 K while TBB = 5900 K. For this frequency,
the time interval depicted in Figs. 7 and 8 is ≈128 fs. Here,
the exact evolution of 〈0|ρ̂S(t)|0〉 and 〈1|ρ̂S(t)|1〉 are depicted
by a continuous blue line, the time evolution neglecting the
off-diagonal (stationary coherent) terms initially generated by
the presence of the TB is depicted using the dashed green line,
and the evolution using the canonical distribution as the initial
state by the dot-dashed red curve.

In the lower panels, we present some of the nonvanishing
J00;νμ(t) and J11;νμ(t) elements. It is evident that the effect of
the radiation is so weak that it generates neither off-diagonal
terms nor significant changes in the populations dynamics.
That is, even with the choice of excessively aggressive
parameters, the effect of the radiation is negligible. Rather,
the time evolution can be seen as being caused by the turn-on
of the interaction followed by the subsequent relaxation of the
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FIG. 7. (Color online) Upper panel shows the exact (continuous
blue curve), secular-approximated (dashed green curve) time evolu-
tion of 〈0|ρ̂S|0〉. The evolution using the canonical distribution as
the initial state is depicted by the dot-dashed red curve. Lower panels
show the time evolution J00;νμ for some values of ν and μ. Parameters
for coupling to TB as in Fig. 6, with h̄ω0/(kBTBB) = 0.3884, and
�BB = 8.3 × 105ω0.

FIG. 8. (Color online) Time evolution of 〈1|ρ̂S|1〉. Description
and parameters as in Fig. 7.

system to equilibrium, dominated by the interaction with TB.
The weak oscillations in Figs. 7 and 8 can be attributed to
the transient driven term, which is strongly determined by the
frequency cutoff �BB. For different sets of parameters these
oscillations might well be absent.

The effect of switching the interaction on t = 0 and the
time-dependent driving transient term can be also appreciated
by the jump of the Jnm;νμ terms. That is, in Fig. 7, J00;00 is seen
to jump from unity at t = 0 to a different value, and J00;11 and
J00;νμ jump from zero to a finite value. The same applies for
J11;00 and J11;νμ in Fig. 8.

From Fig. 7, we can see oscillations in the population
of the ground state; these oscillations are also present in,
e.g., the population of the first-excited state [see Fig. 8].
Since, in our “secular approximation” these oscillations are
removed, according to us, this would imply that the excitation
is coherent, but very short lived.

At this juncture, it is illustrative to comment on the
difference between these results and those resulting when
the equilibrated system (S + TB) is excited by a coherent
source where it is assumed that it is the system S that
interacts with the radiation. Given this coherent excitation
(e.g., pulsed transform-limited laser), the dynamical features
change completely: the absorption of one photon from a
coherent pulse creates a coherent superposition of energy
eigenstates and hence a time evolving state (cf. Ref. [7]). It
is worth mentioning that in absence of TB, if the initial state
is a pure state, then this superposition will be described by a
pure state. By contrast, under the same circumstance (absence
of TB), the blackbody radiation will create a incoherent
superposition of states leading to a mixed state. In the presence
of TB, the stationary coherent terms created during the
thermalization with TB will allow us to enhance the coherent
control over the populations by transferring the coherence of
the pulse into the populations [42,43].

As noted above, the parameters in the computation in Figs. 7
and 8 are artificial, and designed to show some effects due to
BB. Based on naive classical arguments, this value of �BB

would be equivalent to the inverse of the time needed by
light to travel over around 1 Å. In the context of electronic
energy transfer in photosynthetic complexes, where natural
frequencies ω0 = 6.63 × 1012 Hz occur, then the coupling
constant will be ≈γBB = 8 × 10−6ω0 (γ −1

BB = 19 ns). In this
case the dynamics induced would be far less noticeable than
the one shown in Figs. 7 and 8. That is, since γBB is smaller,
then the effect on the relaxation will be weaker as well. Indeed,
the final stationary population reached after equilibration will
be far closer to that reached during the first thermalization
step. Once again the response is to the turn on of the field
with rapid equilibration following mediated by the driving
initial-condition–dependent transient term.

In summary, irradiating with blackbody radiation cannot
generate a coherent dynamical result, since the blackbody
radiation is correctly represented as a thermal bath [see
Eq. (12)]. Any time evolution observed here can be understood
as the ultrafast transients as the system thermalizes, mediated
by the driving initial-condition–dependent transient term. This
term is present given the radiation field case, but is absent when
excitation results from a second thermal bath coupled through
the position of the bath modes.
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VI. DISCUSSION AND CONCLUDING REMARKS

We have considered the natural process where a system,
originally coupled to a thermal bath, is subsequently perturbed
by either another thermal bath or by blackbody radiation.
We have shown that the first step of thermalization gener-
ates off-diagonal stationary coherences which, in principle,
could affect the dynamics of the second perturbative step.
In particular, these off-diagonal stationary coherences could
affect the populations of states during the second step. This
process is enhanced in the low-temperature regime, and plays
a fundamental role in explaining the origin of one photon phase
control in molecular systems [42,43]. However, although our
formal approach clearly identifies the stationary off-diagonal
system matrix elements as participants in the subsequent time
evolution of the populations of a generic open quantum system,
when these off-diagonal terms are generated in practice, i.e.,
in natural environments or by blackbody irradiation, their
contribution is negligible. This leads us to the conclusion that,
under natural conditions, the off-diagonal elements generated
by thermal baths do not play any relevant role in the dynamics
and that incoherent excitation of an open quantum system
leads to dynamics free of coherent time evolution after an
initially short transient time interval. Incoherent dynamics do

occur, however, such as heat flux between the two baths via
the system S [44].

A final note is in order. Our description of TB resembles,
e.g., the role of a solvent. However, if the bath is part of the
same macromolecule, then the spectral density JTB(ω) could be
highly structured and some new features may be expected, e.g.,
increasing the stationary coherences even with weak decay
rates. In those cases, the role of stationary coherences has to
be explicitly calculated for each system at hand.
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