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Beable-guided quantum theories: Generalizing quantum probability laws
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Beable-guided quantum theories (BGQT) are generalizations of quantum theory, inspired by Bell’s concept of
beables. They modify the quantum probabilities for some specified set of fundamental events, histories, or other
elements of quasiclassical reality by probability laws that depend on the realized configuration of beables. For
example, they may define an additional probability weight factor for a beable configuration, independent of the
quantum dynamics. Beable-guided quantum theories can be fitted to observational data to provide foils against
which to compare explanations based on standard quantum theory. For example, a BGQT could, in principle,
characterize the effects attributed to dark energy or dark matter, or any other deviation from the predictions
of standard quantum dynamics, without introducing extra fields or a cosmological constant. The complexity
of the beable-guided theory would then parametrize how far we are from a standard quantum explanation.
Less conservatively, we give reasons for taking suitably simple beable-guided quantum theories as serious
phenomenological theories in their own right. Among these are the possibility that cosmological models defined
by BGQT might in fact fit the empirical data better than any standard quantum explanation, and the fact that
BGQT suggest potentially interesting nonstandard ways of coupling quantum matter to gravity.
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I. INTRODUCTION

Weinberg’s paper [1] exploring ideas about nonlinear
generalizations of quantum theory led to some fundamental
insights about the relationship between quantum theory and
special relativity [2,3]. In introducing his work, Weinberg
commented [1] that “Considering the pervasive importance
of quantum mechanics in modern physics, it is odd how rarely
one hears of efforts to test quantum mechanics experimentally
with high precision. . .The trouble is that it is very difficult
to find any logically consistent generalization of quantum
mechanics.”

In fact, applied to nonrelativistic quantum mechanics,
this was already contradicted by dynamical collapse models
[4,5]. Nonetheless, the belief that generalizations of quantum
theory must be inconsistent or at least suffer from some
fundamental problem remains widespread. In particular, the
fact that Weinberg’s nonlinear generalizations of quantum
theory allow superluminal signaling [2,3] (or, it was argued,
interuniverse signaling [2]) seems to have persuaded many that
relativistic quantum theory, at least, is probably in some strong
sense an isolated point in the space of theories. Recent no-go
theorems [6–8] may have helped reinforce this impression.

None of these no-go results actually imply this conclusion,
however, nor do their authors argue that they do. In fact,
if one is flexible about the mathematical constructions that
can be used, the rules one can postulate, as well as the
ways in which quantum laws can be generalized, it is not
hard to define logically consistent and potentially interesting
generalizations of quantum mechanics that do not conflict with
special relativity. For example, there exists an infinite class
of consistent nonlinear theories that neither violate Lorentz
invariance nor allow superluminal signaling [9].
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This paper describes another infinite class of generaliza-
tions of quantum theory. This class includes arbitrarily baroque
theories, but also includes subclasses of relatively simple
theories that seem both potentially phenomenologically useful
and interesting in their own right. We discuss their potential
scientific implications, expanding an earlier discussion [10]
and setting it in a more general and fundamental context.

No specific beable-guided quantum theories (BGQT) are
advocated or compared to empirical data here. The aim is rather
to make some simple conceptual points in order to expand the
boundaries of future research in several directions.

II. BEABLE MODELS

Arguably,1 the key problem in quantum foundations—and
one of the key problems in modern physics—is the apparent
impossibility of deriving, from unitary quantum theory alone,
an explanation of the appearance of a quasiclassical world.2

The most interesting attempts to make progress on this
problem do so by adding extra mathematical structure to
unitary quantum theory and defining what Bell called beables
[14,15]. Beables are mathematical representations of particle
trajectories, or processes, or events, or histories, or whatever
the right concept is for the elementary quantities from which
we can build a description of possible quasiclassical worlds

1Some claim that quantum decoherence explains, or points toward
an explanation of, the appearance of a single quasiclassical world
following quantum probabilistic laws within a many-worlds picture
defined by the universal wave function. For arguments and counter-
arguments on this point see, e.g., Refs. [11,12]; some reasons why I
disagree can be found in Ref. [13].

2That is, a world with macroscopic variables following mostly
deterministic classical equations, and also influenced by definite but
unpredictable outcomes of quantum events.

022105-11050-2947/2013/87(2)/022105(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.022105


ADRIAN KENT PHYSICAL REVIEW A 87, 022105 (2013)

(if the idea works). Beable models are indeterministic—they
assign a probability measure to configurations of beables. This
(if it works) implies a probability measure on possible quasi-
classical worlds and hence implies probabilistic predictions
about the quasiclassical world we experience. In particular, if
the beable model is intended to replicate the predictions of
quantum theory precisely, it should be possible in principle to
derive the Born rule for quantum experiments from the beable
configuration probability measure. So, according to this view,
our quasiclassical world is the one that nature randomly chose
to be realized from among all the possible worlds, and is fun-
damentally defined by some randomly chosen configuration
of beables from among all the possible configurations.

Examples of beables in beable models or protomodels
include the particle trajectories in de Broglie–Bohm theories,
the collapse centers in discrete dynamical collapse models, and
the real history defined by a time-dependent density matrix in
a real world interpretation [16]. The consistent or decoherent
histories approach [17,18] can and arguably should [19–21]
also be viewed as a so far unsuccessful attempt at an honest
beable model, in which the beables would be elementary
histories from a preferred consistent set defined by an (alas as
yet undiscovered) appropriate quasiclassical set selection rule.

A. Beables for skeptics

Let us assume that the final theory we are heading for
is as compellingly beautiful as most physicists hope. Still,
it is not yet in sight. Why should we be so confident that
every step on the path to it involves expressing physical
insights in mathematically beautiful ideas? Maybe a theory
unifying quantum theory and gravity, or some other successor
to quantum theory, will emerge in something like the way
quantum theory did, from incomplete ad hoc ideas, toy models
and partial insights.

Especially at the moment, when progress on fundamental
problems in physics is so stalled, it seems a mistake to dismiss
ideas that achieve something, however unaesthetically. Beable
models do have some problems.3 However, we can make
scientific use of them as they give a logically straightforward
way of resolving the tension between classical and quantum
physics—a tension that has to be resolved somehow. Also in
their favor is the fact that—unlike attempts to make sense
of many-worlds quantum theory—they work within the only
tried and tested scientific paradigm we have, in which the aim
of a scientific theory is to define a single objective reality and
make standard probabilistic predictions about our observations
of that reality. Those seem good enough reasons to explore
whether beable models lead to interesting and testable new

3The apparent difficulty in constructing beable models that respect
Lorentz invariance is one. Another is the problem of a double
ontology. Do the beables and the quantum state give apparently
equally valid alternative pictures of reality? If they do, to claim
that the beable picture resolves any problem you have to be willing
to postulate that they represent reality, or at least the reality we
experience, and the quantum state does not. One way of saying this is
to say the initial quantum state and Hamiltonian play lawlike roles in
the theory, while the beables are the real physical variables. Whether
this resolves or just restates the problem is debatable.

scientific ideas. This paper adds more reasons for believing
that they do, and also for believing that these ideas may
be valuable even if beable models eventually turn out to be
only rough approximations to a deeper theory framed using
different concepts.

III. BEABLE PROBABILITIES IN STANDARD
BEABLE MODELS

A. Nonrelativistic beable models

We start by characterizing abstractly a class of beable mod-
els of nonrelativistic quantum mechanics, namely, time-local
beable theories. In these, we suppose we are given quantum
theory with some fixed initial state |ψ(0)〉 at some initial time
t = 0, and some fixed Hamiltonian H , which for simplicity
and definiteness we take here to be time independent. Our aim
is to describe physics, at the most fundamental level, for all
times t > 0. The possible beable configurations take the form
of collections B of pairs of beables and (corresponding) times:

B = {(Bt,t) : Bt ∈ �(t),t � 0} ,

where each �(t) is a set of the beables (some stipulated
mathematical quantities) defined for each t � 0. The set �(t)
may be empty at some or even generic times t , and need not
depend continuously on t .

If the model respects standard quantum dynamics for the
state vector, it also includes the standard time-evolved quantum
state |ψ(t)〉 = exp(−iH t/h̄)|ψ(0)〉 as a mathematical object.
The quantum state may itself also be defined to be one of the
beables, but it need not necessarily be so defined.

Perhaps the most familiar example of a time-local beable
model respecting standard quantum dynamics is standard
nonrelativistic de Broglie–Bohm theory [22,23] applied to a
system of N distinguishable particles. Here the quantum state
at time t is |ψ(t)〉, where

〈 x1, . . . ,xN | ψ(t) 〉 = ψ(x1, . . . ,xN ; t) .

We will take the beables at time t to be the position coordinates
of the N particle trajectories. (We will not take the quantum
state here to be a beable, although many authors choose to.
Both options are possible, and both are questionable: See
footnote 3 on double ontologies.) So we have

�(t) = {x1(t), . . . ,xN (t)} .

These trajectories follow continuous equations, so in this case
�(t) depends continuously on t .

Standard de Broglie–Bohm theory makes experimental pre-
dictions indistinguishable from those of Copenhagen quantum
theory, where both apply, in the following sense. We can
always recover the Bohmian predictions for quasiclassical
physics in the Copenhagen formalism by finding some suitably
macroscopic system A that undergoes an effectively irre-
versible measurement interaction with the measured quantum
system S, and treating A as though it follows quasiclassical
dynamical laws rather than quantum laws. However, de
Broglie–Bohm theory gives precise dynamical equations from
which the quasiclassical behavior of such objects can be
derived, rather than separately postulated. De Broglie–Bohm
theory can also be straightforwardly applied to closed quantum
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systems and can describe the emergence of quasiclassical
physics within closed systems. Copenhagen quantum theory,
on the other hand, relies on the imprecise concept of a separate
classical realm through which the quantum realm is probed and
measured, and does not apply to closed quantum systems.

An example of a time-local beable model that respects
standard quantum dynamics for the state vector but makes dis-
tinct predictions from standard quantum theory is Valentini’s
modified de Broglie–Bohm theory [24,25], which follows the
de Broglie–Bohm guidance equation but has a nonstandard
initial condition on the particle trajectories at t = 0:

P (x1(0), . . . ,xN (0)) �= |ψ(x1, . . . ,xN ; 0)|2 .

An example of a time-local beable model that does not
respect standard quantum dynamics, and that also makes
distinct predictions from standard quantum theory, is the
original Ghirardi-Rimini-Weber (GRW) discrete dynamical
collapse model [4]. We consider it here in the form first
suggested by Bell [26] (see also, e.g., Refs. [27,28]), where
the beables are the (isolated) space-time points about which
the collapses are centered. Here, for a system of N distin-
guishable particles, at generic times t there are no collapses
and hence no beables: �(t) = { }. If a collapse centered about
x occurs for particle i at time t , then �(t) = {(x,i)}. In cases
where M � 2 collapses occur at exactly the same time t

collapses at time t , we have �(t) = {(x1,i1), . . . ,(xM,iM )}.
(We include these cases for completeness, although the
total probability measure for such multiple collapse events,
integrated over all time, is zero.) As the GRW model illustrates,
�(t) need not necessarily depend continuously on t in a
physically sensible time-local beable model.

In summary, a time-local beable model defines the possible
sets of time-labeled beables,

B = {(Bt,t) : Bt ∈ �(t),t � 0} ,

takes as input the initial quantum state |ψ(0)〉 and the
Hamiltonian H , and from these data computes as output a
probability measure μ(B) on the sample space of allowed sets
B. The measure depends on |ψ(0)〉 and H . If we think of these
as fixed by some particular theory T , we may write μ ≡ μT to
emphasize that the beable configuration probabilities depend
on the (quantum) theory.

While these familiar examples of beable models are time-
local, we can also imagine more general types of beable
models. For example, each beable might be associated with
an extended region of space-time.4 We can extend the above
characterization to more general beable models, since nothing
in our abstract definitions relies on time-locality. Thus, given
a theory T defining |ψ(0)〉 and H , a beable model defines the
possible sets of beables B and a probability measure μT (B).

B. Relativistic beable models

Relativistic beable models have proved harder to construct,
perhaps unsurprisingly, given that we have no mathematically

4A model involving histories of generalized quantum events would
be an example.

rigorous construction even of nontrivial relativistic quantum
field theories in (3 + 1)-dimensional Minkowski space-time.5

We can straightforwardly extend our abstract characteriza-
tion of beable models to quantum field theory in Minkowski
space and quantum cosmology. This turns out to be useful,
despite the paucity of familiar concrete examples. (See the
discussion of coarse-grainings in cosmological models below.)

A Lorentz-invariant beable model defines the possible sets
of beables B and computes a probability measure μT (B) from a
theory T defining the Hamiltonian H and some asymptotic past
boundary condition ψ−∞ = limS→−∞ |ψS〉 on the quantum
state associated with spacelike hypersurfaces S tending to past
infinity, by Lorentz-covariant rules.

Similarly, a generally covariant beable model in quantum
cosmology uses generally covariant rules to define the possible
sets of beables B and compute a probability measure μT (B),
given a generally covariant theory T defining the quantum evo-
lution law and some initial condition postulate (for example,
the no-boundary condition).

IV. BEABLE-GUIDED QUANTUM THEORY

There is something unsettlingly epiphenomenal about the
status of the beables in standard quantum beable theories. The
quantum state evolution does all the mathematical work in
defining the beable probability distribution; the beables, so to
speak, hitch a free ride. As James put it [29] in another context:
“Inert, uninfluential, a simple passenger in the voyage of life,
it is allowed to remain on board, but not to touch the helm or
handle the rigging.”

While some nonstandard beable theories give the beables
at least a little more of a role, it is still a secondary one.

For example, in Valentini’s modified Bohmian theory
[24,25], the evolution of the Bohmian particle trajectories
throughout time is determined by the quantum state, just as
in ordinary de Broglie–Bohm theory. The only difference is
that the probability distribution of the initial Bohmian particle
positions is chosen independently of the initial quantum
state. Granted, this is a significant difference, with intriguing
consequences, but the dynamics remain determined by the
quantum state throughout.

In Ghirardi-Rimini-Weber-Pearle dynamical collapse mod-
els [4,5], there is a genuine interplay between the quantum
state and collapse events. The quantum state at time t depends
on all previous collapse events as well as on the initial state
and Hamiltonian. Again, this is a significant generalization
of standard quantum theory. Still, in at least one sense the
quantum state still plays a dominant role. The probability of a
collapse taking place at any given point in Galilean space-time
is entirely determined by the quantum state at that time. Indeed,
all of physics, including the beable probability distributions
after time t , is determined by the quantum state at time t .

Each of these pioneering examples of generalizations of
quantum theory has its own internal logic that provides

5There are various proposals for relativistic beable models (e.g.,
[16,28]). Assessing these works in progress is beyond our scope here.
Our aim is to describe a general class of theories rather than focusing
on specific examples.
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motivation for the beables playing precisely the role they do.
Maybe one of these theories, or a theory in which the beables
play a similar and similarly secondary role, will indeed turn out
to be a better description of nature than standard nonrelativistic
quantum theory.

However, we see a compelling motivation to explore ways
of setting the beables on a still more equal footing with
the quantum state. Hence the idea of beable-guided quantum
theories, to which we now turn.

A. Beable configuration probability weights and probabilities

The theory T that defines the initial quantum state and
Hamiltonian still defines a probability measure μT (B), as
above. However, μT (B) no longer defines the probability of
the beable configuration B.

Instead, we take the actual probability measure of the beable
configuration B in a BGQT to be some function

μ′
T (B) = f (μT (B),B)

that depends on the quantum probability measure and on the
beable configuration.

This gives a very large class of possibilities indeed. To be
a little more concrete, while still allowing a large class of
possibilities that includes many interesting generalizations of
quantum theory, in what follows we will illustrate the idea by
considering product functions of the form

f (μT (B),B) = CμT (B)w(B) ,

where w(B) is a real non-negative weight function. The
normalized probability measure is then

μ′
T (B) = μT (B)w(B)

(∫
B ′

μT (B ′)w(B ′)
)−1

.

What defines the weight function w(B)? We have defined
w(B) to be a function only of the beable configuration B,
independent of the initial quantum state and Hamiltonian,
and to be non-negative and real. Modulo these constraints,
in principle, any rule at all is allowed. We have (even in
this restricted class) an uncountably infinite class of theories.
However, in the most interesting cases, the rules defining w(B)
should be relatively simple.

It is worth stressing again that the wave function |ψ(t)〉
may be included in the beable set B. If it is, a beable-
guided quantum theory may be governed by probability
rules that explicitly depend on the set {|ψ(t)〉}−∞<t<∞ or
on selected subsets. Similarly, relativistic BGQT that include
hypersurface-dependent wave functions |ψ(S)〉 as beables may
be governed by probability rules that explicitly depend on
{|ψ(S)〉}S .

B. Examples of rules for weight functions

1. Simple Bohmian examples

To give a simple example, we could define a beable-guided
quantum theory from a nonrelativistic Bohmian model of two
particles with Bohmian trajectories B = {x1(t),x2(t)}t , taking

w(B) = exp ( − {lim supt [x1(t) − x2(t)]2/a2}) .

This is fairly easy to understand intuitively, although rather
ad hoc. Compared to the standard Bohmian model, pairs of
trajectories are more or less likely to be selected depending on
the closest separation they ever attain.

A variation that perhaps might appear a little more natural,
for a model universe of finite duration, from time 0 to T , is

w(B) = T −1
∫ T

0
dt exp ( − {[x1(t) − x2(t)]2/a2}) ,

which prefers pairs of trajectories that stay close over time,
with respect to a simple measure. Note however that the limit

w(B) = lim
T →∞

T −1
∫ T

0
dt exp ( − {[x1(t) − x2(t)]2/a2})

may not lead to well-defined beable configuration probabilities
in general, since in many examples almost all configurations
(with respect to the standard measure) have w(B) = 0.6

To reiterate, any rule at all is allowed in principle. A
more baroque, less intuitively interpretable, and presumably
correspondingly less physically interesting example is given
by

w(B) = α exp

(
−

∫
0�t�1

[x1(t) − x2(t)]2/a2

)

+β exp ( − max
2�t�6

[x1(t) − x2(t)]2/b2)

+ γ θ (max
t

[x1(t)]2 − c2)

+ δ cos2
(

max
t

[
x2

1 (t) − x2
2 (t + T )

])
,

where α,β,γ,δ,a,b,c,T are positive constants and θ is the
Heaviside step function.

2. A simple collapse model example

A simple beable-guided version of a nonrelativistic
Ghirardi-Rimini-Weber model for two distinguishable par-
ticles for times t � 0, with collapse events taking place at
{x1

i ,t
1
i }∞i=1 and {x2

i ,t
2
i }∞i=1, is defined by

w
({

x1
i ,t

1
i

}
,
{
x2

i ,t
2
i

}) = inf
i,i ′

{
exp

[ − (
t1
i − t2

i ′
)2

/T 2
]

× exp
[ − (

x1
i − x2

i ′
)2

/X2]} ,

for constants X,T . Roughly speaking, this tends to favor
collapse event histories that include a pair of collapse events
for the two particles that are nearby in space and time with
respect to the scales X,T .

V. COARSE-GRAININGS OF BEABLES IN
COSMOLOGICAL MODELS

Simple nonrelativistic beable-guided quantum theories
based on de Broglie–Bohm theory, the GRW model, or other
familiar beable theories make testably different predictions
from standard quantum theory. They suggest new ways of
parametrizing experimental and observational tests of quantum
mechanics.

6This model could be varied by defining μ′(B) directly via a limit,
rather than w(B).
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However, the class of theories, and hence parametrizations,
is infinite. No one beable-guided quantum theory leaps out
as a clearly more compelling candidate than the rest. Also,
while intrinsically nonrelativistic theories might possibly still
suggest interesting cosmological tests, they are obviously
fundamentally flawed, and so at best of limited use, as
cosmological models. Can we get any further?

A. Beable-guided quantum cosmological theories: Problems

Cosmology poses the sternest test of quantum theory as
a universal theory, and so seems the likeliest arena where
observation might help select potentially physically relevant
beable-guided quantum theories. Among the problems are that
we do not have a quantum theory of gravity; we do not have
anything approaching a standard quantum cosmological model
that starts from a simple theory of initial conditions and fits
all the data; ideas about Lorentz covariant beable models are
works in progress; and ideas about generally covariant beable
models are less substantial still.

B. Phenomenological BGQT

Building a BGQT cosmological theory from fundamental
first principles may not necessarily be the most fruitful
approach. To test a cosmological beable model—or any
quantum cosmological theory—we do not necessarily need
a fine-grained description of the beables. The first key test is
whether the model explains (insofar as a probabilistic theory
can) the features of the observed universe. For this we need to
characterize the possible (mostly) quasiclassical worlds that
might be realized in any given theory, which we can describe
in terms of higher-level physical quantities that the elementary
beables must characterize. In any successful beable quantum
theory, quasiclassical parameters—the approximate density of
matter in a small region, the average distance between galaxies,
the size of the universe (if finite) at any given cosmological
time—must be characterized by the beables, at least to
a very good approximation. In other words, quasiclassical
parameters must, to good approximation, be functions of the
elementary beables, and hence must effectively be higher-
order beables. We can define higher-level phenomenological
beable-guided quantum theories directly in terms of these
parameters.

So, insofar as we can talk about quantum cosmological
models at all (which we do, despite all the theoretical and
conceptual problems), we can also talk about beable-guided
quantum cosmological theories. If we have covariantly defined
quasiclassical parameters, we can use them to construct covari-
antly defined beable-guided quantum cosmological theories.
Theories of this sort were proposed in Ref. [10]; the present
discussion sets them in a more general and maybe more
fundamentally appealing context.

For example, any of the covariant definitions of quasiclassi-
cal events explored in the consistent histories literature might
be used to define a beable-guided cosmological theory. In
particular, we can use covariant notions of events defined via
path integrals [30]. We could, for instance [10], define quantum
cosmologies for an expanding universe with a cosmological
time coordinate in which we stipulate in advance that when

the compact three-metric has volume Vi , the matter inhomo-
geneities are of scale somewhere in the range (δmin

i ,δmax
i ),

for some sequence V1 < V2 < · · · < Vn < · · · of increasing
volumes. More generally, we could define a probabilistic
theory of this type, where the probability distribution for the
sequence {δi} is p({δi}). We can also consider continuous
versions of such theories, defined by appropriate limits.

Similarly, we can define models for a finite universe that
deterministically or probabilistically constrain the scale of the
universe, or the average separation between galaxies, or any
other quasiclassical quantity, as a function of cosmological
time.

Again, of course, this gives us an infinite class of theories,
including arbitrarily baroque ones as well as some quite simple
ones. Collectively, these theories seem ideally designed as
foils against which to test the postulate that initial causes
and standard evolution laws together explain everything that
can be explained in physics [10]. They can also be used as
foils for earlier nonstandard theories, for example, in testing
the alternative postulate explored in the two-time cosmology
literature, that initial and final causes, together with the
Hamiltonian, suffice. They are also potentially interesting
nonstandard theories in their own right.

VI. BEABLE-GUIDED QUANTUM THEORY
AND GRAVITY

The problems in unifying quantum theory and gravity are
notoriously deep. We do not have a consistent quantum theory
of gravity, nor a clear conceptual understanding of how a
picture of macroscopic events taking place in a space-time
with an apparently relatively well-defined large-scale structure
could emerge from one if we did. We do not know that a
quantum theory of gravity (in any conventional sense) is even
what we should be looking for.

Beable-guided quantum theories suggest a different way
of thinking about quantum theory and gravity. Quantum
theory appears to be a good description of the behavior of
matter, at least at small scales. The gravitational field appears
to define the structure of a definite associated space-time,
at least at large scales. Whether the gravitational field is
fundamentally quantum or classical or something else, it seems
to behave, at large scales, like a higher-level beable, giving
a unique and definite picture of reality associated with the
quantum evolution of the universe. Supposing this is correct,
i.e., that large-scale features of space-time are defined as
higher-level functions of fundamental beables, we can use
BGQT as a framework for defining consistent theories in
which the gravitational field satisfies interesting constraints.
These constraints need not necessarily arise from standard
expectations or intuitions about quantum theory and gravity.
We can also consider constraints that only make sense if one is
looking for a new physical principle embodied in a new type
of theory, such as a BGQT.

One example of such a constraint, which is a useful foil
against which to test standard expectations, is to impose by fiat
that the gravitational field must be locally causal, in a sense
that naturally generalizes Bell’s definition of local causality to
metric theories [31].
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Define a past region in a metric space-time to be a
region which contains its own causal past, and the domain
of dependence of a region R in a space-time S to be the set of
points p such that every endless past causal curve through p

intersects R.
Suppose that we have identified a specified past region of

space-time �, with specified metric and matter fields, and let
κ be any fixed region with specified metric and matter fields.

Let �′ be another past region, again with specified metric
and matter fields. (In the cases we are most interested in,
� ∩ �′ will be nonempty, and thus necessarily also a past
region.)

Define

Prob(κ|� ⊥ �′)

to be the probability that the domain of dependence of � will
be isometric to κ , given that � ∪ �′ form part of space-time,
and given that the domains of dependence of � and �′ are
spacelike separated regions.

Let κ ′ be another fixed region of space-time with specified
metric and matter fields.

Define

Prob(κ|� ⊥ �′; κ ′)

to be the probability that the domain of dependence of � will
be isometric to κ , given that � ∪ �′ form part of space-time,
that the domain of dependence of �′ is isometric to κ ′, and
that the domains of dependence of � and �′ are spacelike
separated.

We say a metric theory of space-time is locally causal if for
all such �,�′,κ , and κ ′ the relevant conditional probabilities
are defined by the theory and satisfy

Prob(κ|� ⊥ �′) = Prob(κ|� ⊥ �′; κ ′) .

The standard expectation is that our space-time is not locally
causal. A Bell experiment in which the measurement outcomes
are amplified macroscopically so that the gravitational fields
in spacelike separated regions depend on the outcomes ought
to produce nonlocally causal correlations in the gravitational
fields as well as the measurement outcomes. A beautiful
experiment in this direction by Salart et al. [32] addressed
the related question [33] of whether we can ensure that
measurements in the two wings of a Bell experiment produce
definite outcomes in spacelike separated regions, if we follow
the intuitions proposed by Penrose [34] and Diosi [35] and
assume that a definite outcome of a quantum measurement
requires a gravitationally macroscopic superposition to be
created.

Salart et al. show the answer is affirmative, if we also
accept Penrose and Diosi’s estimates for what constitutes
a gravitationally macroscopic superposition. However, the
nonlocality of the gravitational field has not yet been directly
tested. It would be good to do so, since there is some motivation
[31] for exploring the idea that the gravitational field might
be locally causal, strange though such a theory would be,
and small though our sliver of doubt on the point may be. It
would be easier to see how to write dynamical equations for
a quasiclassical metric theory—easier to see how space-time
puts itself together from locally determined pieces—if it were

locally causal. BGQT models incorporating gravity gives a
useful way of defining models that serve as the requisite foils.

VII. DISCUSSION

Any generalization of quantum theory can be seen as a
foil for testing standard theories, a way of parametrizing
how well any given experiment tests the theory, or how
well standard quantum explanations currently fit observational
cosmological data. This is certainly sufficient motivation for
thinking about beable-guided quantum theories. Perhaps these
and other generalizations of quantum theory will indeed turn
out to be mere foils. Perhaps quantum dynamics will indeed
survive all experimental tests. Perhaps some elegant Lorentz
and generally covariant beable extension of quantum theory
and quantum gravity will also explain the appearance of
quasiclassicality and the probabilistic and deterministic laws
governing our quasiclassical world.

There is, though, another less conservative motivation for
considering beable-guided quantum theories. Beables give
the best way we have of explaining the appearance of
quasiclassical physics within a quantum world. But in existing
beable models—even nonstandard models such as those
of Valentini and Ghirardi-Rimini-Weber-Pearle—the beables
seem unsettlingly epiphenomenal. The quantum dynamics
does most or all of the work in defining the beable probability
distribution, yet it is the beables that are supposed to represent
physical reality, not the quantum state. While this is not
logically inconsistent, it seems odd that the beables should
be simultaneously so physically important and so passive.

Beable-guided quantum theories may not completely elim-
inate this sense of unease. The quantum state still plays the
major role, at least in simple beable-guided theories. And
since quantum theory works so well, this is a fairly inescapable
feature, at least in theories describing laboratory experiments.
But they do at least reduce the imbalance: The beables behave
more like independent physical quantities.

In short, then, the case for taking beable-guided quantum
theories seriously as fundamental theories in their own right
is that we need beables, and then, once we have beables, they
should play an active role in physics.

One obvious reason to be skeptical is that, with the crucial
exception of explaining the appearance of quasiclassical
physics, standard quantum theory appears to work very well.
It seems that any corrections due to a beable-guided quantum
theory must be very small, and yet nothing in known physics
suggests any obvious reason to expect a small correction
parameter. But then, similar arguments apply to, for example,
the cosmological constant, the ratio between gravitational
and electromagnetic force strengths, the degree of parity
violation—and yet the parameters are small in each case.

There is also a danger of overstating the successes of
quantum theory. Mainstream cosmological theories tend to
assume quantum theory applies to the universe, and for
understandable reasons. But we do not actually have a good
quantum theory of gravity, let alone a tested quantum theory
of cosmology. On cosmological scales, it is not so clear that
quantum theory does actually explain all the data well.

Another obvious criticism is that we have infinitely many
beable-guided quantum theories and no compelling principle
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for picking out a small number of them as contenders for funda-
mental theories. If we think of beable-guided quantum theories
as only stepping stones towards a more compelling successor
to quantum theory, though, this might not be so much of a
concern either. On this view, perhaps some reasonably simple
beable-guided quantum theory will turn out to be a better
theory of nature than quantum theory, but if so, we can only
find out which one empirically, and we will only understand
why that particular beable-guided quantum theory is a good
approximation once we have the deeper successor theory.

Another interesting speculative possibility is that a guiding
condition of the sort we have explored might be necessary
to define a quantum theory of gravity, or to rigorously define
physically relevant relativistic quantum field theories, in the
first place. The idea here is that by rescaling the probabilities
of quantum events (expressed in terms of beables), and
perhaps excluding some classes of events altogether, guiding
conditions could allow rigorously defined theories to be
constructed, although the underlying unguided quantum theory
is not rigorously defined or even renormalizable. For example,
in principle one could try to define a beable-guided quantum
field theory that modifies the contributions to a scattering
amplitude so as to remove divergences.

Note that, even if a BGQT is constructed in a Lorentz-
invariant (or generally covariant) way from a similarly in-
variant beable theory, it might allow superluminal signaling.
Indeed, we already know that cosmological theories with
independent initial and final boundary conditions can (not
surprisingly, given that they break all standard notions of
causality) allow superluminal signaling [36]. But as such
theories remain consistent, and evade causal paradoxes [36], it
is not so clear that this should be seen as a disastrous problem.

It would, in any case, be very interesting to clarify which
types of nontrivial guidance conditions prohibit superluminal
signaling, which allow it in theory but impose strong practical
constraints, and which would allow it in practice with current
technology.

We have presented beable-guided quantum theories in a
form that perhaps fits most naturally within a block universe
picture, in which reality is defined by one configuration of
beables, chosen randomly from among all the possibilities. To
put it picturesquely, on this view, nature’s random choice is
made once, before or outside any physical reality is created,
and this choice brings into existence (in some approximate
beable representation) space-time and all events therein.

That said, nothing in the definition of beable-guided
quantum theories logically implies any stronger commitment
to a block universe picture than already implied by standard
quantum theory. Although the appearance of a present time
in physics is arguably puzzling in both, it is not inconsistent
with either. In each case, we can calculate the probabilities of
present or near future events, conditioned on past events, for
successive present times, and so recover a dynamical picture
of beable events randomly happening over time.

ACKNOWLEDGMENTS

I thank Fay Dowker for helpful conversations. This work
was partially supported by a Leverhulme Research Fellowship,
a grant from the John Templeton Foundation, and by Perime-
ter Institute for Theoretical Physics. Research at Perimeter
Institute is supported by the Government of Canada through
Industry Canada and by the Province of Ontario through the
Ministry of Research and Innovation.

[1] S. Weinberg, Ann. Phys. (N.Y.) 194, 336 (1989).
[2] J. Polchinski, Phys. Rev. Lett. 66, 397 (1991).
[3] N. Gisin, Phys. Lett. A 143, 1 (1990).
[4] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470

(1986).
[5] G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78

(1990).
[6] J. Conway and S. Kochen, Found. Phys. 36, 1441 (2006).
[7] M. F. Pusey, J. Barrett, and T. Rudolph, arXiv:1111.3328.
[8] R. Colbeck and R. Renner, Phys. Rev. Lett. 108, 150402 (2012).
[9] A. Kent, Phys. Rev. A 72, 012108 (2005).

[10] A. Kent, in Particle Physics and the Early Universe, Proceedings
of COSMO-97, edited by L. Roszkowski (World Scientific,
Singapore, 1998), pp. 562–564; arXiv:0905.0632.

[11] S. Saunders, J. Barrett, A. Kent, and D. Wallace, Many Worlds?
Everett, Quantum Theory, and Reality (Oxford University Press,
Oxford, 2010).

[12] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and
H. D. Zeh, Decoherence and the Appearance of a Classical
World in Quantum Theory, 2nd ed. (Springer, Berlin, 2003).

[13] A. Kent, in Many Worlds? Everett, Quantum Theory, and
Reality, edited by S. Saunders, J. Barrett, A. Kent, and

D. Wallace (Oxford University Press, Oxford, 2010), pp. 307–
354; arXiv:0905.0624.

[14] J. S. Bell, Epistemological Lett. 9, 11 (1976).
[15] J. S. Bell, in Quantum Implications: Essays in Honour of David

Bohm (Routledge, Oxon, U.K., 1987), pp. 227–234.
[16] A. Kent, Found. Phys. 42, 421 (2012).
[17] M. Gell-Mann and J. B. Hartle, in Complexity, Entropy and the

Physics of Information, SFI Studies in the Sciences of Complex-
ity Vol. VIII, edited by W. Zurek (Addison-Wesley, Reading,
MA, 1990).

[18] R. B. Griffiths, Consistent Quantum Theory (Cambridge Uni-
versity Press, Cambridge, 2003).

[19] F. Dowker and A. Kent, J. Stat. Phys. 82, 1575 (1996).
[20] F. Dowker and A. Kent, Phys. Rev. Lett. 75, 3038

(1995).
[21] A. Kent, Phys. Scr. 1998, 78 (1998).
[22] L. de Broglie, in Fifth Solvay Congress: Electrons et Pho-

tons, l’Institut International de Physique, Solvay, Brussels
(Gauthier-Villars, Paris, 1927).

[23] D. Bohm, Phys. Rev. 85, 166 (1952).
[24] A. Valentini, Phys. Lett. A 156, 5 (1991).
[25] A. Valentini, Phys. Rev. D 82, 063513 (2010).

022105-7

http://dx.doi.org/10.1016/0003-4916(89)90276-5
http://dx.doi.org/10.1103/PhysRevLett.66.397
http://dx.doi.org/10.1016/0375-9601(90)90786-N
http://dx.doi.org/10.1103/PhysRevD.34.470
http://dx.doi.org/10.1103/PhysRevD.34.470
http://dx.doi.org/10.1103/PhysRevA.42.78
http://dx.doi.org/10.1103/PhysRevA.42.78
http://dx.doi.org/10.1007/s10701-006-9068-6
http://arXiv.org/abs/arXiv:1111.3328
http://dx.doi.org/10.1103/PhysRevLett.108.150402
http://dx.doi.org/10.1103/PhysRevA.72.012108
http://arXiv.org/abs/arXiv:0905.0632
http://arXiv.org/abs/arXiv:0905.0624
http://dx.doi.org/10.1007/s10701-011-9610-z
http://dx.doi.org/10.1007/BF02183396
http://dx.doi.org/10.1103/PhysRevLett.75.3038
http://dx.doi.org/10.1103/PhysRevLett.75.3038
http://dx.doi.org/10.1238/Physica.Topical.076a00078
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1016/0375-9601(91)90116-P
http://dx.doi.org/10.1103/PhysRevD.82.063513


ADRIAN KENT PHYSICAL REVIEW A 87, 022105 (2013)

[26] J. S. Bell, in John S. Bell on the Foundations of Quantum
Mechanics (World Scientific, Singapore, 2001), p. 172.

[27] A. Kent, Mod. Phys. Lett. A 4, 1839 (1989).
[28] R. Tumulka, J. Stat. Phys. 125, 821 (2006).
[29] W. James, Mind 4, 1 (1879).
[30] J. B. Hartle, in Proceedings, 7th Winter School for The-

oretical Physics, Jerusalem, Israel, December 27, 1989 –
January 4, 1990, edited by S. Coleman, J. Hartle, T. Piran,
and S. Weinberg (World Scientific, Singapore, 1991),
pp. 65–157.

[31] A. Kent, in Quantum Reality, Relativistic Causality, and Closing
the Epistemic Circle, edited by W. Myrvold and J. Christian
(Springer, New York, 2009), pp. 369–378.

[32] D. Salart, A. Baas, J. A. W. Van Houwelingen, N. Gisin, and
H. Zbinden, Phys. Rev. Lett. 100, 220404 (2008).

[33] A. Kent, Phys. Rev. A 72, 012107 (2005).
[34] R. Penrose, The Emperor’s New Mind (Oxford University Press,

Oxford, 1999).
[35] L. Diosi, Phys. Rev. A 40, 1165 (1989).
[36] A. Kent, Phys. Rev. D 59, 043505 (1999).

022105-8

http://dx.doi.org/10.1142/S0217732389002070
http://dx.doi.org/10.1007/s10955-006-9227-3
http://dx.doi.org/10.1093/mind/os-4.13.1
http://dx.doi.org/10.1103/PhysRevLett.100.220404
http://dx.doi.org/10.1103/PhysRevA.72.012107
http://dx.doi.org/10.1103/PhysRevA.40.1165
http://dx.doi.org/10.1103/PhysRevD.59.043505



