
PHYSICAL REVIEW A 87, 022102 (2013)

Entropic inequalities as a necessary and sufficient condition to noncontextuality and locality
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The assumption of local realism, in a Bell locality scenario, imposes nontrivial conditions on the Shannon
entropies of the associated probability distributions, expressed by linear entropic Bell inequalities. In principle,
these entropic inequalities provide necessary but not sufficient criteria for the existence of a local hidden variable
model reproducing the correlations, as, for example, the paradigmatic nonlocal Popescu-Rohrlich (PR) box is
entropically not different from a classically correlated box. In this paper we show that for the n-cycle scenario,
entropic inequalities completely characterize the set of local correlations. In particular, every nonsignaling box
which violates the Clauser-Horne-Shimony-Holt (CHSH) inequality—including the PR box—can be locally
modified so that it also violates the entropic version of CHSH inequality. As we show, any nonlocal probabilistic
model when appropriately mixed with a local model, violates an entropic inequality, thus evidencing a very
peculiar kind of nonlocality. As the n-cycle captures equally well both the notion of local realism introduced
by Bell and that of noncontextuality presented by the Kochen-Specker theorem, the results are also valid for
noncontextuality scenarios.
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I. INTRODUCTION

The quantum nonlocal correlations that may arise in
experiments performed by spacelike separated and indepen-
dent observers, are a key concept in the foundational aspects
of quantum mechanics. The expected classical intuition that
physical quantities have well-established values previous to
any measurement and that signals cannot propagate instanta-
neously, do not suffice to reproduce the quantum mechanical
predictions [1], highlighting a very counterintuitive aspect
of quantum theory that has received strong experimental
corroboration over the years [2]. From an applied point of
view, nonlocality is now recognized as a novel physical
resource, which enables protocols such as device-independent
quantum key distribution [3], random number generation [4],
and the reduction of communication complexity in distributed-
computing scenarios [5].

In practice, nonlocality is witnessed through the violation
of a Bell inequality [1]. Given a certain experimental scenario
defined by the number of spatially separated parties, the
possible different measurement settings for each party, and
the possible outcomes for each setting, local-realistic joint
probability distributions form a convex set to which Bell
inequalities, a set of linear inequalities of the probabilities,
are the nontrivial facets [6]. This geometric approach provides
a general framework in which Bell inequalities can be derived,
since the task to find the facets of a convex set is a
linear program that can be solved efficiently. The problem
is that, generally, the size of the linear program grows
very fast as the nonlocality scenario becomes less simple,
some classes even being known to be a nondeterministic
polynomial (NP)-complete problem [6]. In spite of that, some
particular characterizations are well known. The bipartite
scenario with two dichotomic measurements per party is
completely characterized by the Clauser-Horne-Shimony-Holt
(CHSH) inequality [7] and a generalization of CHSH to more
outcomes is provided by the Collins-Gisin-Linden-Massar-
Popescu (CGLMP) inequality [8], the CHSH and CGLMP
inequalities fully describing the set of local correlations up to

three outcomes [9]. However, for a number of outcomes larger
than three, a complete characterization of the inequalities
bounding the set of local correlations is still to be found [9,10],
highlighting the difficulty and limitations of this approach.

In a conceptually different approach introduced by Braun-
stein and Caves [11], it was shown that local realism imposes
nontrivial conditions already on the level of the Shannon
entropies. The Shannon entropies carried by the measurements
on two distant systems must satisfy certain inequalities, which
can be regarded as entropic Bell inequalities. It was recently
pointed out that the characterization of the local correlations
on the entropic level also defines a linear programming
problem [12,13]. One advantage of this entropic approach is
that it can readily be applied to quantum systems of arbitrary
local dimension and general measurement operators, since the
inequalities do not depend on the number of outcomes of the
measured observables. That is, while the dimension of the
set of local correlations in terms of probabilities grows expo-
nentially with the number of outcomes for each observable,
the entropic set of local correlations is independent of that.
Another advantage of the entropic approach is that it easily
adapts to situations of additional independence requirements,
like the bilocality scenarios introduced by a entanglement
swapping experiment [14,15] and general correlation and
causal model scenarios [16–18]. The independence constraints
are nonlinear on the level of probabilities, defining a nonconvex
set, while in terms of entropies such constraints are linear
and still define a convex set that can be solved by linear
programming. In spite of their attractive properties, entropic
Bell inequalities are, in principle, sufficient but not necessary
conditions to witness nonlocality. That is, there are nonlocal
distributions violating a Bell inequality, that, however, do not
violate its entropic counterpart [13]. However, as we show
in this paper, the situation is more involved than initially
thought, as entropic inequalities can, at least in some scenarios,
completely characterize the set of local correlations.

In this paper we show that in the n-cycle scenario, any non-
local distribution when augmented with shared randomness
will also violate an entropic Bell inequality. The n-cycle can
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FIG. 1. (Color online) Graphical representation of the n-cycle.
The vertices represent different observables and the edges connect
observables that are jointly measurable. (a) CHSH scenario, two
parties with two measurement settings each. Labeling X1 = A0,
X3 = A1, X2 = B0, X4 = B1, we recover the usual picture where two
parties, Alice and Bob, perform spacelike separated measurements.
Alice measures one out of two possible measurement settings A0

or A1, and similarly for Bob. (b) KCBS scenario, five observables
arranged in a cyclic configuration such that each observable is
compatible with its neighbors. (c) Generalization of the CHSH/KCBS
scenario, with n observables in a cyclic configuration (the n-cycle
[22]). For dichotomic observables, the set of local and noncontextual
correlations is completely characterized by Eq. (4). For a general
number of outcomes, the unique nontrivial entropic inequalities are
those given by Eq. (5).

be seen as generalization of the CHSH scenario for an arbitrary
number of observables for each party, with only a subset of
pairwise observables being jointly measurable (Fig. 1). The
n-cycle captures equally well both the notion of local realism
introduced by Bell [1] and that of noncontextuality presented
by the Kochen-Specker (KS) theorem [19]. A complete
characterization of the n-cycle in terms of an exponential
number of tight, linear inequalities has recently been found
[20]. As we show here, the n-cycle can be equivalently
described by a polynomial number of entropic inequalities
and a list of local or noncontextual points lying in the facets
of the corresponding set of correlations.

II. THE n-CYCLE SCENARIO

The n-cycle scenario is defined for any number n � 3 of
observables X1, . . . ,Xn, imposing the restriction that only
Xi and Xi+1 are pairwise jointly measurable for all i =
1, . . . ,n (with Xn+k = Xk). Any two observables Xi and Xi+1

are jointly measurable, or compatible, if the result for the
measurement of Xi , even if not performed, does not depend
on the prior or simultaneous measurement of Xi+1 and vice
versa. This is the notion of noncontextuality captured by the KS
theorem [19]. It can readily be turned into the notion of Bell’s
locality [1], where the compatibility and noncontextuality
of the observables is assured by spacelike separation of
local measurements of different particles. In particular, for
n = 4, the n-cycle corresponds to the CHSH Bell scenario [7]
[Fig. 1(a)], while for n = 5 it is the noncontextuality scenario
considered by Klyachko-Can-Binicioglu-Shumovsky (KCBS)
[21] [Fig. 1(b)]. For general n, it can be visualized as an n-sided
polygon [Fig. 1(c)].

Any correlation that can be reproduced by means of a
noncontextual or local hidden variable model is a convex sum

of the deterministic probability distributions, that is,

p(xixi+1|XiXi+1) =
∑

λ

�(λ)p(xi |Xi,λ)p(xi+1|Xi+1,λ),

(1)

where xi stands for the outcome xi = 0, . . . ,d − 1 of the
corresponding observable Xi . The sum is performed over all
the dn deterministic distributions parameterized by λ [with
a distribution �(λ)], that is, all the distributions that given
a certain observable Xi yield with probability 1 a certain
outcome xi . The noncontextual and local deterministic points
define a convex set, to which the noncontextuality and Bell
inequalities are the nontrivial boundaries.

Similarly, the set of allowed nondisturbing and nonsignal-
ing distributions also define a convex set. Nondisturbing and
nonsignaling distributions are defined as the ones for which

p(xi |Xi) =
∑
xi+1

p(xixi+1|XiXi+1) =
∑
xi−1

p(xixi−1|XiXi−1),

(2)

that is, the outcome of Xi cannot be affected by which
compatible observable (Xi−1 or Xi+1) it is jointly measured
with. For dichotomic observables xi = 0,1 the vertices of the
nondisturbing and nonsignaling set are given by [20]

pγ
max(xixi+1|XiXi+1) =

{
1/2, xi ⊕ xi+1 = δ−1,γi

0, otherwise,
, (3)

where ⊕ stands for addition modulo 2, γ = {γ1, . . . ,γn},
γi = {−1,1} and the total number of γi = −1 is odd. Note that
for n = 4 and γ = {1,1,−1,1} this represents the maximally
nonlocal distribution allowed by nonsignaling, the so-called
PR box [23]. Given a certain nondisturbing and nonsignaling
probability distribution, any other distribution than can be
achieved from it using local reversible transformations is
said to be equivalent. Local reversible operations consist of
operations of two types: relabeling of the observables that
preserve the mutual compatibility of the joint observables
XiXi+1, e.g, Xi → Xi+2, or relabeling of the outputs (possibly
conditioned on the observable), e.g, xi → xi ⊕ δi,1.

Recently, the full characterization of the n-cycle has been
found for dichotomic observables [20]. There are 2n−1 tight
equivalent inequalities given by

Cγ
n =

∑
i

γi〈XiXi+1〉 � (n − 2), (4)

where 〈XiXj 〉 = p(00|XiXj ) + p(11|XiXj ) −
p(01|XiXj ) − p(10|XiXj ) stands for the expectation
value of the observable XiXj and again the total number
of γi = −1 is odd. A noncontextual or Bell inequality is
said to be equivalent to another one, if it can be obtained
from it by local reversible operations and/or permutation of
observables. Note that p

γ
max maximally violates C

γ
n , achieving

C
γ
n (pγ

max) = n, while not violating any other equivalent
inequality. In the following we will generally refer to Cn

and pmax as the ones with γi = 1 for i = 1, . . . ,n − 1 but
γn = −1.

Similarly, the complete entropic characterization of the
noncontextual and local set of probability distributions has
been found for the n-cycle [12,13] (see also Ref. [24] for
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the n = 5 case). A probability distribution in this scenario is
entropically noncontextual or local if and only if the set of n

equivalent Braunstein-Caves (BC) entropic inequalities,

BCk
n = H (XkXk+1) +

∑
j �= k, k+1

H (Xj )

−
∑
j �=k

H (XjXj+1) � 0, (5)

hold for all k = 1, . . . ,n where H (XiXj ) =∑
xi ,xj

−p(xixj |XiXj ) log2 p(xixj |XiXj ) is the Shannon
entropy of the probability distribution associated with the
measurements Xi and Xj . This set of entropic inequalities
is said to be maximal in the sense that no other entropic
inequality can detect the contextuality and nonlocality
not detectable by it, so that this complete set of tight
entropic inequalities completely characterizes the region
of noncontextual and local probabilistic models in entropy
space.

In order to transform an entropic inequality into an equiv-
alent one, the only symmetry operations that can be applied
are permutations of the observables. It is a basic feature of
Shannon entropy that the entropy of a probability distribution
is invariant under permutations of the sample space. Violations
of BC inequalities witness then a very peculiar kind of contex-
tuality and nonlocality. If a probabilistic distribution violates
the BC inequalities, then so does every other distribution
obtained by permuting the outcome probabilities, provided that
the permutation leads to the same marginal distributions. This
leads to the following phenomenon: From the point of view
of the entropic inequality BCk

n , the maximally contextual and
nonlocal distribution p

γ
max is not different from a classically

correlated distribution,

p
γ ′
C (xixi+1|XiXi+1) =

{
1/2, xi ⊕ xi+1 = δ−1,γ ′

i

0, otherwise
, (6)

where γ ′
i = γi for i �= k but γ ′

k = −γk . Note that p
γ ′
C has an

even total number of γ ′
i = −1 and does not violate any C

γ
n

inequality. Thus, since p
γ
max is entropically equivalent to a

noncontextual and local distribution, it does not violate any
entropic inequality. In this sense, an entropic noncontextual
or Bell inequality is a necessary but not sufficient criterion
to probe the noncontextual and local behavior a distribution.
However, as we show next, entropic inequalities can be turned
into a necessary and sufficient condition, since any contextual
or nonlocal distribution violating C

γ
n also violates the entropic

BC inequalities when properly mixed with a noncontextual
and local distribution.

III. ENTROPIC INEQUALITIES COMPLETELY
CHARACTERIZE THE n-CYCLE SCENARIO

WITH DICHOTOMIC OUTCOMES

First, note that the maximum violation of the BC
inequality for dichotomic observables is given by BCk

n = 1,
since H (Xj ) � H (XjXj+1) and H (XkXk+1) � H (Xk) +
H (Xk+1) � H (Xk+n−1Xk) + H (Xk+1) � H (Xk+n−1Xk) + 1.
The maximal violation of BCk

n = 1 can be achieved by the

probability distribution,

p
γ

Emax = 1
2

(
p

γ
max + p

γ ′
C

)
, (7)

for all γ such that γk = −1, since H (Xj ) = H (XjXj+1) = 1
for all j �= k and H (XkXk+1) = 2. That is, a convex
combination of two nonviolating distributions may violate
an entropic inequality, highlighting the strongly nonlinear
character of it. Note that p

γ ′
C can be achieved with 1 bit of

shared randomness, that is, xi = xi+1 = 0 or xi = xi+1 = 1
with the same probability 1/2 for all i = 1, . . . ,n. Similarly
the convex combination in (7) also requires 1 bit of shared
randomness, outputting p

γ
max or p

γ ′
C , both with probability 1/2.

When augmented with some shared randomness, it is possible
to turn an entropically noncontextual and local distribution
into a contextual and nonlocal one. In a noncontextual or
Bell scenario, shared randomness is always an available and
valid resource. However, for usual noncontextual or Bell
inequalities, the mixing with a local point cannot improve the
violation of the inequality due to its linearity.

As we show next, the mixing with p
γ ′
C is sufficient to

entropically detect any contextual or nonlocal distribution.
First we note that in the CHSH scenario (n = 4 in the
n-cycle), it is known that any probability distribution can
be transformed into an isotropic distribution through a local
depolarization process, keeping the C4 value invariant [25].
The isotropic distribution has the property of being invariant
under the interchange of the inputs or outputs and being locally
unbiased, that is, pI(xixi+1|XiXi+1) = pI(xi+1xi |XiXi+1) and
pI(xi |Xi) = 1/2. For the n-cycle, the isotropic distribution pI

corresponds to a probabilistic mixture,

pI = εpmax + (1 − ε)pw, (8)

with pw(xixi+1|XiXi+1) = 1/4 being pure white noise. The
corresponding Cn value is given by Cn(pI) = nε, that is, pI is
contextual and nonlocal for ε > (n − 2)/n. From the entropic
point of view pI is equivalent to the distribution εpC + (1 −
ε)pw and thus no direct violation of entropic BC inequalities
is possible.

The first step in our proof is to show that any distribution in
the n-cycle scenario can be turned into a isotropic one without
changing the values of Cn, that is, a generalization of the
depolarization protocol devised in Ref. [25] (see also Ref. [26])
for the n = 4 case. Then, for our purposes and to simplify
the presentation it is enough to consider isotropic boxes
only (however as shown in the Appendix this is not strictly
necessary). The depolarization procedure is done in two steps:

(i) p(xixj |XiXj ) is made locally unbiased by flipping both
outputs simultaneously with probability 1/2, that is, xi →
xi ⊕ 1 and xj → xj ⊕ 1.

(ii) p(xixj |XiXj ) → (1/n)
∑

k=0,...,n−1 p(x̄k
i x̄

k
j |Xi+k

Xj+k), where x̄k
i means flipping the output if

i ∈ {1, . . . ,n − k}. After the second step the initial distribution
is in the isotropic form, however, maintaining the value of Cn

unchanged.
Computing the BC value for the isotropic distribution mixed

with the classically correlated box, that is, vpI + (1 − v)pC,
expanding around v = 0 we find that

BCn = v

ln 4
{f (n,ε) − [2 − n(1 − ε)] ln v}, (9)
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with f (n,ε) = 2 − n(1 − ε)(1 + ln 2) + (n + ε − nε) ln(1 −
ε) − ε ln (1 + ε) + ln [4/(1 − ε2)]. For any 2 − n(1 − ε) > 0
taking a sufficiently small v ensures BC to be positive since
f (n,ε) does not depend on v. That is, for any nonlocal
isotropic distribution ε > (n − 2)/n the BC inequality can
be violated. This is the same bound obtained by the direct
calculation of Cn(pI). Given that any distribution can be
turned into the isotropic box without changing its Cn value,
this means that any contextual and nonlocal distribution in
the n-cycle scenario also violates the entropic BCn inequality
when properly mixed with a classically correlated and
noncontextual and local distribution.

We note that we have analyzed the specific case of a distri-
bution violating a specific equivalence of C

γ
n where all γi = 1

but γn = −1. However, the generalization for distributions
violating other equivalences of C

γ
n is straightforward. Since

there is a one-to-one correspondence between the vertices of
the nondisturbing and nonsignaling set and each of the facets
of the noncontextual and local set, if a distribution violates
C

γ
n , it can be brought to the isotropic form p

γ

I = p
γ
max + pw

again without changing the value of C
γ
n . Mixing p

γ

I with the

corresponding classical correlation p
γ ′
C will lead to violations

of BCk
n and therefore to the same conclusions as before. It is

important to note that the characterization of the noncontextual
and local set is achieved with n entropic inequalities, as
opposed to the 2n−1 linear inequalities (4), however, at the
cost of introducing a list of classical points p

γ ′
C .

IV. CONCLUSION

In principle, entropic inequalities only provide a necessary
but not sufficient criterion for noncontextuality and local
realism. However, we have shown that for the n-cycle with
dichotomic outcomes, entropic inequalities turn also to be
sufficient, since any contextual and nonlocal probabilistic
model will display entropic violations if properly mixed with
a classical model. It is quite surprising that a polynomial
number of nonlinear and nontight inequalities may completely
characterize the set of noncontextual and local correlations,
that otherwise would require an exponential number of linear
and tight inequalities to do so.

One obvious question is how this result would extend for
more complex scenarios, involving more than two outcomes
and possibly more parties as in a multipartite Bell test. Even
in the bipartite case, n = 4 for the n-cycle, the complete
characterization of the local correlations is not known for a
number of outcomes larger than three [9,10]. Could it be that
the BC entropic inequality augmented with shared randomness
fully characterizes the n-cycle for a general number of
outputs? Another interesting question is to understand the
role of entropic inequalities in the bilocality scenario, where
independence constraints define a nonconvex set, difficult to
characterize in the probability space [15].

Finally, violations of linear Bell inequalities can be
understood as a resource, for instance, allowing for higher
probability of success in some information tasks [5]. Is there
any operational interpretation for the violation of an entropic
inequality in terms of a relevant physical task? If that turns
out to be the case, an interesting scenario would arise, where

nonlocal but entropically classical correlations could be
turned into a useful resource, being activated by the use of
shared randomness.
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APPENDIX: VIOLATION OF THE ENTROPIC
INEQUALITIES WITHOUT THE

DEPOLARIZATION PROCEDURE

We show here that given a general nonlocal probability
distribution in the CHSH scenario, the mixing with the clas-
sical correlation is sufficient to violate the entropic inequality,
without the need of the depolarization procedure.

The local set consists of 16 extremal points p
α,β,γ,δ

det
parametrized as [27]

pdet(ab|xy) =

⎧⎪⎨
⎪⎩

1, a = αx ⊕ β,

b = γy ⊕ δ

0, otherwise

, (A1)

and all the eight nonlocal extremal points p
α,β,γ

PR of the
nonsignaling set can be parametrized as [27]

pPR(ab|xy) =
{

1/2, a ⊕ b = xy + αx + βy + γ

0, otherwise
, (A2)

here α, β, γ,δ ∈ {0,1}. To simplify the description we have
employed the common notation to the CHSH scenario, that
is, X1 and X3 corresponding to x = 0 and x = 1 and X2 and
X4 corresponding to y = 0 and y = 1, while a and b label the
corresponding outcomes. For a general distribution written as
a convex combination of all extreme points,

p (ab|xy) =
∑
α,β,γ

�
α,β,γ

PR p
α,β,γ

PR +
∑

α,β,γ,δ

�
α,β,γ,δ

det p
α,β,γ,δ

det , (A3)

the condition for the violation of the CHSH inequality is
that C4 = ∑

α,β,γ,δ(−1)(1−α)(β+δ)+α(β+γ+δ)�
α,β,γ,δ

det + 2�
0,0,0
PR −

2�
0,0,1
PR > 1. Mixing the p (ab|xy) with the classical correlated

box as before and expanding around v = 0, one finds that
BC4 = (v/ ln 4) [g + 2 ln v(1 − C4)], that violates the entropic
inequality for C4 > 1 [g is a function of p (ab|xy) but
independent of v].

The same argument can be applied to the general n-cycle,
and we have tested up to n = 7 that the same result holds.
For larger n, the procedure becomes unfeasible given that the
number of extremal points increases exponentially, but we
conjecture that the same result should hold for any n.
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