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We consider a quantum-mechanical analysis of spontaneous emission in terms of an effective two-level system
with a vacuum decay rate �0 and transition angular frequency ωA. Our analysis is in principle exact, even
though presented as a numerical solution of the time evolution including memory effects. The results so obtained
are confronted with previous discussions in the literature. In terms of the dimensionless lifetime τ = t�0 of
spontaneous emission, we obtain deviations from exponential decay of the form O(1/τ ) for the decay amplitude
as well as the previously obtained asymptotic behaviors of the form O(1/τ 2) or O(1/τ ln2 τ ) for τ � 1. The
actual asymptotic behavior depends on the adopted regularization procedure as well as on the physical parameters
at hand. We show that for any reasonable range of τ and for a sufficiently large value of the required angular
frequency cutoff ωc of the electromagnetic fluctuations, i.e., ωc � ωA, one obtains either a O(1/τ ) or a O(1/τ 2)
dependence. In the presence of physical boundaries, which can change the decay rate with many orders of
magnitude, the conclusions remains the same after a suitable rescaling of parameters.
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I. INTRODUCTION

The development concerning the manipulation of single
atoms and their interaction with the electromagnetic field
has reached an impressive state of art in recent years (see,
e.g., Refs. [1–4]). Experimental studies have, e.g., shown that
artificial atoms can lead to a Lamb shift of the order of a
few percent of the typical emission line [5]. Rather old issues
concerning the necessary deviations from exponential decay
(see, e.g., Refs. [6–22]) may therefore be confronted with
our current theoretical and experimental understanding of de-
caying quantum systems. Concerning experimental studies of
deviations from the conventional exponential decay we notice
in particular the study of decaying τ leptons [23], the observed
deviations in quantum-mechanical tunneling processes [24],
and the power-law behavior of the decay at times scales larger
than twenty lifetimes in dissolved organic materials [25]. In
nuclear physics the decay of thorium has also been suggested
as a potential target for large-time deviations [26].

In the context of elementary-particle physics gauge-
invariant definitions of observable quantities are of central
importance and the definition of the decay width of an
unstable particle is highly nontrivial (see, e.g., [27]) in this
respect. In studies of a possible proton decay in nature the
time dependence of decaying systems may also play an
important role [28]. Recently, it has also been speculated that a
nonexponential decay of slowly decaying 14C nuclei may be of
practical importance in radioisotope calibration methods [29].

In the presence of material bodies with nontrivial dispersive
properties, it has been observed that the decay time of atoms
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can be changed by many orders of magnitude (see, e.g.,
Refs. [30–34]), which also has been observed in the laboratory
[35–40] in the context of atomic chips. A natural question to
be considered could then be to what extent deviations from
an exponential decay can be observed. This issue has been
addressed in great detail in the literature in terms of a model
of a two-level system interacting with a continuous number
of degrees of freedom of the electromagnetic field [41–45].
Such a model appears to be of relevance in the analysis
of the stability properties of atomic chips when applied to
hyperfine transitions and, in addition, taking dissipative effects
into account [30–34]. A related and exactly solvable model
of a two-level system, which also leads to deviations from
exponential decay, has been discussed in the context of a model
of qubit dephasing (see, e.g., [46–48]).

Here we will investigate possible deviations from exponen-
tial decay for, in particular, small and large τ , following the
work of Refs. [41,43,44]. The role of the physical parameters
at hand will be made explicit and transparent. Analytical as
well as numerical methods will be employed and will be
shown to lead to a consistent picture of the small- and large-
time deviations from a constant decay rate. The analytical
properties of the Laplace-transformed decay amplitude plays
an essential role in the analysis. It is, of course, well known
that, under various assumptions, one obtains in general a decay
probability which is larger than the conventional exponential
decay at sufficiently small decay times τ (for a review see,
e.g., [16]) as well as a typical power-law behavior in 1/τ

for sufficiently large decay times τ (see, e.g., Refs. [15,49]).
In exactly solvable models one finds, e.g., a 1/τ 2 (see,
e.g., Refs. [14,18]) or a 1/τ 3/2 (see, e.g., Refs. [7,19,21])
asymptotic behavior in the decay amplitude of an unstable
system. In the model we consider, we obtain O(1/τ ) for the
decay amplitude as well as the previously obtained asymptotic
behaviors of the form O(1/τ 2) or O(1/τ ln2 τ ) for τ � 1
[41,43,44].
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The paper is organized as follows. In the next section we
outline the theoretical framework and explicitly verify unitarity
of the two-level system. A regularized version of the integral
equation for the decay amplitude is derived in Sec. III A and
exact short-time and long-time expansions are obtained in
Sec. III B. Laplace techniques are employed in Secs. III C and
III D in order to compare with previous asymptotic expansion
results as given in the literature and the important role of the
regularization procedure made use of is emphasized. Final
remarks are given in Sec. IV and various technical details
of some of the calculations are, for the readers convenience,
summarized in Appendixes A, B, and C.

II. GENERAL THEORY

Let us consider a neutral atom at a fixed position rA. In
order to be specific, we will explicitly consider hyper-fine
interactions but the results obtained can easily be rephrased
in terms of electric-dipole interactions. The magnetic moment
of the atom interacts with the quantized magnetic field via
a conventional Zeeman coupling. The total, unrenormalized,
Hamiltonian has then the standard form

H =
∑

α

h̄ωα|α〉〈α| +
∫

d3r

∫ ∞

0
dω h̄ω f̂†(r,ω) · f̂(r,ω)

+H ′, (1)

where the effective interaction part is

H ′ = −
∑

α

∑
β

|α〉〈β|μαβ · B(rA). (2)

The Hamiltonian H can be regarded as a low-energy effective
description of a more fundamental and renormalizable theory
of electromagnetic processes, i.e., quantum electrodynamics.
Here f̂(r,ω) is an annihilation operator for the quantized
magnetic field, |α〉 denotes the atomic state, and Eα is the
corresponding energy. We assume nondegenerate states, i.e.,
Eα �= Eβ for α �= β. The magnetic moment of the atom is
μαβ = 〈α|μ̂|β〉, where μ̂ is the magnetic-moment operator.
The magnetic moment will typically be of the form μαβ =
gS〈α|S/h̄|β〉eh̄/2me, where S/h̄ denotes a dimensionless
spin operator and gS is an appropriate gyromagnetic factor.
The quantized magnetic field B(r) = B(+)(r) + B(−)(r) is
expressed in terms of B(+)(r) = ∇ × A(+)(r), where B(−)(r) =
[B(+)(r)]†, and where the vector potential is given by

A(+)(r) = μ0

∫ ∞

0
dω′

∫
d3r ′ ω′

√
h̄ε0

π
εI (r′,ω′)

× G(r,r′,ω′) · f̂(r′,ω′). (3)

Here the imaginary part of the complex permittivity is εI (r,ω)
and obeys the Kramer-Kronig dispersion relations. The dyadic
Green tensor G(r,r ′,ω) is the unique solution to the Helmholtz
equation

−→∇ × −→∇ × G(r,r′,ω) − ω2

c2
ε(r,ω)G(r,r′,ω)

= δ(r − r′)1, (4)

where the arrow in
−→∇ denotes a derivation with respect

to the first argument in the dyadic Greens function. Since

the Helmholtz equation is a linear differential equation, the
associated Green’s tensor can be written as a sum according to

G(r,r′,ω) = G0(r,r′,ω) + GS(r,r′,ω), (5)

where G0(r,r′,ω) represents the contribution of the direct
waves from a pointlike radiation source in an unbounded
medium, which is vacuum in our case, and GS(r,r′,ω)
describes the scattering contribution of multiple reflection
waves from the body under consideration. The presence of
the vacuum part G0(r,r′,ω) in Eq. (5) will in general give
rise to divergences. A regularization prescription is therefore
required. For electric-dipole transitions it is well known that
it is sufficient to subtract an energy shift, corresponding to the
introduction of a renormalized mass, which leaves us with a
logarithmic dependence of a cutoff frequency. For magnetic
transitions this subtraction procedure is, however, not sufficient
as we will discuss in more detail below. Our strategy is to allow
for a sufficient number of subtractions to generate a logarithmic
cutoff dependence also for magnetic transitions.

For reason of simplicity, we now limit our attention to a
two-level atom approximation, i.e., an atom with an excited
state and a ground state with the angular frequency transition
ωA ≡ (Ee − Eg)/h̄ > 0.

We consider the Hamiltonian in Eq. (1) and apply the well-
known Weisskopf-Wigner theory for the transitions e → g.
The solution to the time-dependent Schrödinger equation in
the rotating-wave approximation (RWA), i.e., applying H ′ ≈
HRWA, where

HRWA = −|e〉〈g|μeg · B(+)(rA) + H.c., (6)

is then (ωg ≡ Eg/h̄ and ωe ≡ Ee/h̄)

|ψ(t)〉 = ce(t)e−iωet |e〉 ⊗ |0〉 +
∫

d3r

∫ ∞

0
dω

3∑
m=1

× cg(r,ω,m|t)e−i(ω+ωg)t |g〉 ⊗ |r,ω,m〉, (7)

as we have ignored any higher-order photon state than the
zero-photon and one-photon state.

Here |e〉 and |g〉 are the excited state and ground state for
the atom, respectively. Furthermore, |0〉 denotes the vacuum
of the electromagnetic field and |r,ω,m〉 = f̂

†
m(r,ω) |0〉 is

a one-photon state. We will restrict ourselves to the initial
conditions ce(0) = 1 and cg(r,ω,m|t = 0) = 0. More general
initial conditions will require a more cumbersome analysis
and will not be discussed in the present paper. The probability
amplitudes ce(t) and cg(r,ω,m|t) must now obey the unitarity
condition

|ce(t)|2 +
∫

d3r

∫ ∞

0
dω

3∑
m=1

|cg(r,ω,m|t)|2 = 1. (8)

The probability amplitude for the excited atomic state ce(t)
is then determined by (see, e.g., Refs. [50,51])

dce(t)

dt
=

∫ t

0
dt ′K(t − t ′)ce(t ′), (9)

where the unregularized kernel K(t) is

K(t) = − 1

2π

∫ ∞

0
dω e−i(ω−ωA)t�(rA,ω). (10)
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Here we have made use of the conventional spin-flip decay
rate for spontaneous emission as given by

�(r,ω) = 2μ0

h̄
μeg · Im[

−→∇ × G(r,r,ω) × ←−∇ ] · μge, (11)

where the arrow in
←−∇ now denotes a derivation with respect

to the second argument in the dyadic Greens function. Below
we will also make use of the expression

cg(r,ω,m|t) = i

c
ω

√
μ0εI (r,ω)

πh̄
{μ∗

ge · [
−→∇ × G∗(rA,r,ω)]}m

× I (ω − ωA,t), (12)

where we have defined the integral

I (ω,t) =
∫ t

0
dt ′eiωt ′ce(t ′). (13)

The useful identity

3∑
m=1

∫
d3r

ω2

c2
εI (r,ω)Gjm(r′,r,ω)Glm(r′′,r,ω)

= ImGjl(r′,r′′,ω), (14)

and Eq. (12) now lead to

∫
d3r

∫ ∞

0
dω

3∑
m=1

|cg(r,ω,m|t)|2

= 1

2π

∫ ∞

0
dω �(rA,ω)|I (ω − ωA,t)|2. (15)

It now follows from Eqs. (9) and (15) that

d

dt

(
|ce(t)|2 +

∫
d3r

∫ ∞

0
dω

3∑
m=1

|cg(r,ω,m|t)|2
)

= 0,

(16)

i.e., the unitarity condition Eq. (8) is fulfilled for all times
as it should be. We notice, what may appear to be a trivial
fact, that general time-dependent phase redefinitions of the
amplitudes will not change the unitary condition Eq. (8). This
circumstance will, nevertheless, be useful below in order to
circumvent divergent vacuum fluctuations of the theory.

Equation (9), a well-known Volterra integral equation of
the second kind, may be integrated with respect to time. The
result is then

ce(t) = 1 +
∫ t

0
dt ′ κ(t − t ′)ce(t ′), (17)

where

κ(t) ≡
∫ t

0
dt ′ K(t ′) (18)

is the time-integrated kernel, i.e.,

κ(t) = 1

2π

∫ ∞

0
dω

e−i(ω−ωA)t − 1

i(ω − ωA)
�(rA,ω). (19)

In passing, we mention that a rate similar to Eq. (11) may be
derived for electric-dipole transitions (see, e.g., Refs. [50–53]).

In that case, the spontaneous decay rate �(r,ω) should be
replaced by

�E(r,ω) = 2ω2
A

h̄ε0c2
deg · Im[G(r,r,ω)] · dge, (20)

where deg is the electric-dipole moment for the transition
e → g. By comparing Eqs. (11) and (20) it is now straightfor-
ward to translate between magnetic-dipole and electric-dipole
transitions which will be made use of below. When referring to
electric-dipole transitions we therefore assume that one makes
use of the appropriate decay rate, i.e., Eq. (20).

III. Vacuum

A. Exact

The dyadic Green tensor for vacuum, G0(r,r,ω), is given
by a well-known expression (see, e.g., Refs. [50,51])

Im[
−→∇ × G0(r,r,ω) × ←−∇ ] = ω3

6πc3

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , (21)

independent of the position r as it should be due to the
translational invariance of the vacuum quantum state.

In this case the kernel in Eq. (19) reduces to the vacuum
kernel κn(t) and reads

κn(t) = �0

2π

∫ ωc

0
dω

(
ω

ωA

)n
e−i(ω−ωA)t − 1

i(ω − ωA)
, (22)

with n = 3, and where we have introduced a cutoff frequency
ωc in order to make the integral finite. The decay rate of
a magnetic spin-flip transition for a two-level atom with no
angular momentum and a negligible nuclear moment in free
space is then (see, e.g., Ref. [31])

�0 = �̄0S
2, (23)

with

�̄0 = μ0
(μBgS)2

3πh̄
k3
A, (24)

and kA ≡ ωA/c is the wave number in vacuum. Here we have
introduced the dimensionless spin factor S2 ≡ S2

x + S2
y + S2

z ,

where Sj ≡ 〈g|Ŝj /h̄|e〉 is the dimensionless matrix element
component of the electron-spin operators Ŝj corresponding to
the transition |e〉 → |g〉, with j = x,y,z. Furthermore, μB =
eh̄/2me is the conventional Bohr magneton and gS ≈ 2 is the
electron-spin gS factor.

Clearly, the time-dependent kernel in Eq. (22) is divergent
as ωc → ∞ and it is not entirely clear to us how to make
sense of this kernel for all times t . Since, as we have
mentioned above, magnetic-dipole transitions are analogues
to electric-dipole transitions, we therefore appeal to Bethe’s
mass-renormalization [54] procedure as far as dealing with
divergences are concerned. At large t we recall that one then,
e.g., can make use of the distributional identity

lim
t→∞

e−i(ω−ωA)t − 1

ω − ωA

= P

(
1

ωA − ω

)
− iπδ(ω − ωA),

(25)
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where one from the principal part P (1/(ωA − ω)) then adds
a term P (1/ω) which, when summed over all possible final
states, corresponds to Bethe’s introduction of a renormalized
mass. In the electric-dipole case, the finite-time kernel κn(t)
will then be regularized in such a manner that, for large t ,
energy shifts are reduced to at most a logarithmic dependence
of the cutoff frequency ωc. As we will see below in Sec. III D
this regularization can be carried out in terms of frequency
shift and a conventional mass renormalization for all times
with a mass counterterm.

In the present case of magnetic transitions, which corre-
sponds to an interaction which is not directly renormalizable
in the same fashion as for electric-dipole transitions (see,
e.g., Ref. [55]) we, nevertheless, proceed in a manner which
treats these different transitions in an equal manner as far as
divergences are concerned. We therefore subtract the second-
order expansion of the denominator in Eq. (19) for ω � ωA in
such a way that at most a logarithmic dependence of the cutoff
frequency ωc remains, i.e.,

1

ω − ωA

→ 1

ω − ωA

−
(

1

ω
+ ωA

ω2
+ ω2

A

ω3

)
, (26)

which leaves us with the following regularized version of the
kernel Eq. (22):

κR
0 (t) = �0

2π

∫ ωc

0
dω

e−i(ω−ωA)t − 1

i(ω − ωA)
. (27)

The kernel κR
0 (t) is therefore obtained from κ0(t) in

Eq. (22) using the rule �(r,ω) → �(r,ωA). With regard to
the amplitude cg(r,ω,m|t) we observe that unitarity prevails
if we in Eq. (15) also make use of the same prescription.
The fact that unitarity is preserved is our primary moti-
vation for the introduction of the regularization procedure
above. Below we will, however, investigate the effect of
keeping a dependence ω/ωA instead of (ω/ωA)3 in the kernel
Eq. (22). This would be in line with the standard electric-dipole
transition considerations as used in, e.g., Refs. [41–45]. As we
will verify below, the choice of regularization procedure will
affect the large-time behavior of the decaying system.

In Eq. (27) we make use of a cutoff frequency ωc in order
to make the frequency integral finite. Since our calculation is
nonrelativistic we can, e.g., identify this cutoff with mec

2/h̄,
but one may also regard this as a free parameter when one,
e.g., considers artificial atoms (Ref. [5] and references cited
therein). We therefore introduce a dimensionless parameter
cutoff parameter 
 as defined by


 ≡ ωc

ωA

. (28)

The subtraction procedure of κ0(t) above enables us to extract
the leading logarithmic dependence of the cutoff parameter 
,
and, in the end, we have therefore replaced the vacuum kernel
κ0(t) with the following regularized kernel κR

0 (t):

κR
0 (t) = − �0

2π

∫ (
−1)ωA

−ωA

dx
sin(xt)

x

− i
�0

2π

∫ (
−1)ωA

ωA

dx
cos(xt)

x
+ i

�0

2π
ln(
 − 1). (29)

The imaginary logarithmic term in this equation corre-
sponds to an induced Lamb shift due to vacuum fluctuations
since it can be removed by introducing an angular frequency
shift, i.e.,

ω̃A ≡ ωA − �0

2π
ln(
 − 1), (30)

and applying the transformation

ce(t) → c̃e(t) ≡ ce(t) exp

(
− i

�0t

2π
ln(
 − 1)

)
, (31)

as can be seen by making use of Eq. (9). We also find it
convenient to define the kernel

κ̃R
0 (t) = − �0

2π

{
Si[(
̃ − 1)ω̃At] + Si[ω̃At]

}

− i
�0

2π

{
Ci[(
̃ − 1)ω̃At] − Ci[ω̃At]

}
, (32)

where Ci(x) and Si(x) are the standard cosine and sine integral,
respectively (see, e.g., Ref. [56]) and 
̃ ≡ 
ωA/ω̃A � 
 in
view of the fact that 
 is considered to be a large cutoff
parameter. The probability amplitude c̃e(t) is now a solution
to the integral equation Eq. (17) provided the kernel κR

0 (t) is
replaced by κ̃R

0 (t), i.e., we consider

c̃e(t) = 1 +
∫ t

0
dt ′κ̃R

0 (t − t ′)c̃e(t ′). (33)

The solutions of the corresponding integral equation cannot
be obtained in closed form and therefore we will resort to
a numerical treatment. The numerical results as presented in
the present paper involve algorithms with arbitrary numerical
precision.

B. Approximations

It is convenient to define a dimensionless time parameter
τ ≡ �0t as well as the parameters bA ≡ ωA/�0 and b̃A ≡
ω̃A/�0, i.e.,

b̃A = bA − ln(
 − 1)

2π
. (34)

Let us now consider small-time scales such that (
̃ − 1)b̃Aτ �
1 and b̃Aτ � 1. Such small times are basically of academic
interest as t � h̄/mec

2 = 1.29 × 10−21 s unless, as suggested
above, a different scale can be provided by the use of, e.g.,
artificial atoms. Virtual particles may then be created and our
theory is not strictly valid. The leading series expansion of
the kernel κ̃R

0 (t), as given by Eq. (32), for such small-time
parameters τ is

κ̃R
0 (τ ) ≈ − �0

2π

b̃Aτ − i

�0

2π
ln(
 − 1), (35)

using 
̃ ≈ 
. Apart from a sign, the imaginary part of this
kernel is the same as the last imaginary part of Eq. (29). It is
therefore convenient to invert the transformation Eq. (31) and
consider the probability amplitude ce(τ ).

Substituting the kernel κR
0 (τ ) into Eq. (17), we obtain

ce(τ ) ≈ 1 − 


4πbA

(bAτ )2, (36)
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using the approximation ce(t ′) ≈ 1 in Eq. (17) since time
parameter τ is small. We observe that in Eq. (36) the parameter
bA enters and not b̃A. In passing, we also mention that an expan-
sion for small times is also given in Ref. [43] [their Eq. (3.21)]
in the case of electric-dipole transitions, with the result

ce(τ ) ≈ 1 − 
2

8π
(bAτ )2. (37)

The difference between Eqs. (36) and (37), in which case, as
mentioned above, the factor (ω/ωA)3 in Eq. (22) is replaced by
ω/ωA, illustrates the relevance of the subtraction procedure.
Below we will see that this effect is even more pronounced
at large vales of τ . The discrepancy between these last two
expressions is easily explained by the fact that different
regularization procedures have been applied.

Let us still consider small times b̃Aτ � 1 but such that
(
̃ − 1)b̃Aτ � 1. Such time scales are of relevance when
one, e.g., studies the Zeno effect for quantum systems (see,
e.g., Refs. [22,57]). For such intermediate times, the kernel in
Eq. (32) is reduced to

κ̃R
0 (τ ) ≈ −�0

4
+ i

�0

2π
[γE + ln(b̃Aτ )], (38)

where γE ≈ 0.577 216 is Euler’s constant. Substituting
Eq. (38) into Eq. (33), expressed in terms of c̃e(τ ) and using
c̃e(τ ′) ≈ 1, we may then carry out the time integration, with
the result

c̃e(τ ) ≈ 1 − τ

4
+ i

τ

2π
[γE + ln(b̃Aτ ) − 1]. (39)

The corresponding probability |c̃e(τ )|2 = |ce(τ )|2 is illustrated
in Figs. 1 and 2 (dash-dotted line) together with the exact
numerical solution, i.e., the numerical solution of Eq. (33)
with the exact kernel Eq. (32) (solid line).

τ

1

0.8

0.6

0.4

0.2

0
0 0.4 0.8 1.2 1.6 2

FIG. 1. Probability |ce(τ )|2 = |c̃e(τ )|2 as a function of τ ≡ �0t .
The solid curve corresponds to the exact numerical solution, i.e.,
solution of Eq. (33) with the kernel κ̃R

0 (t) as given by Eq. (32) in
the main text for a two-level system in vacuum. The upper (dash-
dotted) curve corresponds to the small-time, b̃Aτ � 1, expansion
Eq. (39). The lower (dotted) curve corresponds to the exponential
decay exp(−τ ) with expected deviations at small τ . The values of the
relevant parameters are b̃A ≡ ω̃A/�0 = 10 and 
 = 1000.

τ

1

0.98

0.96

0.94

0.92

0.90
0 0.02 0.04 0.06 0.08 0.1

FIG. 2. Probability |ce(τ )|2 = |c̃e(τ )|2 as a function of τ ≡ �0t

as in Fig. 1, but for a smaller τ interval.

Finally, for large times as compared to the shifted atomic
frequency transition, i.e., b̃Aτ � 1, and also (
̃ − 1)b̃Aτ � 1,
the kernel Eq. (32) is, to first leading order,

κ̃R
0 (τ ) ≈ −�0

2
+ �0

2π

eib̃Aτ

b̃Aτ
. (40)

One may then show that (see next section and Appendix B)

c̃e(τ ) ≈ e−τ/2 + eib̃Aτ

2πiτ [b̃A − ln(b̃Aτ )/2π ]2
, (41)

provided b̃A is sufficiently large, and where we have made use
of 
̃ ≈ 
. This solution includes the well-known exponential
decay as well as a correction term which dominates |c̃e(τ )|2

τ

1
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10−8

10−10

10−12

0 10 20 30 40
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10−12

14 16 18 20

FIG. 3. Probability |ce(τ )|2 = |c̃e(τ )|2 as a function of τ ≡ �0t .
The solid curve corresponds to the exact numerical solution, i.e.,
solution of Eq. (33) with the kernel κ̃R

0 (t) as in Eq. (32) for a two-level
system in vacuum. The almost overlapping dotted curve corresponds
to Eq. (41). The values of the relevant parameters are b̃A ≡ ω̃A/�0 =
10 and 
 = 1000. The inset shows a limited part of the larger figure
and illustrates the accuracy of the asymptotic form Eq. (41).
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for large values of τ . Eq. (41) is plotted in Fig. 3 (dotted line)
together with the exact numerical solution (solid line).

The last term in Eq. (41) will dominate over the exponential
for times τ � τ ∗, where τ ∗ is determined by the transcendental
equation

e−τ ∗/2 ≈ 1

2πτ ∗[b̃A − ln(b̃Aτ ∗)/2π ]2
, (42)

valid for a sufficiently large value of b̃A. For b̃A = 10 and

 = 1000 as in Fig. 3, the solution of this equation is, e.g.,
τ ∗ ≈ 18.5. The τ ln2(b̃Aτ ) dependence in Eqs. (41) and (42)
becomes more important than the τ dependence only for
very large-time scales τ � τln, where τln = exp(2πb̃A)/b̃A, in
which case |c̃e(τ )|2 becomes exponentially close to zero with
an increasing value of b̃A.

C. Asymptotic expansion

Laplace transform techniques have been used to inves-
tigate possible deviations from exponential decay as in
Refs. [41,43,44]. As shown in particular by Seke and Herfort
[43,44], careful considerations of the analytical properties
of the decay amplitude are required in order to extract the
asymptotic behavior of ce(t). The result of Refs. [41,43,44]
may seem to be partly contradictory. It is therefore of some
interest to investigate in detail in what manner the asymptotic
behavior according to Eq. (41) is obtained by making use
of Laplace transform techniques. As we will see, it then
becomes apparent that the various asymptotic forms of the
decay amplitude are all valid but depend on the time scale and
other physical parameters at hand.

In order to obtain the corresponding asymptotic expansion,
as τ becomes large, we therefore find it convenient to consider
the Laplace transform of the differential equation for the
rescaled amplitude c̃e(t) as defined in Eq. (31), i.e.,

dc̃e(t)

dt
=

∫ t

0
dt ′K̃R

0 (t − t ′)c̃e(t ′) − i
�0

2π
ln(
 − 1)c̃e(t),

(43)

where the regularized kernel KR
n (t) is

K̃R
n (t) = − �0

2π

∫ ωc

0
dω

(
ω

ωA

)n

e−i(ω−ω̃A)t , (44)

with, for the moment, n = 0. The Laplace transform c̃e(s) is
then given by

c̃e(s) = 1

s − K̃R
0 (s) + i�0 ln(
 − 1)/2π

, (45)

where we have identified

K̃R
0 (s) = i

�0

2π

∫ ωc

0
dω

1

ω − ω̃A − is

= i
�0

2π

[
ln

(
1 − ωc

is + ω̃A

) ]
, (46)

in terms of the principal branch of the natural logarithm
ln function. The inverse Laplace transform in terms of the
Bromwich integral and the dimensionless time parameter τ

can then formally, after a suitable Wick (u = b̃A + is/�0)

rotation, be written in the form

c̃e(τ ) = eib̃Aτ

2πi

∫ −∞+iγ

∞+iγ

du e−iuτ

×
[
u − bA + 1

2π
ln

(
1 − 
c

u

)]−1

, (47)

where we have defined


c ≡ ωc

�0
, (48)

and where the positive real number γ is chosen in such a way
that the possible singularities of the integrand are above the
integration contour.

We now follow the methods of, in particular, Refs. [43,44],
where more details can be found, and use Eq. (47) in order
to extract the large τ , i.e., u → 0, asymptotic expansion for
c̃e(τ ). As in Refs. [43,44], we identify the functions

M0(u) ≡ u − bA + 1

2π
[log(u − 
c) − log(u)] (49)

and

M1(u) ≡ M0(u) + i, (50)

where the log function now, and in the rest of the paper, stands
for the multivalued natural logarithm function. The appropriate
Riemann surface for the function log(u − 
c) − log(u) has
been obtained in Ref. [43]. Here one joins a second Riemann
sheet at the branch cut along the real u axis from u = 0 to
u = 
c.

The integration contour in Eq. (47) can then be deformed
into two curves of integration that run parallel to the Im(u)
axis. One of these curves runs from −i∞ + 
c + ε, above and
around the branch point u = 
c on the first Riemann sheet, and
then towards −i∞ + 
c − ε on the second Riemann sheet,
where ε is a small and positive real number. Similarly, the
other curve of integration runs from −i∞ + ε on the second
Riemann sheet, above and around the branch point u = 0 on
the first Riemann sheet, and then towards −i∞ − ε on the first
Riemann sheet.

The function M1(u) is obtained from M0(u) when passing
to the second sheet of the Riemann surface construction. It can
be shown that each of the functions M0(u) and M1(u) have no
poles and only one zero on each of the Riemann sheets con-
sidered [43,44]. On the first Riemann sheet, where the original
functions in Eq. (47) are defined, there is, in addition, a zero
of M0(u) along the real axis at u0 ≈ 
c(1 + exp[−2π
c]).
The corresponding residue is exponentially suppressed, i.e.,
Z0 ≡ 1/(dM0(u)/du)u=u0 ≈ 2π
c exp(−2π
c), apart from
a phase factor, and the corresponding pole contribution has
therefore been neglected.

In the deformation of the integration contour in Eq. (47),
and on the second Riemann sheet, one now encounters
the conventional Wigner-Weisskopf–like pole contribution
at u = u1 ≈ b̃A − i/2, provided b̃A � 1 due to Eq. (50).
Since dM1(u)/du = 1 + 
c/2πu(u − 
c) ≈ 1 − 1/b̃A ≈ 1
for u = u1 provided b̃A � 1, this pole leads to a residue
Z1 ≡ 1/(dM1(u)/du)u=u1 ≈ 1. This Wigner-Weisskopf–like
pole contribution therefore contributes to the amplitude c̃e(τ )
with exp(−τ/2), i.e., the expected and conventional amplitude
describing exponential decay. Including the two integrals
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emerging from the branch points mentioned above we then,
finally, obtain that the result

c̃e(τ ) = e−τ/2 − eib̃Aτ

2πτ
I1 − eib̃A(1−
̃)τ

2πτ
I2, (51)

where we have defined the integrals

I1 =
∫ ∞

0
ds e−s

[
1

M0(−is/τ )
− 1

M1(−is/τ )

]
(52)

and

I2 =
∫ ∞

0
ds e−s

[
1

M1(
c − is/τ )
− 1

M0(
c − is/τ )

]
,

(53)

similar to the results of Refs. [43,44]. In Appendix B we now
show that, as τ � 1,

I1 ≈ i

[b̃A − ln(b̃Aτ )/2π ]2
, (54)

provided |bA − ln(
cτ )/2π | ≈ |b̃A − ln(b̃Aτ )/2π | � 1. In
the same manner it also follows that

I2 ≈ i

[
c − bA − ln(
cτ )/2π ]2
, (55)

provided |
c − bA − ln(
cτ )/2π | � 1. As long as 
c � bA

it is now clear that I1 will dominate over I2. Due to Eq. (54)
we now recover the result as given in Eq. (41). It now also
follows that I1 ≈ 1/b̃2

A unless τ is exponentially large, i.e.,
τ � e2πb̃A/b̃A, in which case the decay amplitude c̃e(τ ) is
exponentially small.

When compared to the analysis of Refs. [43,44] we remark
that our approach to the asymptotic behavior of integrals like
Eqs. (52) and (B1) has a much broader range of applicability.
In particular, we notice that, as long as τ � e2πb̃A/b̃A),
the I1 integral leads to a O(1/τ ) behavior of the decay
amplitude c̃e(τ ). It is only in the opposite limit that the
proposed O(1/τ ln2 τ ) of Refs. [43,44] emerges, i.e., for
τ � e2πb̃A/b̃A. In this case the decay amplitude, however,
becomes exponentially small for b̃A sufficiently large. We also
find it important to express the asymptotic behavior in terms
of dimensionless quantities like τ and not in terms of the time
variable t with a physical dimension as in Refs. [43,44].

D. Comparison with Refs. [41,43,44]

As alluded to above, in many cases of the study of
deviations from the exponential decay of atomic spontaneous
emission processes, various approximations have been applied
in order to obtain explicit and analytical expressions as, e.g., in
Refs. [41,43,44] and references cited therein. In these ref-
erences one considers electric-dipole transitions and, in the
integral equation Eq. (17) for the vacuum case, the kernel
κ(τ ) should therefore be replaced by kernel κR

1 (τ ) ≡ κ1(τ ) as
defined by Eq. (22), i.e., with a factor ω/ωA in the integrand
rather than (ω/ωA)3. Contrary to the regularization procedure
employed in Sec. III, this factor ω/ωA is, however, kept un-
touched and a suitable subtraction is carried out at a later stage
in the analysis. As we now will verify, the actual subtraction
procedure in order to make the corresponding kernel finite will
effect the large-time deviation from exponential decay. If the

cutoff frequency ωc again is regarded to be a finite physical
quantity, we notice that the regularized kernel κR

1 (τ ) may be
written in terms of κR

0 (τ ) as given by Eq. (27):

κR
1 (τ ) ≡ κR

0 (τ ) + �0

2πbAτ
(e−i(
−1)bAτ − eibAτ ) + i

�0

2π

.

(56)

Due to this identity we realize that the kernel κR
1 (τ ) is linear in

the dimensionless cutoff frequency rather than the logarithmic
dependence of κR

0 (τ ) as in Eq. (29). We observe that the linear

 term may now be absorbed in an energy shift such that the
kernel κR

1 (τ ) is replaced according to

κR
1 (τ ) → κR

1 (τ )

≡ κR
0 (τ ) + �0

2πb′
Aτ

(e−i(
−1)b′
Aτ − eib′

Aτ ), (57)

where b′
A ≡ ω′

A/�0, and

ω′
A ≡ ωA − �0

2π

, (58)

and where also the ωA dependence in κR
0 (τ ) is replaced

by ω′
A. Such a frequency shift preserves unitarity. As in

Refs. [41,43,44], the linear 
 dependence can therefore be
removed altogether by applying Bethe’s mass renormalization
[54], i.e., by including a suitable mass counterterm in the
Hamiltonian. After this removal of the linear 
 dependence
and by also applying the transformation in Eq. (31), the kernel
κR

1 (τ ) is transformed into the kernel κ̃R
1 (τ ) according to

κR
1 (τ ) → κ̃R

1 (τ )

≡ κ̃R
0 (τ ) + �0

2πb̃Aτ
(e−i(
̃−1)b̃Aτ − eib̃Aτ ). (59)

The asymptotic form of the kernel κ̃R
1 (τ ) is now such that the

subleading contribution form the asymptotic form of the kernel
κ̃R

0 (τ ), as given by Eq. (40), is canceled and therefore

κ̃R
1 (τ ) ≈ −�0

2
+ �0

2π

e−i(
̃−1)b̃Aτ

b̃Aτ
, (60)

for sufficiently large τ . Hence the methods of Appendix A
would then lead to

c̃e(τ ) ≈ e−τ/2 − e−i(
̃−1)b̃Aτ

2πiτ
̃b̃2
A

, (61)

apart from possible 1/τ 2 corrections provided b̃A is sufficiently
large.

As in Sec. III C, a more precise asymptotic expansion
as τ becomes large, and which also takes the Lamb shift
Eq. (30) more carefully into account, can be obtained by a
consideration of a Bromwich integral. The Laplace transform
of the differential equation for the rescaled amplitude c̃e(t)
reads

dc̃e(t)

dt
=

∫ t

0
dt ′K̃R

1 (t − t ′)c̃e(t ′)

− i
�0

2π
ln(
 − 1)c̃e(t) − i

δmc2

h̄
c̃e(t), (62)
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where the regularized kernel K̃R
1 (t) is

K̃R
1 (t) = − �0

2π

∫ ωc

0
dω

ω

ωA

e−i(ω−ω̃A)t , (63)

and where the unitarity preserving transformation as defined by
Eq. (31) has been applied. In Eq. (62) we have also included the
contribution due to the additional mass counterterm δm c2/h̄

in the Hamiltonian which has the role of canceling the linear 


dependence in the kernel Eq. (63). After a tedious but straight-
forward analysis, following the same Laplace-transformation
techniques as in Refs. [43,44], the large τ expansion of c̃e(τ )
can now be obtained. Similar to the definitions of M0(u) and
M1(u) in Sec. III C, we therefore introduce the functions

N0(u) ≡ u − bA + u

2πbA

[log(u − 
c) − log u] (64)

and

N1(u) ≡ N0(u) + i
u

bA

, (65)

where the linear 
 dependence in Eq. (62) now has explicitly
been removed by the mass-renormalization procedure. The
solution to Eq. (62) can then be written in the form

c̃e(τ ) = eib̃Aτ

2πi

∫ −∞+iγ

∞+iγ

du e−iuτ 1

N0(u)
. (66)

By deforming the integration contour in Eq. (66) in the same
manner as in the derivation of Eq. (51), one then obtains the
result

c̃e(τ ) = e−τ/2 − eib̃Aτ

2πτ
J1 − eib̃A(1−
̃)τ

2πτ
J2, (67)

where we have defined the integrals

J1 =
∫ ∞

0
ds e−s

(
1

N0(−is/τ )
− 1

N1(−is/τ )

)
(68)

and

J2 =
∫ ∞

0
ds e−s

(
1

N1(
c − is/τ )
− 1

N0(
c − is/τ )

)
.

(69)

We have therefore actually reproduced the results of Refs. [43,
44], but now expressed in terms of dimensionless parameters.

As expanded upon in Appendix C, the integrals J1 and J2

can now be analyzed in a manner similar to the integrals I1

and I1 of Sec. III C. If τ � 1 and 
c � 1 and, in addition,
bAτ � 1 + ln(
c)/2πbA, we then obtain

J1 ≈ 1

b3
Aτ

. (70)

For the integral J2 it also follows that, for τ � 1,

J2 ≈ 1

i
[bA − ln(
cτ )/2π ]2
, (71)

provided |bA − ln(
cτ )/2π | � 1. The insertion of these
asymptotic expansions into Eq. (67) therefore leads to

c̃e(τ ) ≈ e−τ/2 − eib̃Aτ 1

2πb3
A

1

τ 2

− e−i(
̃−1)b̃Aτ

2πi


1

τ

1

[bA − ln(
cτ )/2π ]2
. (72)

The last term in Eq. (72) with the [bA − ln(
cτ )/2π ]
dependence has been obtained by using the technique of
Appendix B in order to see how the claimed τ ln2 τ dependence
of Refs. [43,44] actually emerges. Here we again stress that
our results are expressed in terms of dimensionless quantities
in contrast to the results of Refs. [43,44].

At this point we now quote the following explicit, but
approximative, expression for the probability amplitude ce(τ )
result of Knight and Milonni in Ref. [41]:

ce(τ ) = e−τ/2+iδbτ − eibAτ

2πi

×
∫ ∞

0
dx e−
xbAτ

(
1

x − i



+ i x
2bA

− x
2πbA

[
ln x − i π

2

]
− 1

x − i



− x
2πbA

[
ln x + i π

2

])
, (73)

where δb = δω/�0, and

δω = �0

2π
ln(
 − 1) (74)

is the angular frequency shift of the excited state |e〉. This
expression, which we have verified [58], is obtained by de-
forming integration contours of the Bromwich integral by only
considering the analytical properties of the natural logarithm ln
function and not taking into account the additional analytical
conditions imposed by the appearance of the functions N0(u)
and N1(u) as discussed above. For large times, i.e., bAτ � 1,
this expression is reduced to [41,58]

ce(τ ) ≈ e−τ/2+iδbτ − 1

2πbA

1

(bAτ )2
eibAτ . (75)

We notice that up to a phase redefinition, this equation and
Eq. (72) only differ by that last Seke-Herfort term of Eq. (72).
It is only in the limit 
 → ∞ that Eq. (72) leads to 1/τ 2

asymptotic behavior of Knight and Milonni. It is now also
clear that it is only for time scales τ � e2πbA/
c that the
1/τ ln2 τ asymptotic behavior of Seke-Herfort emerges. Such
time scales are typically exponentially large leading to an
exceedingly small decay amplitude ce(τ ) unless 
c is very
large. But as we have seen above, in such a case the
1/τ 2 asymptotic behavior of Knight and Milonni begins to
dominate. We also realize that Eq. (72) leads to a dominant 1/τ

behavior for τ � e2πbA/
c unless 
c again is not arbitrarily
large.

By a comparison of Eqs. (41) and (72) we also realize, due
to the presence of the factor 1/
 in the Seke-Herfort term in
Eq. (72), that the regularization procedure actually affects the
large-time behavior of the decay amplitude ce(τ ).

We illustrate some of these features in Figs. 4 and 5. For
comparison, Eqs. (73) and (75) are plotted in Fig. 4 together
with the exact numerical solution. In Fig. 5 we have plotted the
solution of Eq. (33) with the kernel κ̃R

1 (τ ) of Eq. (59) together
with Eqs. (73) and (75). As long as the Seke-Herfort term
in Eq. (72) dominates for sufficiently large values of τ , this
contribution will dominate the conventional exponential decay
term if τ � τ∗, where τ∗ is determined by the transcendental
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FIG. 4. Probability |ce(τ )|2 = |c̃e(τ )|2 as a function of τ ≡ �0t .
The upper curve corresponds to the exact numerical solution, i.e.,
solution of Eq. (33) with the kernel κ̃R

0 (t) as in Eq. (32) for a
two-level system in vacuum which, within the numerical accuracy
of the figure, overlaps with the asymptotic formula Eq. (41). The
lower curve corresponds to the main result in Ref. [41], i.e.,
Eq. (73). The asymptotic form according to Eq. (75) is in excellent
agreement with the numerical evaluation of Eq. (73). The values of
the relevant parameters are b̃A = 10 and 
 = 1000. As a reference,
the straight line in the figure corresponds to a pure exponential decay,
i.e., |ce(τ )|2 = e−τ .

equation

e−τ∗/2 ≈ 1

2π
τ∗ [bA − ln(
cτ∗)/2π ]2 , (76)

τ

1
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10−30

0 20 40 60 80 100

FIG. 5. Probability |ce(τ )|2 = |c̃e(τ )|2 as a function of τ ≡ �0t .
The upper curve corresponds to the exact numerical solution of the
Volterra equation as considered in Refs. [43,44], i.e., of Eq. (33) with
the kernel κ̃R

1 (τ ) of Eq. (59) for a two-level system in vacuum. For
large values of τ the solution is dominated by the 1/τ asymptotic
behavior according to Eq. (72). The lower curve corresponds to
Eqs. (73) and (75), which overlaps within the numerical accuracy of
the figure, with a characteristic 1/τ 2 asymptotic behavior for ce(τ ).
The values of the relevant parameters are b̃A = 1000 and 
 = 1000.

With the choice of parameters as in Fig. 5 and τ � τ∗ ≈ 53,
one finds that Eq. (72) in this case leads to 1/τ scaling rather
than the 1/τ 2 asymptotic scaling for the decay amplitude ce(τ )
according to Eq. (73).

IV. FINAL REMARKS

We have seen that the procedure of regularization of the
decay amplitude ce(τ ) actually influences the deviation from
exponential decay at large values of the time parameter τ .
It would, of course, be of interest if one, e.g., in terms of
artificial atoms could experimentally investigate deviations
from exponential decay at large times and thereby infer a
possible presence of the Seke-Herfort term of Eq. (72) or
the related 1/τ behavior obtained in Eq. (41). As alluded to
in the introductory remarks and in the case of atom chips,
the presence of material bodies can drastically change the
characteristic lifetime (see, e.g., Refs. [30–34]) and one could
then perhaps expect to encounter deviations from exponential
decay. With the parameters of Refs. [31,33,34], i.e., S2 = 1/8,
gS ≈ 2, and ωA/2π = 560 kHz, we have that bA ≈ 3 × 1032.
Using the cutoff 
 according to Eq. (28), i.e., 
 ≈ 2 × 1014,
one finds that bA ≈ b̃A and that τ ∗ ≈ 315 and τ∗ ≈ 380
according to Eqs. (42) and (76), respectively. Since our
analysis involves the dimensionless parameter τ , this means
that even though the effective decay rate � can be changed
by, say, twenty orders of magnitude (see, e.g., Refs. [30–34]),
one still would have to consider several hundred decay times in
order to see deviations from exponential decay. This means that
for atom chips the conventional exponential decay description
applies with an exceedingly high accuracy. As we, however,
have remarked in the Introduction, experimental studies have,
e.g., shown that artificial atoms can lead to a Lamb shift of
the order of a few percent of the typical emission line [5]. We
now estimate the corresponding relevant parameters according
to Ref. [5]. The natural frequency is ωA/2π ≈ O(GHz) and
the effective rate �0 is estimated from the Lorentzian fit to
the experimental data to be �0 ≈ 0.5 × 10−2ωA/2π . With a
Lamb shift of the order of one percent of ωA, we then have that
�0 ln(
 − 1)/2π ≈ 10−2ωA, i.e., the effective cutoff 
 is then
given by 
 ≈ e8π2

. One then finds somewhat more optimistic
numbers τ ∗ ≈ 40 and τ∗ ≈ 200 according to Eqs. (42) and
(76), respectively, which may open the door for observing
deviations from exponential decay in a system composed of
artificial atoms. Finally, we also notice the resemblance of the
semilogarithmic plots for |ce(τ )|2 as in Figs. 3 and 4 in terms of
the natural parameters τ and �Et = bEτ , with bE = �E/�0

for any typical intrinsic energy scale �E, and similar results
obtained in Refs. [7,15] despite the fact that they refer to
different physical systems.
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APPENDIX A: LARGE-TIME EXPANSION

In Sec. III B, the kernel κ̃R
0 (τ ) was considered for three

different regimes: small, intermediate, and large times τ for
a given b̃A and given 
. The integral in the Volterra Eq. (33)
may then trivially be split into these three intervals, where
one interval relieves the other. For large times τ � 1 and, in
addition b̃A � 1, two of these integrals are negligible. The
Volterra equation in Eq. (33) is then left with an integral
corresponding to the kernel in Eq. (40). This integral may
be computed analytically:

c̃e(τ ) − 1 ≈
∫ τ−1/b̃A

0
dx

{
− 1

2
+ 1

2π

eib̃A(τ−x)

b̃A(τ − x)

}
e−x/2

= −1+e−τ/2+1/2b̃A− 1

2πb̃A

E1[−(1/2 + ib̃A)τ ]e−τ/2

+ 1

2πb̃A

E1[−(1/2b̃A + i)]e−τ/2, (A1)

where E1(z) is the exponential integral for a complex argument
z. As τ � 1 and b̃A � 1, the latter expression may now be
simplified by making use of the leading asymptotic expansion
of the E1 functions in Eq. (A1) for large values of the parameter
τ :

c̃e(τ ) ≈ e−τ/2 + eib̃Aτ

2πib̃2
Aτ

1

1 − i/2b̃A

, (A2)

i.e., Eq. (41) if b̃A � 1. As alluded to in the main text, Eq. (A2)
remains valid for large values of τ provided b̃A � ln(b̃Aτ )/2π ,
a condition that emerges from further iterations of the Volterra
equation in Eq. (33). As discussed in Appendix B, a more
precise asymptotic form than the one given by Eq. (A2) can
be obtained by making use of Laplace transform techniques.

APPENDIX B: ASYMPTOTIC EXPANSION OF I1 AND I2

Here we first consider the integral I1 as defined in Eq. (52)
in Sec. III C, which we rewrite in the following convenient
form:

I1 =
∫ ∞

0
ds e−s

[
1

−is/τ − bA + ln(1 + 
cτ/is)/2π

− 1

−is/τ − bA + ln(1 + 
cτ/is)/2π + i

]
, (B1)

i.e., as τ becomes large,

I1 ≈ −
∫ ∞

0
ds e−s

[
1

a + ln s/2π + i/4

− 1

a + ln s/2π − 3i/4

]
, (B2)

where we have defined

a ≡ bA − ln(
cτ )

2π
≈ b̃A − ln(b̃Aτ )

2π
, (B3)

if 
 ≈ 
̃. One now finds, by a combination of analytical and
numerical methods, that the real part of I1 can be neglected,
provided a is big enough, i.e., |a| � 10, and hence I1 ≈ i/a2.
By making use of the same reasoning as above one can now
verify that I2 ≈ i/ã2, where now ã ≡ 
c − bA − ln(
cτ )/2π

with 
c ≡ ωc/�0. Therefore, the contribution due to I2 can
be neglected in comparison with I1, for any reasonable range
of τ , provided that 
c � b̃A.

APPENDIX C: ASYMPTOTIC EXPANSION OF J1 AND J2

Here we first consider the integral J1 as defined in Eq. (68)
in Sec. III D for large values of τ where we, due to the presence
of the factor e−s in the integrand of J1, make use of the
approximations

N0(−is/τ ) ≈ −bA

(
1 + i

s

bAτ
δ

)
, (C1)

with δ ≡ 1 + ln(
c)/2πbA, as well as

N1(−is/τ ) ≈ −bA

(
1 + i

s

bAτ
δ

)
+ s

bAτ
, (C2)

as τ becomes large. A series expansion in s/bAτ then leads to
the convergent integral

J1 ≈ 1

b3
Aτ

∫ ∞

0
ds e−s s

(1 + isδ/bAτ )2
. (C3)

The effective expansion time parameter is then actually
bAτ instead of τ . We therefore find that J1 ≈ 1/b3

Aτ for
sufficiently large values of the parameter bAτ , i.e., bAτ �
1 + ln(
c)/2πbA. In the opposite limit J1 will be suppressed
by factors like ln(δ/bAτ )/(δ/bAτ )2 in addition to the 1/b3

Aτ

behavior. More care has to be taken when considering the
integral J2. For large values of τ , we then make use of the
expansions

N0(
c − is/τ ) ≈ 


(
a − 1

4
i + ln s

2π

)
, (C4)

with a as in Eq. (B3), as well as

N1(−is/τ ) ≈ 


(
a + 3

4
i + ln s

2π

)
. (C5)

Here we have made use of the simple fact that 
c = 
bA.
As long as |a| is big enough it can now be argued that we
can neglect the ln s/2π term in the N0 and N1 functions
above. This is so since for large s � e2π |a| the integrand of
J2 is exponentially suppressed, while for sufficiently small
s � e−2π |a| there will only be an exponentially small range
of integration. Proceeding in this manner and by series
expansions in −i/4a and 3i/4a, we then find that the dominant
contribution to J2 is imaginary and that J2 ≈ 1/i
̃a2. By
numerical methods we find that this is indeed an excellent
approximation if |a| � 10 when evaluating |ce(t)|2.
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