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Antiferrosmectic ground state of two-component dipolar Fermi gases:
An analog of meson condensation in nuclear matter
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We show that an antiferrosmectic-C phase has lower energy at high densities than the nonmagnetized Fermi
gas and ferronematic phases in an ultracold gas of fermionic atoms, or molecules, with large magnetic dipole
moments. This phase, which is analogous to meson condensation in dense nuclear matter, is a one-dimensional
periodic structure in which the fermions localize in layers with their pseudospin direction aligned parallel to the
layers and staggered layer by layer.
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Ultracold atoms with strong dipole-dipole interactions offer
a unique opportunity to study the properties of many-body
systems with long-range anisotropic interactions [1]. Such
systems enable one to realize in the laboratory analogs of
meson condensation in nuclear matter, as a consequence of
the similarities of the electric and magnetic dipole interactions
to the nuclear tensor force. Systems of magnetic atoms such
as dysprosium—which has the largest magnetic moment of
all stable atoms, some 10 times that of alkali-metal atoms,
and currently trapped and cooled by Lev’s group [2,3]—can
exhibit novel quantum dipolar phases [4]. In particular, clouds
of the fermionic isotopes 161Dy and 163Dy may be used to
reveal different aspects of the dipolar Fermi gas. Examples
include spheroidal deformations of the Fermi surface in one-
component Fermi systems with dipolar interactions, studied by
Sogo et al. [5], and ferronematic order with a deformed Fermi
surface in two-component dipolar Fermi systems, pointed
out by Fregoso et al. [6,7], which may appear when the
repulsive contact interaction or the dipole-dipole interaction is
sufficiently large. On the other hand, two-component uniform
Fermi gases become unstable against long-wavelength local
magnetization as the interactions become strong; see, e.g.,
random-phase approximation (RPA) analyses in Refs. [8,9].
The ground-state structure with local magnetization and its
competition with the ferronematic state in the strong-coupling
region have not been explored so far.

In this paper, we propose a variational state of two-
component quantum dipolar Fermi systems, with spatially
varying magnetization, motivated by studies of classical
dipoles on a three-dimensional cubic lattice [10] and of
meson-condensed systems in nuclear physics [11–14].

The most advantageous structure of a dipolar system is
determined by competition among the dipolar interaction
favoring magnetization (spin polarization) varying in direction
in space, short-range repulsions favoring aligned spins, and
particle kinetic energies favoring spatially uniform systems.
Our new state is an antiferrosmectic-C (AFSC) phase [15],
a one-dimensional layered structure with alternating dipoles
parallel to the layers. The AFSC structure is illustrated in
the top of Fig. 1, layered in the z direction with a staggered
nonsinusoidal magnetization in the x direction: 〈 �M(�r )〉 =
Mx(z)x̂ [16]. As we show, this state is energetically more

favorable than the ferronematic phase over a wide region
of dipole and short-range repulsive interaction strengths.
The AFSC phase has no net magnetization but utilizes the
dipole-dipole attraction efficiently.

We model the system of ultracold fermionic atoms or
molecules with dipole-dipole interactions and short-range
repulsion in terms of the Hamiltonian:

H =
∫

d�r1
∇�†(�r1 ) · ∇�(�r1 )

2m

+ 1

2

3∑
i,j=1

↑,↓∑
α,α′, β, β ′

∫
d�r1d�r2 ψ†

α(�r1)ψ†
β(�r2)

×V (�r1,�r2)ijαα′, ββ ′ψβ ′(�r2)ψα′ (�r1). (1)

Here � = (ψ↑,ψ↓) describes fermions of mass m in two
hyperfine states with a transition magnetic moment μ [17]. For
simplicity, we refer to this internal degree of freedom as “spin.”
The �σ are the Pauli spin matrices. We take h̄ = 1 throughout.
Our model is characterized by the interaction potential

V (�r1,�r2)ijαα′, ββ ′ = μ2

r3

{
σ i

αα′ (δij − 3r̂i r̂j )σ j

ββ ′
}

+ gδαα′
δij

3
δ(�r1 − �r2)δββ ′ , (2)

where r = |�r1 − �r2| and r̂i = (�r1 − �r2)i/r . The first term is
the long-range dipole-dipole interaction potential. The second
term is the short-range contact interaction potential, which
operates only between different species due to the Pauli
principle. We assume, for simplicity, that it is always repulsive,
i.e., g > 0. We define the dimensionless coupling constants,

λd = nμ2/ε
F
, λs = ng/ε

F
, (3)

where n is the average fermion density and ε
F

is the Fermi
energy of the two-component fermions at the density. A
coupled-channels RPA analysis of the spin-triplet (S = 1)
excitation with angular momentum L = 0 and L = 2 states [9]
shows that the nonmagnetized Fermi gas becomes unstable
against a spatially varying magnetization beyond the critical
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FIG. 1. (Color online) The uppermost panel illustrates the magne-
tization profile, and the lower two panels the spatial distribution along
the z direction of the normalized number density and magnetization,
Eqs. (6), in the AFSC state for d = √

8b.

line in the λs-λd plane:
(

1 − 3

4
λs − 2πλd

) (
1 + π

2

)
− π2

2
λ2

d = 0. (4)

To seek the ground state of dipolar fermions in the strong-
coupling region beyond this critical line, we introduce a set of
normalized basis states for particles localized in the z direction
and in plane-wave states in the transverse direction,

φ�,�q⊥(x,y,z) = e−(z−d�)2/2b2

(πb2)1/4

ei �q⊥·�r⊥
√

V⊥
χ�, (5)

where the integer �, ranging from −∞ to +∞ labels the
layer, �q⊥ is the transverse momentum, �r⊥ = (x,y), V⊥ is
the transverse two-dimensional volume, d is the distance
between neighboring layers, b is the width of the layer, and the
χ� = (1,(−1)�+1)/

√
2 are staggered spinors, with the center

site, � = 0, spin-down with respect to σx . We assume that the
fermions are well localized in the z direction, with d �

√
2b,

and, in the AFSC ground state, fill these states with all � and
q⊥ up to the transverse Fermi momentum, qF⊥ = √

4πnd .
The expectation values of the number density, �†�, and

local magnetization, μ�† �σ�, in the AFSC state are

〈n(�r )〉 = nd

b
√

π

∞∑
�=−∞

e−(z−d�)2/b2
,

(6)

〈Mx(�r )〉 = − μnd

b
√

π

∞∑
�=−∞

(−1)�e−(z−d�)2/b2
,

and 〈My(�r )〉 = 〈Mz(�r )〉 = 0. The AFSC state is indeed a lay-
ered structure in density, with staggered local magnetization,
as illustrated in the middle and lower panels of Fig. 1. Using
the Poisson summation formula, we can write the density and

magnetization as

〈n(�r )〉 = n + 2n

∞∑
j=1

e−j 2π2/� cos (2jπz/d) ,

(7)

〈Mx(�r )〉 = −2μn

∞∑
j=1

e−(2j−1)2π2/4�cos {(2j−1)πz/d} ,

where the dimensionless localization parameter � = (d/b)2 is
the square of the ratio of the layer distance and the Gaussian
width.

The energy density of the AFSC phase, E(�,α), with α =
1/8πndb2, in units of the energy density of the free Fermi gas
is
E(�,α)

3
5nεF

= 10

3(3π )2/3
�1/3α2/3 + 5

3(3π )2/3
�1/3α−1/3

− 20π

3
λd

∞∑
j=1

e−(2j−1)2π2/2�

{
1

3
− F (α)

}

+ 5

6
λs

⎧⎨
⎩

1

2
−

∞∑
j=1

[e−(2j−1)2π2/2� − e−2j 2π2/�]

⎫⎬
⎭ .

(8)

The first term on the right is the one-dimensional zero-point
energy in the z direction, and the second term is the two-
dimensional kinetic, or Fermi, energy within a layer. We note
that 2α is the dimensionless ratio of these two terms. The third
term arises from the dipole-dipole interaction, with 1/3 and
−F (α) the direct and exchange contributions, respectively,
where

F (α) = α

∫ ∞

0
dsJ 2

1 (
√

2s/α)es

{
2s + 1

s
K0(s) − 2K1(s)

}
,

(9)

and Ji and Ki are the Bessel functions of the first kind and
second kind, respectively. The final, positive, term in Eq. (8) is
the contribution of the contact interaction. The lowest-energy
AFSC state is obtained by minimizing E(�,α) with respect to
� and α for given λd and λs . It is sufficient to take only the
j = 1 mode in Eq. (8) (one-mode approximation) to obtain the
ground-state energy to a few percentages accuracy for � � 10,
the regime in which particles are not too well localized in the
layers. In constructing the phase diagram of the system as
functions of the short-range interaction, measured by λs , and
the dipole-dipole interaction, measured by λd , as shown in
Fig. 2, we compare the minimum E(�,α) with the energy of
the interacting Fermi gas phase [εFG = 3

5nεF (1 + 5
12λs)] and

with that of the fully polarized ferronematic state [6,18].
The resultant phase diagram, shown schematically in Fig. 2,

is composed of four regions: (I) the nonmagnetized Fermi
gas phase (the lower left corner), which has a spherical
Fermi surface with equal population of both species; (II) the
AFSC phase (the upper right region), which has a cylindrical
Fermi surface with equal populations of both species; (III)
the ferronematic phase (the lower right region), which has a
spheroidal Fermi surface with only a single species; and (IV)
an unstable region. Determining the detailed structure of the
intermediate locally weakly magnetized state, shown as the
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FIG. 2. (Color online) Schematic phase structure of dipolar
fermions as a function of λs and λd , showing the nonmagnetized
Fermi gas phase, the locally weakly magnetized state shown by
the shaded area, the ferronematic region, and the antiferrosmectic-C
region. Beyond the upper dashed line the system becomes unstable
against collapse.

shaded area [9,12], and the question of whether this phase
evolves smoothly into the AFSC phase with increasing dipole
interaction strength, are interesting open problems beyond the
scope of this paper.

In Fig. 3 we plot the localization parameter � and the kinetic
energy ratio α vs λd for λs = 2.5, corresponding to the red
arrow in Fig. 2. The exchange contribution of the dipole-dipole
interaction in the AFSC state is of order 30% of the direct term,
decreasing with increasing λd .

The different regions of the phase diagram are related as
follows.

From Fermi gas to AFSC: The energy of the nonmagnetized
Fermi gas is increased only by the contact interaction, not
by the dipolar interaction. On the other hand, the AFSC
phase has a net decrease in energy from the dipolar attraction
between neighboring layers, despite the increase of the fermion
kinetic energy due to the spatial localization in the z direction.
Therefore, as λd increases, the nonmagnetized Fermi gas, after
making a transition to a locally weakly magnetized phase (the
shaded region in Fig. 2), passes into the AFSC phase.

From Fermi gas to ferronematic: The fully polarized
ferronematic phase has only one component, and it does not
experience the contact repulsion, although its Fermi energy
increases in comparison to the two-component Fermi gas.
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FIG. 3. Optimal values of � and α as a function of λd for λs = 2.5.

Therefore, there is a transition from the Fermi gas phase to
the ferronematic phase for sufficiently large λs , as long as λd

is small.
From ferronematic to AFSC: In the fully polarized ferrone-

matic phase with small λd , the Fermi surface is deformed from
spherical due to the anisotropy of the dipole interaction [5,6].
As λd increases, however, the one-dimensional periodic struc-
ture emerges spontaneously, enhancing the dipolar attraction
in a two-component system. This leads to a transition from
weak to strong deformation of the Fermi surface, replacing the
ferronematic phase by the AFSC phase for a wide range of λd .

Instability: For λd above the dashed line in Fig. 3 (λd �
0.40 ∼ 0.43), the AFSC phase becomes unstable due to large
attraction between the layers. The dashed line is determined
by the compressibility, K−1 = n∂P/∂n = n2∂2E/∂n2, van-
ishing. A similar instability of the ferronematic phase has
been reported in Refs. [5,6]. Determining the stable states of
the system above the dashed line remains a problem for future
work.

We now relate the present model to laboratory sys-
tems. Numerically, the coupling constants are λd = 2.7 ×
10−3m100n

1/3
12 μ2

10 and λs = 2.6 × 10−2n
1/3
12 a10, where m100

is the atomic (or molecular) mass in units of 100 proton
masses, n12 is the density in units of 1012 cm−3, μ10 is
the magnetic dipole moment in units of 10 μB , and a10 is
the effective scattering length, gm/4π , in units of 10 nm.
Then λd/λs = 0.1 × m100μ

2
10/a10. The distance d between

layers in the AFSC phase is ∼102n
−1/3
12 in μm, which may

be fine compared to the size of ultracold atomic gases. To
reach into the AFSC phase with Dy atoms would require
n ∼ 5 × 1017 cm−3, a density which can be greatly reduced
by resonantly enhancing a. Molecules with larger masses and
magnetic moments, e.g., diatomic molecules of Dy, have larger
λd also enabling the AFSC phase to be realized at smaller
density.

For dipoles with more than two internal states, the relation
of diagonal and off-diagonal moments is modified, so in Eq. (2)
σz must be replaced by diag{A,B}, where A = 〈↑| μz |↑〉 /μ,
and B = 〈↓|μz |↓〉 /μ, with μz the z component of the
moment operator and μ the transition moment. This correction
enhances local magnetic fields along the z direction, which
for a system uniform in the x and y directions can at most
be constant (and generally small compared with trapping
fields).

Calculation of the finite temperature phase diagram remains
an open problem. The scale of energies in the various phases
at zero temperature are of order the Fermi energy, and so
one expects significant structure to emerge at temperatures
below the Fermi temperature. The regime of stability at
finite temperature of the two-dimensional sheets in the AFSC
phase in finite volume, particularly against a Landau-Peierls
instability, needs to be determined. Finally, one should
consider other possible phases in the system, e.g., AFSC
states with population imbalance, states with structure in the
sheets such as a “spaghetti phase” [19], and superfluid states
of spin-triplet p-wave paired atoms which could emerge at
large λd .

As Luttinger and Tisza [10] showed, the lowest energy
configuration of classical dipoles on a cubic lattice has the
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same dipole configuration as the present AFSC phase. Thus,
we can reasonably expect that the AFSC state can be realized
in an optical lattice and might even be enhanced when the pitch
of the spontaneous localization is commensurate with that of
the lattice potential.

The dipole-dipole interaction is caused by exchange of
the vector potential �A(�r) between dipolar atoms. Therefore,
spatially varying magnetizations 〈 �M(�r)〉 in the AFSC phase
correspond to the spontaneous formation of a nonzero 〈 �A(�r)〉,
through the Maxwell equation: ∇2〈 �A(�r)〉 = −4π∇ × 〈 �M(�r)〉.
Very similar meson condensed states have been proposed
in nuclear physics where the ρ meson in nuclear matter
corresponds to �A(�r) for magnetic dipolar atoms, and the π

meson corresponds to the scalar potential A0(�r) for electric
dipolar atoms. Such a correspondence may open the interesting
future possibility of learning properties of states of dense

matter inside neutron stars via cold atom experiments in the
laboratory.
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