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Sensitivity of cross sections to the diffuseness of the confining potential in time-dependent
close-coupling calculations of the double photoionization of He@C60
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Calculations of the photoionization of endofullerenes often use a square-well potential to represent the confining
fullerene. The sensitivity of the photoionization cross sections to the form of this model potential is explored
here by the use of a diffuse potential. The cross sections for single photoionization with excitation and double
photoionization of He@C60 are found to show damping of the confinement resonance structure as the degree of
diffuseness is increased using a commonly adopted well depth of 8.22 eV. For a deeper well depth of 11.00 eV,
the double-photoionization cross section is found to be insensitive to the diffuseness of the confining potential,
as has also been reported recently for the single photoionization of H@C60 and Xe@C60 [Dolmatov, King, and
Oglesby, J. Phys. B 45, 105102 (2012)].
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I. INTRODUCTION

The photoionization of endofullerenes is a subject of
long-standing theoretical (for a recent overview of the field, see
Ref. [1]) and increasing experimental interest [2]. Theoretical
studies are faced with the challenge of accurately representing
the fullerene cage, a complex multielectron system, in a
computationally tractable way. The solutions adopted fall
into two main categories. The first is the time-dependent
local-density approximation (TDLDA) in which the atom and
enclosing fullerene are treated using a density-functional-
theory approach [3]. The second approach is the use of a model
potential to approximate the fullerene with model parameters
matched to experiment. The model potentials adopted have
included a δ-function approximation [4] and, most frequently,
a square-well potential [5].

Among the phenomena that arise in the photoionization of
endohedral atoms, confinement resonances are of particular
interest. They originate from the interference between pho-
toionized electrons that are directly emitted from an ionized
nl subshell and those photoionized electrons reflected from
both the inner and outer boundaries of the fullerene cage.

The time-dependent close-coupling (TDCC) method [6]
has been utilized in a series of studies [7–9] of the photoion-
ization of endohedral atoms. These studies made use of a
square-well model potential to represent the fullerene shell.
Confinement resonance structure is predicted to be present
in both the double-photoionization cross section [7] and the
single-photoionization-with-excitation cross section [9].

A question arises as to the sensitivity of predicted phenom-
ena to the form of the model potential used to represent the
fullerene. In the model potential approach the width and radius
of the potential is matched to available experimental data for
the C60 shell, with the potential depth then adjusted to match
the electron affinity of C60. In this paper, the experimental
work of Xu et al. [10] is used, which gives a potential width of
1.89 a.u. This width has been commonly adopted in the model
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potential approach to the photoionization of endofullerenes.
However, we note that the photoelectron spectroscopy exper-
iment of Rüdel et al. [11] indicates a larger C60 width of
∼3 a.u. A recent study [12] has also found indications of a
3-a.u. width in the experiment of Kilcoyne et al. [2]. The
sensitivity to the depth and width of the confining potential
was investigated for double photoionization in [8]. It was found
that as the confining potential becomes wider and shallower
(while maintaining the same electron affinity), the confinement
resonances are decreased in amplitude. This can be attributed
to a lowering in the reflective strength for scattered electrons
as the potential depth is decreased [13]. Damping effects
due to the representation of the confining potential was also
studied in [14] for single photoionization, where an additional
damping effect due to off-center positioning of the caged atom
was examined.

A separate question concerns the approximation made as to
the square-well form of the confining potential. It is of interest
to relax the discontinuous nature of the potential. This has
recently been investigated [15] for the single photoionization
of H@C60 and Xe@C60 using a diffuse model potential formed
from a combination of two Woods-Saxon potentials. This
study found that the single-photoionization cross section is
relatively insensitive to the degree of diffuseness, with good
agreement found between results obtained using square-well
and diffuse potentials. However, Ref. [16], which examined
the single photoionization of H@C60, Li@C60, and Na@C60

using power-exponential potentials to model a diffuse C60

potential, found that the amplitude of confinement resonances
was reduced.

It is of interest to investigate whether the double-
photoionization cross section displays sensitivity to the dif-
fuseness of the confining potential. Here, the TDCC method is
used to study the single photoionization with excitation and the
double photoionization of He@C60 using a diffuse potential to
model the confining C60 shell.

The rest of this paper is structured as follows: Section II
gives an overview of the TDCC calculations, and Sec. III
presents results for the single photoionization with excitation
and the double photoionization of He@C60 for square-well
and diffuse confining potentials. Finally, Sec. IV concludes
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FIG. 1. (Color online) Model potentials. Solid line, square-well
potential; dotted line, diffuse potential with α = 0.01; dashed line,
diffuse potential with α = 0.1; dot-dashed line, diffuse potential with
α = 0.2.

with a brief summary. Unless otherwise stated, we will use
atomic units throughout.

II. COMPUTATIONAL DETAILS

In order to represent a He atom enclosed within a C60 cage,
an attractive, short-range spherical-shell potential will be used
to approximate the fullerene shell. Two forms of this potential
will be compared here. The first is a square-well potential of
the form [5]

Vsq(r) =
{−U0 < 0 for rc � r � rc + �,

0 otherwise,
(1)

where rc is the inner radius of the shell and � is the shell
thickness. The second is a diffuse potential formed from a
linear combination of Woods-Saxon potentials [15],

Vd = − U0

1 + exp
(

rc−r

α

)
∣∣∣∣∣
r�rc+ �

2

− U0

1 + exp
(

r−rc−�

α

)
∣∣∣∣∣
r>rc+ �

2

.

(2)

The square-well potential of Eq. (1) is compared to the
diffuse potential given by Eq. (2) in Fig. 1 for varying
levels of diffuseness. For α = 0.01 the diffuse potential is
very close to the square-well potential. As the diffuseness
is increased to α = 0.1 and α = 0.2, the discontinuous
boundary of the square-well potential becomes increasingly
softened.

Values of the inner radius and shell thickness of C60 are
determined from the experimental work of Xu et al. [10], with
rc = 5.75 and � = 1.89 a.u. Diagonalizing on a radial mesh for
an electron moving in the field Vsq(r) with a potential depth of
U0 = 8.22 eV (0.302 a.u.) [17] leads to a calculated electron
affinity of 2.66 eV. For the diffuse potential, diagonalizing for
an electron moving in the field Vd with α = 0.01 gives an
electron affinity of 2.66 eV, in agreement with the square-well
result. As α is increased to 0.1, the electron affinity is decreased
to 2.59 eV, and for α = 0.2 it is further decreased to 2.49 eV.

These results compare to an experimentally measured electron
affinity of 2.65 ± 0.05 eV [18]. It is noted that the recent
investigation of [15] made use of a potential width and
depth of � = 1.25 a.u. and U0 = 11.48 eV (0.422 a.u.) as
these parameters were found [19] to lead to better agreement
with experimental measurements for the 4d photoionization
spectrum of Xe@C+

60 [2]. Therefore, additional calculations
are also carried out here at selected energy points for a
deeper, narrower well of depth 11.0 eV (0.404 a.u.) and
width � = 1.387 a.u. for α = 0.01 and α = 0.2. The reduced
width is needed in order to maintain the correct electron
affinity.

The time-dependent Schrödinger equation in the weak-field
limit for a two-electron atom enclosed by the model potential
of Eq. (1) or (2) is given by

i
∂�

1P (�r1,�r2,t)

∂t

= HHe@C60�
1P (�r1,�r2,t) + Hrad�

1S
0 (�r1,�r2)e−iE0t , (3)

where

HHe@C60 =
2∑
i

[
− 1

2
∇2

i + V (ri) + Vsq/d (ri)

]
+ 1

|�r1 − �r2|
(4)

and V (r) = − 2
r

for the He atom. For a linearly polarized
radiation field in the length gauge

Hrad = E(t) cos ωt(r1 cos θ1 + r2 cos θ2), (5)

where ω is the radiation field frequency and E(t) is the
radiation field amplitude.

The ground-state wave function for the He atom in the
C60 cage, �

1S
0 (�r1,�r2), and the energy E0 are determined from

an expansion in coupled spherical harmonics together with
a relaxation of the time-dependent Schrödinger equation in
imaginary time (τ = it) [20,21].

Expansion of the time-dependent wave function
�

1P (�r1,�r2,t) in coupled spherical harmonics and substitution
into the time-dependent Schrödinger equation results in a set of
time-dependent partial differential equations. These equations
are then propagated in real time for 15 radiation field periods
on a two-dimensional radial lattice with a mesh spacing of
�r = 0.1 and a lattice size of 640 × 640 points. The final
time wave function is projected onto products of single-
particle continuum orbitals to yield scattering probability
amplitudes,

P
1P
l1l2

(k1,k2,t) =
∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1 (r1)Pk2l2 (r2)P

1P
l1l2

(r1,r2,t),

(6)

where P
1P
l1l2

(r1,r2,t) are radial wave functions for each l1l2
channel and box normalized continuum orbitals Pkl(r) are
calculated in a V N−2 potential in the presence of the fullerene
cage using a uniform 1000-point momentum mesh with a mesh
spacing of 0.002.
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FIG. 2. (Color online) Single photoionization with excitation
cross sections: (a) n = 1, (b) n = 2, (c) n = 3. Solid line, He@C60

with square-well potential; dotted line, He@C60 with diffuse potential
(α = 0.01); dashed line, He@C60 with diffuse potential (α = 0.1);
dot-dashed line, He@C60 with diffuse potential (α = 0.2); dot-dash-
dashed line, He.

The single-photoionization cross section with excitation to
a bound state nl is then given by [22]

σnl = ω

I

∂

∂t

∑
l1,l2

{ ∫ ∞

0
dk2

∣∣∣∣
∫ ∞

0
dr1

∫ ∞

0
dr2Pnl(r1)Pk2l2 (r2)

×P
1P
l1l2

(r1,r2,t)

∣∣∣∣
2

+
∫ ∞

0
dk1

∣∣∣∣
∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1 (r1)

×Pnl(r2)P
1P
l1l2

(r1,r2,t)

∣∣∣∣
2}

, (7)

where Pnl(r) is the radial orbital for the nl bound state of
He@C60. The total double-photoionization cross section can
be calculated via the expression [23]

σdion = ω

I

∂

∂t

∫ ∞

0
dk1

∫ ∞

0
dk2

∑
l1,l2

∣∣P 1P
l1l2

(k1,k2,t)
∣∣2

, (8)

where I is the radiation field intensity.
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FIG. 3. (Color online) Ratio of single photoionization with
excitation cross section of He@C60 to He: (a) n = 1, (b) n = 2,
(c) n = 3. Solid line, He@C60 with square-well potential; dotted line,
He@C60 with diffuse potential (α = 0.01); dashed line, He@C60 with
diffuse potential (α = 0.1); dot-dashed line, He@C60 with diffuse
potential (α = 0.2).

III. RESULTS

In Fig. 2, the single-photoionization-with-excitation cross
section of He@C60, with the remaining He+ ion left in excited
states n = 1, n = 2, and n = 3 is plotted for the square-well
potential of Eq. (1) and the diffuse potential of Eq. (2) with
α = 0.01, α = 0.1, and α = 0.2 in comparison with the cross
section for He. Figure 3 shows the corresponding ratios of
He@C60 to He for the cross sections in Fig. 2. The results for
the square-well potential are in excellent agreement with the
α = 0.01 diffuse potential, showing that the diffuse potential
with α → 0 is a good approximation to the discontinuous
square-well potential. As the diffuseness of the potential is
increased from α = 0.1 to α = 0.2, the confinement resonance
structure seen in Fig. 3 is damped, with a decreasing amplitude.
For n = 1, with increased damping the cross sections approach
those of He. For n = 2 and n = 3 the cross sections are shifted
in magnitude from those of He due to the stronger effect of the
confining potential on these more radially extended excited
states.
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FIG. 4. (Color online) Double-photoionization cross sections.
Solid line, He@C60 with square-well potential; dotted line, He@C60

with diffuse potential (α = 0.01); dashed line, He@C60 with diffuse
potential (α = 0.1); dot-dashed line, He@C60 with diffuse potential
(α = 0.2); dot-dash-dashed line, He.

Figure 4 shows the double-photoionization cross section of
He@C60 for the square-well potential of Eq. (1) and the diffuse
potential of Eq. (2) with α = 0.01, α = 0.1, and α = 0.2 in
comparison with the cross section for He. Figure 5 shows the
corresponding ratios of He@C60 to He for the cross sections
in Fig. 4. As with the cross sections for single photoionization
with excitation, the double photoionization cross sections
for the square-well potential and the diffuse potential with
α = 0.01 agree closely with each other. The results for α = 0.1
and α = 0.2 show damping of confinement resonances, with
the ratios plotted in Fig. 5 approaching 1 for higher energies
and higher diffuseness of the potential. However, at lower
energies, there is still a large deviation from the isolated He
results for α = 0.2. Unlike the damping effect illustrated in [8],
where the amplitude of the confinement oscillations decreased
as the confining potential was made shallower and wider,
here there is no phase shift in the locations of the peaks of
the confinement resonances, showing that this is a distinct
effect.

This damping effect caused by the diffuseness of the
potential is seemingly in conflict with the insensitivity found
for single photoionization in [15]. To investigate this dis-
crepancy, additional calculations were carried out at 86, 100,
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FIG. 5. (Color online) Ratio of double-photoionization cross
section of He@C60 to He. Solid line, He@C60 with square-well
potential; dotted line, He@C60 with diffuse potential (α = 0.01);
dashed line, He@C60 with diffuse potential (α = 0.1); dot-dashed
line, He@C60 with diffuse potential (α = 0.2).

and 116 eV for α = 0.01 and α = 0.2 using a deeper well
of depth 0.404 a.u. and width � = 1.387 a.u. The results
are tabulated in Table I and show that the deeper well is
insensitive to the diffuseness of the potential, with similar
results found for α = 0.01 and α = 0.2. This can be explained
by the weaker reflective strength of shallower potentials [13]
leading to more sensitivity to diffuseness. The present results
for double photoionization also demonstrate that the results
of Ref. [16], where sensitivity to diffuseness was found in
the single-photoionization cross section (see Figs. 7, 9, and
11 of [16]), can be caused by the shallower potential of U0 =
0.303 a.u. as opposed to the deeper potential of U0 = 0.422 a.u.
used in [15].

TABLE I. Double-photoionization (DPI) cross section of
He@C60 for U0 = 0.404 a.u. and � = 1.387 a.u.

Photon energy DPI cross section (kb) DPI ratio

(eV) α = 0.01 α = 0.2 α = 0.2 to α = 0.01

86 8.82 8.32 0.94
100 9.44 9.35 0.99
116 7.99 8.06 1.01
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IV. CONCLUSIONS

In this paper it has been demonstrated that both the single
photoionization with excitation and the double photoionization
of He@C60 are sensitive to the diffuseness of the model
potential. For shallower and wider potentials, the confinement
resonance structure that is observed in calculations using
commonly adopted model potential parameters is progres-
sively damped as the diffuseness of the potential is increased.
However, as the potential becomes deeper and narrower,
the photoionization cross section becomes insensitive to the
diffuseness of the potential.

To further investigate these effects, comparison with other
theoretical methods, such as convergent close coupling [24]

or R matrix with pseudostates [25], is highly desirable for the
double photoionization of He@C60. The recent R-matrix study
of the single photoionization of Xe@C60 [26] is a promising
step in this direction.
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Sabin and E. Brändas (Academic, New York, 2009), pp. 13–68.

[2] A. L. D. Kilcoyne, A. Aguilar, A. Müller, S. Schippers,
C. Cisneros, G. Alna’Washi, N. B. Aryal, K. K. Baral, D. A.
Esteves, C. M. Thomas, and R. A. Phaneuf, Phys. Rev. Lett.
105, 213001 (2010).

[3] H. S. Chakraborty, M. E. Madjet, J.-M. Rost, and S. T. Manson,
Phys. Rev. A 78, 013201 (2008).

[4] M. Y. Amusia, A. S. Baltenkov, L. V. Chernysheva, Z. Felfi, and
A. Z. Msezane, J. Phys. B 38, L169 (2005).

[5] J. P. Connerade, V. K. Dolmatov, P. A. Lakshmi, and S. T.
Manson, J. Phys. B 32, L239 (1999).

[6] M. S. Pindzola et al., J. Phys. B 40, R39 (2007).
[7] J. A. Ludlow, T-G. Lee, and M. S. Pindzola, Phys. Rev. A 81,

023407 (2010).
[8] J. A. Ludlow, T-G. Lee, and M. S. Pindzola, J. Phys. B 43,

235202 (2010).
[9] T-G. Lee, J. A. Ludlow, and M. S. Pindzola, J. Phys. B 45,

135202 (2012).
[10] Y. B. Xu, M. Q. Tan, and U. Becker, Phys. Rev. Lett. 76, 3538

(1996).
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