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Peculiar features of entangled states with postselection
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We consider quantum systems in entangled states postselected in nonentangled states. Such systems exhibit
unusual behavior, in particular, when weak measurements are performed at intermediate times.
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Measurements performed on pre- and postselected quantum
systems often exhibit peculiar results. One particular example
is that of a single particle, which is found with certainty
in any one of a large number of boxes if only this box
is opened [1,2]. In spite of experimental implementations
of these ideas [3–5], there is still some controversy about
this example [6–20]. Even more surprising is the fact that
outcomes of weak measurements [21], namely, standard von
Neumann measurements with weakened interaction, yield
weak values which might be far away from the range of
possible eigenvalues. This feature led to practical applications
for high-precision measurements [22,23]. Here we consider
the peculiar features of quantum systems when the preselected
state is entangled.

First, let us consider the case where the preselected
state is the following Greeberger-Horne-Zeilinger (GHZ)–like
entangled state of N spin- 1

2 particles:

|�〉1 = 1√
2

(
N∏

n=1

|↑z〉n +
N∏

n=1

|↓z〉n
)

. (1)

Just like the original three-particle GHZ state, it can be used
to show that no local hidden variable theory is consistent with
the predictions of quantum theory.

To this end, consider the following sets of measurements.
The first set consists of σx measurements performed over all
particles. The second set consists of σx measurements for all
particles except for two particles for which σy are measured.
Since

N∏
n=1

σ (n)
x |�〉1 = |�〉1 (2)

and

N∏
n�=k,l

σ (n)
x σ (k)

y σ (l)
y |�〉1 = −|�〉1, (3)

the outcomes of the two sets of measurements should fulfill

N∏
n=1

σ (n)
x = 1 (4)
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and
N∏

n�=k,l

σ (n)
x σ (k)

y σ (l)
y = −1, (5)

respectively.
Next consider three particular cases of Eq. (5) where the

pairs of particles for which σy was measured were chosen from
a triplet of particles, s, t , and r . We then have

N∏
n=1

σ (n)
x = 1,

N∏
n�=s,t

σ (n)
x σ (s)

y σ (t)
y = −1,

(6)
N∏

n�=s,r

σ (n)
x σ (s)

y σ (r)
y = −1,

N∏
n�=t,r

σ (n)
x σ (t)

y σ (r)
y = −1.

Had there been local hidden variables, then all variables should
have values, i.e., prior to the measurement every particle should
“know” the value of all spin components and, in particular, the
x and the y components. These values should fulfill all four
Eqs. (6). Just like in the original GHZ case, this is impossible
since the product of the left-hand sides is the product of squares
(or fourth powers) of the spin variables and the product of the
right-hand sides is −1.

In order to see surprising results we consider the particular
postselected state |�〉2 in which all spins were found with
σx = 1, i.e.,

|�〉2 =
N∏

n=1

|↑x〉n. (7)

A unique feature of this particular pre- and postselection is that
at intermediate times no pair of particles can be found with the
same σy ; otherwise, the requirement (5) cannot be fulfilled.

To see this in a more dramatic way we map states of N

spin- 1
2 particles into the states of N distinguishable particles

which can reside in two spatially separated boxes A and B:

|↑y〉 ≡ |A〉, |↓y〉 ≡ |B〉, (8)

where |A〉 (|B〉) is the state of the particle in box A (B). Thus,
we have N (which might be as large as we want) particles in
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two boxes, but if we try to find any specific pair of particles
in one box, we are bound to fail! This is a very paradoxical
situation for N � 3. The probability of the postselection which
leads to this situation is 1

2N , but for N which is not too large it
is feasible to implement experimentally.

The “paradox” in this example follows from (i) the obvious
classical observation that when three or more particles are
located in two boxes, then at least one pair has to be in one
box, and (ii) the quantum property, which follows from the
joint pre- and postselection (but not from pre- or postselection
separately), that no pair of particles can be found in a single
box.

Hardy has already proposed [24] a related experiment on a
pre- and postselected system. It can be viewed as an experiment
with two particles in two boxes [25]. The particles were
prepared in the entangled state,

|�1〉 = 1√
3

(|A〉1|B〉2 + |B〉1|A〉2 + |B〉1|B〉2). (9)

The preparation started with the nonentangled state

|�〉 = 1
2 (|A〉1 + |B〉1) (|A〉2 + |B〉2), (10)

and entanglement was achieved by projecting out the state
|A〉1|A〉2. Then it was postselected in the state

|�2〉 = 1
2 (|A〉1 − |B〉1) (|A〉2 − |B〉2). (11)

The paradoxical feature here is that at intermediate times
each particle is found in box A if it is searched for there, but
the two particles cannot be found together in A. The fact that
each particle is (in this particular sense) in A follows from the
joint pre- and postselection, while the fact that both are not
there follows directly from the preselection.

A generalization of this for the case of N particles is the
preselection of the state

|�1〉= 1√
N2 − N + 1

⎡
⎣(N−1)

N∏
n=1

|B〉n +
N∑

n=1

|A〉n
N∏

j �=n

|B〉j
⎤
⎦

(12)

and the postselection of the state

|�2〉 = 1√
2N

N∏
n=1

(|A〉n − |B〉n). (13)

Every one of the N particles is found with unit probability in
box A if it is searched for there. However, not only can they
not all be found in A, but any number of particles larger than
1 cannot be found there.

All these peculiarities of pre- and postselected systems
can be seen, albeit in a much more complicated way, in
the standard formalism of quantum mechanics with a single
quantum state evolving from the past to the future. The
most surprising features of pre- and postselected quantum
systems are manifested in the outcomes of weak measurements
[21]. Any standard measuring procedure with weak enough
coupling performed on a quantum system preselected in state
|�〉1 and postselected in state |�〉2 yields, instead of one of
the eigenvalues of the measured observable O, the weak value

of O given by the following expression:

Ow ≡ 〈�2|O|�1〉
〈�2|�1〉 . (14)

The weak value might be far away from the eigenvalues of O

and the standard quantum formalism can explain the outcome
by surprising universal interference phenomenon of the pointer
of the measuring device.

The following two theorems connect weak and “strong”
(standard von Neumann) measurements [1]: (i) if, for a pre- and
postselected system, the outcome oi of the strong measurement
of O is known with certainty, then the weak value is the
same, Ow = oi ; (ii) if, for a pre- and postselected system,
the weak value of a dichotomic variable O is equal to one of
the eigenvalues oi , then a strong measurement of O will yield
this value oi with certainty.

In the above generalized examples with N particles, weak
measurements suggest that, in some sense, all particles are in
box A in spite of the fact that, at most, one particle can be found
in A. Indeed, the additive property of weak values implies(

g

N∑
n=1

P(n)
A

)
w

=
N∑

n=1

(
P(n)

A

)
w

= N. (15)

Note, however, that the weak measurement of the product of
the projection operators vanishes,(

N∏
n=1

P(n)
A

)
w

= 0

[
�=

N∏
n=1

(
P(n)

A

)
w

]
, (16)

because the strong value of the product vanishes with certainty.
Let us return to the example with N pre- and postselected

particles in two boxes, in which every particular pair of
particles cannot be found in the same box. It is instructive
to consider this example for identical spinless bosons. The
statement that strong measurement cannot find any particular
pair of particles in any single box is then meaningless because
there is no “particular pair” among N identical particles.
Nevertheless, we still can make a statement about weak
measurements. Let us assume that when two particles are
in the same box, there is a potential V between them.
Weak measurement of the interaction energy between N

particles in the two boxes in our pre- and postselected state
should then yield 0! This can be seen in a straightforward
way by calculating the weak value of the potential energy∑

n�=m V P(n)
A P(m)

B for a system preselected in state (1) and
postselected in state (7). According to the mapping (8) the
particles are described (up to normalization) by the following
two-state vector:

N∏
n=1

(〈A|n + 〈B|n)

(
N∏

n=1

(|A〉n − i|B〉n) +
N∏

n=1

(|B〉n − i|A〉n)

)
.

(17)

Some intuition and an alternative proof of this result are
as follows. The potential energy is the same for identical
and nonidentical particles. For nonidentical particles, the
measurement of the potential energy of any specific pair yields
0 for this particular pre- and postselection. Therefore, the weak
value of the potential energy for this pair is 0. Weak values are
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additive: (A + B)w = Aw + Bw. Thus, the weak value of the
potential energy of all pairs together is 0. Therefore, the weak
value of the potential energy of N identical particles is also 0.

Our next example is based on the most famous entangled
state, the Einstein-Podolsky-Rosen-Bohm state (EPR), which
is a singlet state of two spin- 1

2 particles. It has been noted [26]
that this preselected state, when postselected with a particular
product state, has unusual properties at intermediate times.
The two-state vector is

〈↑x |1〈↑z|2
1√
2

(|↑z〉1|↓z〉2 − |↓z〉1|↑z〉2). (18)

We know that the following outcomes are obtained with
certainty if only one of the measurements is performed: σ (1)

z =
−1, σ (2)

x = −1, and σ (1)
z σ (2)

x = −1. This demonstrates the
failure of the “product rule” for pre- and postselected quantum
systems. If we consider the spatial dichotomic variable instead
of the spin with the correspondence,

|↑z〉1 ≡ |A〉1, |↓z〉1 ≡ |B〉1, (19)

|↑x〉2 ≡ |A〉2, |↓x〉2 ≡ |B〉2, (20)

then we again reach the situation in which each particle is with
certainty to be found in box B if it is searched for there, but
they cannot be found in B together.

We can see another amusing feature of the two-state vector,
(18), when we recast it considering just one spin- 1

2 particle.
In this case we map the spin variable of the first EPR particle
into the spatial variable of our particle via (19) and the spin of
the second EPR particle becomes the spin of our particle. With
this correspondence, the particle is preselected in the state

|�1〉 = 1√
2

(|A〉|↓z〉 − |B〉|↑z〉) (21)

and postselected in the state

|�2〉 = 1√
2

(|A〉 + |B〉)|↑z〉. (22)

In this pre- and postselected state the probability to find the
particle in A at intermediate times vanishes. The weak value
(PA)w vanishes so that, in some sense, the particle is not in A.
Nevertheless, the weak measurement of the spin component
σx in A yields (PAσx)w = −1. If the particle is an electron or a

neutron, we will then sense a nonvanishing magnetic field in A

(if it is weakly measured), but the weak value of the number of
particles in A is 0. Thus, for “weak measurement reality” [27]
the particle is in B, but its magnetic field is in A, which might
be arbitrary far from B. For a possible interpretation of this
result see [28].

In the above case, for weak coupling the particle is in
B, but its magnetic field is in A. However, the particle
generates magnetic field in B too. By considering a particle
in a generalized two-state vector [1], we can arrange that the
magnetic field appears only in A. A particle is described by
a generalized two-state vector

∑
i αi〈�i ||�i〉 when it and an

ancilla (which nobody touches at the intermediate time) are
pre- and postselected in particular entangled states. The weak
value of an observable O of the particle in this case is

Ow =
∑

i αi〈�i |O|�i〉∑
i αi〈�i |�i〉 . (23)

The generalized two-state vector which leads to the phenom-
ena described above is

(〈A| + 〈B|)〈↑z|(|↓z〉|A〉 + |↑z〉|B〉)
+ (〈A| + 〈B|)〈↓z|(|↑z〉|A〉 + |↓z〉|B〉). (24)

Indeed, it is straightforward to see that

(PA)w = 0, (PB)w = 1. (25)

Nevertheless, weak measurement can sense the particle’s
magnetic field only in A:

(PAσx)w = 1, (PAσy)w = (PAσz)w = 0, (26)

(PBσx)w = (PBσy)w = (PBσz)w = 0; (27)

i.e., there is a magnetic field along the x axis corresponding to
a particle in A with spin σx = 1.

We hope that the examples presented above will help to
develop an intuition for understanding pre- and postselected
systems with entanglement and will lead to useful applications
of the peculiar effects such systems exhibit.
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