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Two-photon-counting interferometry has been realized by measuring the electrical current due to two-photon
absorption in the space-charge layer of a semiconductor detector located at the output port of an interferometer.
We apply this technique to study the correlation properties of twin beams issued from parametric fluorescence.
We describe in detail how the different second-order correlation functions (interbeam, intrabeam) can be
extracted at the femtosecond time scale from raw data. The values of these correlation functions determined
by our experiments are in excellent agreement with theory. More precisely, extrabunching in twin beams
is unambiguously demonstrated and theoretically described using two models: a comprehensive multimode
quantum optics model and a simpler classical stochastic approach. Given the high brightness of our twin-beam
source, both theories yield similar results. Finally, convenient analytical expressions of the correlation functions
were derived from both theories, expressions in which we have been able to relate specific terms to accidental and
exact coincidences between photons. Two-photon interferometry thus determines to which extent twin photons
are twin. This technique should become a useful tool for future quantum optics developments.
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I. INTRODUCTION

Since the first measurement by Hanbury-Brown and Twiss
(HBT) [1], photon correlation properties have been important
to numerous applications [2–11]. The HBT interferometry
technique has been successfully extended to other fields, from
neutron to cold atom interferometry [12,13], and has become a
standard characterization tool in photonic applications such as
quantum cryptography [14] or single-photon emission [15,16].
However, HBT time resolution is intrinsically limited by the
single-photon detector response times, precluding the study
of systems with coherence times smaller than a few hundred
picoseconds [17].

As soon as the question of the simultaneity of the creation
of twin-photon pairs by down-conversion was raised [18],
circumventing this limitation became a major challenge for
the quantum optics community [19,20]. The first correlation
experiment with a resolution of a few tens of femtoseconds
was inspired by an ultrashort pulse duration measurement
technique based on second-harmonic generation (SHG) in a
nonlinear crystal [21]. At this time this technique, hindered by
an overall low quantum efficiency, has been overtaken by a
novel approach based on two-photon interferences, the Hong-
Ou-Mandel interferometer, which definitely demonstrated the
quasisimultaneity of the creation of a single twin-photon
pair [22].

Until the last decade, photon correlation studies have been
primarily based on these two main techniques: the HBT
interferometer—limited to light with long coherence time,
and the Hong-Ou-Mandel Interferometer—limited to very low
photon flux.

Since 2004, correlation measurement techniques based on
nonlinear processes have been thoroughly revisited [23–26]
and have provoked the photonics community to take a fresh
look at photon-pair correlation measurement tools [27–37].

Indeed, the sensitivity of the technique based on SHG has
been significantly improved by taking advantage of the high
nonlinearity of periodically poled crystals and by capitalizing
on the detector yield improvements [24].

In such experiments, photon pairs are sent on a beam splitter
and then recombined in a SHG crystal. The second-order
coherence properties are investigated by analyzing the SHG
signal, and varying the delay between the two paths [25,27,28].
Since the SHG is a nearly instantaneous process, the temporal
resolution of this photon correlation experiment can be as good
as a few femtoseconds.

However, SHG in crystals has a very limited spectral accep-
tance. Consequently only the coincidences between photons
belonging to the same pair [26], i.e., those which are phased
matched, will be detected: As stated by Dayan [26], SHG
“post-selects” photons of one pair. Appearing as an advantage
in these experiments [24,25,27,28], this exclusive sensitivity
to exact coincidences between twin photons actually prevents
a complete investigation of the degree of correlation of
such photon beams. More precisely, the amount of exact
coincidences between twin photons cannot be rated relative
to the amount of accidental coincidences originating from the
chaotic nature of each of the beams (the signal and the idler
ones). The effect of exact vs accidental coincidence (i.e., the
simultaneity of twin-photon creation) thus cannot be easily
explored.

Contrary to SHG or resonant two-photon absorption
(TPA) in atoms [23,38–40], multiphoton processes in
semiconductors—occurring between continua of energy—are
not limited by phase matching or resonance conditions [41].
In 2009, it was experimentally demonstrated that two-photon
counting (TPC) in a semiconductor detector allows the study
of second-order correlations of broadband chaotic continuous-
wave (cw) sources down to the microwatt level [42] and
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FIG. 1. (Color online) An intuitive overview of the two-photon-counting (TPC) principle: An electron in the valence band of a semiconductor
is excited by a first photon (energy h̄ω1) onto a “virtual state” in the band gap of the materials. The lifetime of the electron on this virtual state is
determined by Heisenberg’s second uncertainty principle, τH ≈ h̄/(Eg/2), i.e., in the femtosecond range. The electron will then be promoted
into the conduction band by a second photon (energy h̄ω2) inasmuch as (i) h̄ω1 + h̄ω2 > Eg and (ii) the second photon reaches the electron
within a delay smaller than the Heisenberg lifetime. TPC thus reveals the coincidences between photons within few femtoseconds (a). Different
types of coincidence occur between the photons in twin beams: intrabeam accidental coincidences, interbeam accidental coincidences, and
interbeam exact coincidences. All these coincidences will give rise to a TPC event. The purpose of this paper is to sort out the exact coincidences
from the accidental ones (b).

also permits measurements of second-order correlation and
cross-correlation functions of twin beams [43,44]. Moreover,
this technique displays a unique capability to quantify the
amount of pairs of twin photons compared to accidental
coincidences. The purpose of this paper is to present a detailed
description of TPC interferometry and to provide a theoretical
background supporting the interpretation of our results.

II. TPC INTERFEROMETERS

A. An intuitive approach

Let us first provide an intuitive insight of how TPC is well
adapted to the study of photon coincidence phenomena [see
Fig. 1(a)]. Two photon beams (h̄ω1 and h̄ω2) are sent onto
a semiconductor surface (of energy gap Eg). One photon of
energy h̄ωx (x = 1,2) promotes an electron from the valence
band to a virtual state in the band gap of the materials. The
lifetime of the electron on this virtual state is roughly given by
the Heisenberg lifetime τH ≈ h̄/h̄ωx ≈ h̄/( 1

2Eg), i.e., in the
femtosecond range for semiconductors such as Si or GaAs.
The electron will then be promoted onto the conduction band
by a second photon inasmuch as (i) h̄ω1 + h̄ω2 > Eg and
(ii) the second photon reaches the electron within a delay
smaller than the Heisenberg lifetime. At the end of this
process, an electron-hole pair is produced which is ionized
and swept out by the surface electric field of the space-charge
region. In our experiment, the electron is emitted into vacuum,
accelerated by a high electric field and induces an avalanche
from several dynodes. An experimental evaluation of the
quantum efficiency of the TPC is given in Appendix A.

Following our intuitive approach, the TPC signal is
anticipated to be proportional to the expectation value of
〈(1/τH )

∫ τH

−τH
n(t)n(t + τ )dτ 〉 ≈ 〈n(t)2〉, where n(t)dt is the

number of photons incident on the two-photon detector within
time interval dt . In a quantum optics formulation, TPC values
[45] are thus directly related to the expectation value of
the operator Ê(−)(t)Ê(−)(t)Ê(+)(t)Ê(+)(t) where Ê(+)(t) and

Ê(−)(t) are the complex electric field operators and their
Hermitian conjugates, respectively.

Now focusing on twin-photon beams (signal h̄ωs and
idler h̄ωi) generated by parametric down-conversion from
pump photons (of energy h̄ωp) in a nonlinear crystal, three
different two-photon combinations can lead to a TPC event in
a semiconductor [Fig. 1(b)]. Two of them occur at “degenerate”
energy, i.e., h̄ωs + h̄ωs or h̄ωi + h̄ωi , and one at nondegenerate
energy, i.e., h̄ωs + h̄ωi .

An important point has to be highlighted at this stage.
Any couple of photons (h̄ωs, h̄ωi) such that h̄ωs + h̄ωi >

Eg , is likely to be detected, even ones due to accidental
coincidence, e.g., those for which h̄ωs + h̄ωi �= h̄ωp. Herein
lies the key that distinguishes the TPC scheme from techniques
such as SHG, or TPA in atomic systems, which post-select
the (h̄ωs, h̄ωi) couples for which resonance conditions (i.e.,
h̄ωs + h̄ωi = h̄ωp) have to be met. These latter techniques
cannot rate coherent vs incoherent pairs.

Suppose now that the total beam, consisting of the super-
position of twin beams, is split into two sub-beams (by a beam
splitter) and that one sub-beam is retarded by a delay τ relative
to the other one. The two sub-beams are then recombined and
sent on the TPC. The TPC signal recorded varying the delay τ

is thus related to the autocorrelation of the whole parametric
light, i.e., the superposition of the twin beams (h̄ωs, h̄ωi); it will
be referred to as “total autocorrelation signal.” This TPC total
autocorrelation signal involves different intensity correlation
functions which can be expressed thanks to generalized
second-order correlation functions [46]:

g
(2)
lk (τ ) = 〈Ê(−)

k (t)Ê(−)
l (t + τ )Ê(+)

l (t + τ )Ê(+)
k (t)〉

〈Ê(−)
k (t)Ê(+)

k (t)〉〈Ê(−)
l (t)Ê(+)

l (t)〉
, (1)

where k and l can stand for signal (s) or idler (i) and the
involved light beams are supposed to be stationary.

Firstly, in TPC experiments, since the lifetime of a virtual
state during the transition from valence to conduction band
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states is extremely short, the process is intrinsically suitable for
photon correlation studies at ultrashort time scales. Secondly,
as schematically illustrated in Fig. 1(b), degenerate energy
TPC events (h̄ωs + h̄ωs or h̄ωi + h̄ωi) are linked to signal and
idler self-correlation functions, respectively g(2)

ss (τ ) and g
(2)
ii (τ ),

whereas nondegenerate TPC events enable us to measure
the photon cross-correlation between the signal and idler
photons g

(2)
si (τ ). We shall see below how our experimental

setup independently determines these two contributions (self-
and cross-correlation) to the TPC signal.

One should note that the cross-correlation function
g

(2)
si (τ ) may be interpreted as the normalized expectation

〈ni(t)ns(t + τ )〉/〈ns(t)〉〈ni(t)〉. g
(2)
si (τ ) is proportional to the

probability of detecting a signal photon at t + τ once an idler
photon has been detected at t (or the other way around): g(2)

si (τ )
thus determines to which extent twin photons are twin.

B. Experimental details

Two different setups are used, depending on which of the
correlation functions among g(2)

ss (τ ), g
(2)
ii (τ ), and g

(2)
si (τ ) is

considered. In both cases, the photon-pair source is based
on spontaneous parametric down-conversion (SPDC) in a
periodically poled lithium niobate (PPLN) nonlinear crystal
(35 mm long). The phase matching is a type-0 one, meaning
that the three polarizations (pump, signal, and idler) are
the same [47]. The crystal is pumped by a mode-locked
Ti:sapphire laser delivering 10-ps pulses at a repetition rate
of 80 MHz. Averaged over many periods of the mode-locking
cycles, the power of the photon-pair beam centered at 1.56 μm
is about 50 μW for an average pump power of 2 W centered
at 780 nm. This means that the peak power can reach a few
tens of milliwatts. The quasi-phase-matching conditions are
changed by tuning the temperature of the oven containing the
PPLN crystal. Special attention is given to controlling and
compensating for chromatic dispersion effects by the use of a
SF14 glass prism pair setup as advised and demonstrated in
Refs. [24,25,27,28]. It is now well known that high chromatic
dispersion phenomena lead to the decoherence of the beams,
which then display chaotic behaviors [27,28,43]. Finally, as
shown in Refs. [43,44], the pulse duration is large compared
to the coherence time of the source. Consequently, whenever
the pulse intensity is nonzero, we can model it as a cw beam
with a power equal to the pulse’s peak power.

Figure 2 shows the experimental TPC interferometer used
for the total autocorrelation measurement. We recall that the
term “total” refers to the autocorrelation of the beam consisting
of the superposition of the idler and signal beams. This
first setup is based on a standard Michelson interferometer
arrangement. The beam to analyze is sent on a 50/50 beam
splitter. Sub-beams are then recombined after propagating over
different optical paths before being focused by an aspherical
lens on the GaAs photocathode of a photomultiplier tube
(Hamamatsu H7421-50) [42–44,48]. A set of filters is placed
in front of the detector to filter out any unwanted radiation with
photon energy above the semiconductor band gap which would
overwhelm the TPC signal. Adequate filtering is confirmed by
verifying the quadratic dependence of the detector counts as a
function of light intensity over eight orders of magnitude. The

FIG. 2. (Color online) Michelson apparatus: The total beam
consists of the superposition of the twin beams issued from the
parametric down-conversion source. The total beam is split into
two sub-beams by a beam splitter, one sub-beam being delayed
by a motorized mirror. The two sub-beams are recombined and
focused onto the two-photon counter. The TPC signal from the
detector SMich.

2 (τ ) provides an interferogram from which the total
autocorrelation function g(2)(τ ) is deduced. An apparatus controlling
the chromatic dispersion allows dispersion effects to be studied.

focal spot diameter on the photocathode is about 5 μm. The
TPC interferogram acquisition is carried out by translating a
gold-coated mirror with a motorized translation stage while
recording TPC at the same time. The TPC signal delivered
by the detector, once properly normalized (see below) is
the interferogram SMich.

2 (τ ). As detailed below (in Sec. II C),
such an interferometer provides the first- and second-order
correlation measurements [i.e., g(2)(τ ), g(2)

ss (τ ), g
(2)
ii (τ )g(2)

si (τ )]
of the total incident field.

When the field consisted of two distinct wavelengths, a
second TPC apparatus, based on a Mach-Zehnder-like setup,
was developed (Fig. 3). Its design is similar to the one
used in Ref. [28], i.e., the two distinct wavelengths are
separated by a dichroic mirror, propagated on different optical
paths, recombined and focused onto the detection setup. No
oscillatory features due to signal or idler self-interferences
are involved. It is thus clear that only gss(0),gii(0) and the
cross-correlation function g

(2)
si (τ ) are involved. In our case,

the cutoff wavelength λcut of the dichroic mirror, i.e., the

FIG. 3. (Color online) Mach-Zehnder-like apparatus. If the twin
beams are nondegenerate, they can be separated by a dichroic mirror
in two beams of different wavelengths. One of the beams is delayed
relative to the other one by a motorized mirror. The beams are
recombined and focused onto a two-photon counter. The TPC signal
from the counter provides an interferogram SMZ

2 (τ ) from which the
cross-correlation g

(2)
si (τ ) between the two beams is deduced.
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wavelength below (respectively, above) which wavelengths are
reflected (respectively, transmitted), is about 1.56 μm (twice
the pump wavelength). The delay is varied by translating a
mirror mount on the signal-wavelength path (see Fig. 3) and
the detection setup is the TPC device previously described. The
TPC signal delivered by the detector, once properly normalized
(see below), is the interferogram SMZ

2 (τ ).

C. What is measured in the Michelson apparatus?

As we are dealing with correlations which may have a
quantum origin, it is better to use a quantized field approach
from the beginning. The electric field of the radiation is
described by the operator Ê(+)(t) and can be expanded as
a function of the single-frequency field operators Ê(z,ω):

Ê(+)(t) = 1√
2π

∫ ∞

0
dω Ê(z,ω)e−iωt . (2)

The electric field operator Ê(zd,ω) at the position zd of the
detector, situated at the output of the Michelson setup, can be
linked to the operators Ê(zin,ω) and Ê(z′

in,ω) defined at its
two inputs by

Ê(zd,ω) = 1
2 [iη(ω)(1 + e−iωτ )Ê(zin,ω)

− η(ω)(1 − e−iωτ )Ê(z′
in,ω)]. (3)

In this equation, η(ω) = eiϕ(ω) is the phase factor which
accounts for the dispersion experienced by the beams on their
paths.

Considering that (i) a rather high-power field enters at
input port zin (>1 mW), (ii) only vacuum fluctuations enter
at input port z′

in, and (iii) we are only dealing with intensity
measurements, we can neglect the Ê(z′

in,ω) term in Eq. (3).

We can therefore write the field operator at the detector in the
time domain as the sum of the electric field operators at the
output of each path of the interferometer:

Ê(+)(t) ≈ 1
2 [Ê(+)

p (t) + Ê(+)
p (t + τ )], (4)

where Ê(+)
p (t) = i√

2π

∫ ∞
0 dω η(ω)Ê(zin,ω)e−iωt ≈ Ē âp(t) is

the “partial” operator describing each sub-beam. Ē is the mean
electric field per photon (assuming a small enough frequency
bandwidth) and âp(t) is a photon annihilation operator in the
time domain.

The intensity is then given by 〈Ê(−)(t)Ê(+)(t)〉 while
the TPC signal is given by κ 〈Ê(−)(t)Ê(−)(t)Ê(+)(t)Ê(+)(t)〉
[46], κ being the two-photon absorption quantum yield (see
Appendix A). In order to get rid of this quantum yield, one
has to normalize the interferograms. As is usual in these
two-photon absorption experiments [41], the normalization
procedure is the following: The value of the TPC signal is
measured when one arm of the interferometer is blocked [e.g.,
the I (t) one in Fig. 2], and another value is measured when the
other arm is blocked [e.g., the I (t + τ ) one in Fig. 2]; the value
of the normalizing quantity is the sum of these two values.
It is straightforward to show that this normalizing quantity
corresponds to 1

8κ〈Ê(−)
p (t)Ê(−)

p (t)Ê(+)
p (t)Ê(+)

p (t)〉.
Using this normalization procedure and expressing the

output field operators in terms of their two time-delayed com-
ponents [Eq. (4)], one can easily extend the classical formula
of a normalized TPC interferogram SMich.

2 (τ ) [42,49,50]:

SMich.
2 (τ ) = 1 + 2G(2)(τ ) + 4Re[F (1)(τ )] + Re[F (2)(τ )],

(5)

where the functions G(2)(τ ), F (1)(τ ), and F (2)(τ ) are given by

G(2)(τ ) = 〈â†
p(t)â†

p(t + τ )âp(t + τ )âp(t)〉
〈â†

p(t)â†
p(t)âp(t)âp(t)〉

, (6)

F (1)(τ ) = 〈â†
p(t)â†

p(t + τ )âp(t + τ )âp(t + τ )〉 + 〈â†
p(t)â†

p(t)âp(t)âp(t + τ )〉
2〈â†

p(t)â†
p(t)âp(t)âp(t)〉

, (7)

F (2)(τ ) = 〈â†
p(t)â†

p(t)âp(t + τ )âp(t + τ )〉
〈â†

p(t)â†
p(t)âp(t)âp(t)〉

. (8)

If the bandwidth of the optical spectrum is small compared to the carrier angular frequency ω0 (with ω0 = ωp/2 for SPDC light),
we can conveniently use the slowly varying time operator ãp(t) in order to emphasize oscillating terms centered at ω0 and 2ω0:

âp(t) = ãp(t)e−iω0t . (9)

Equations (6)–(8) can thus be rewritten as follows:

G(2)(τ ) = g(2)(τ )

g(2)(0)
, (10)

F (1)(τ ) = e−iω0τ

2g(2)(0)

〈ã†
p(t)[ã†

p(t)ãp(t) + ã
†
p(t + τ )ãp(t + τ )]ãp(t + τ )〉

〈ã†
p(t)ãp(t)〉2

, (11)

F (2)(τ ) = e−i2ω0τ

g(2)(0)

〈ã†
p(t)ã†

p(t)ãp(t + τ )ãp(t + τ )〉
〈ã†

p(t)ãp(t)〉2
, (12)
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where

g(2)(τ ) = 〈â†
p(t)â†

p(t + τ )âp(t + τ )âp(t)〉
〈â†

p(t)âp(t)〉2

is the second-order coherence function of the total incoming
field.

Formulas (10)–(12) show that the experimental data contain
a great deal of information about the incident fields:

(i) F (1)(τ ) (angular frequency ω0 contribution) is remi-
niscent of a first-order correlation function of a Michelson
interferometer.

(ii) F (2)(τ ) (angular frequency 2ω0 contribution) is rem-
iniscent of the optically nonlinear process involved in the
two-photon detector.

(iii) G(2)(τ ) is a slowly varying function which contains
the second-order correlation function between the two beams.
It can thus be obtained by filtering out the high-frequency
contribution from the interferogram leading to SLPF

2 (τ ) = 1 +
2G(2)(τ ).

One may note that, as is well known in the usual pulse du-
ration measurement [41], SMich.

2 (0) = 8. Moreover, assuming
that all field intensities are uncorrelated at long delay times, the
total second-order correlation function g(2)(τ ) can be directly
deduced from the experimental interferogram:

g(2)(τ ) = SLPF
2 (τ ) − 1

SLPF
2 (∞) − 1

. (13)

D. What is measured in the Mach-Zehnder apparatus

The field operator calculated at the two-photon detector
position (see Fig. 3) is given as a function of the fields at the
input by an analog of Eq. (3) for the Michelson setup:

Ê(zd,ω) = {ηi(ω)ξ (ω) − ηs(ω)[1 − ξ (ω)]e−iωτ }Ê(zin,ω)

+ i
√

ξ (ω)[1 − ξ (ω)][1 − e−iωτ ]Ê(z′
in,ω), (14)

where ηs,i(ω) accounts for the chromatic dispersion experi-
enced by the beam on the path i or s from the source output to
the TPC detector and ξ (ω) is the transmission coefficient of the
dichroic mirror at the angular frequency ω (see Fig. 3). Once
again, one can neglect the effect of the vacuum fluctuation
entering on the other input port z′

in. Assuming in addition that
the dichroic mirror has a perfect cutoff frequency ωcut = ωp/2,
the output field operator in the time domain can be written as

Ê(+)(t) ≈ Ē[âs(t + τ ) + âi(t)], (15)

where the signal and idler time dependent annihilation
operators, âs(t) and âi(t), are expanded as a function of
the single-frequency field operators Ê(z,ω) in type 0 phase
matching conditions as follows:

âs(t) = i

Ē
√

2π

∫ ωp

ωp/2
dω η(ω)Ê(zin,ω)e−iωt = ãs(t)e

−iωs t ,

(16)

âi(t) = i

Ē
√

2π

∫ ωp/2

0
dω η(ω)Ê(zin,ω)e−iωt = ãi(t)e

−iωi t .

(17)

ãs(t) and ãi(t) are the corresponding slowly varying time
operators with ωs and ωi the central angular frequencies for
signal and idler, respectively.

From these expressions and using a similar normalization
procedure as for the Michelson apparatus, i.e., normalized
by κ(〈Ê(−)

s Ê(−)
s Ê(+)

s Ê(+)
s 〉 + 〈Ê(−)

i Ê
(−)
i Ê

(+)
i Ê

(+)
i 〉) evaluated a

time t , one finds that the TPC signal in the present Mach-
Zehnder configuration is given by

SMZ
2 (τ ) = 1 + 4〈â†

i (t)â†
s (t + τ )âs(t + τ )âi(t)〉

〈â†
s (t)â†

s (t)âs(t)âs(t)〉 + 〈â†
i (t)â†

i (t)âi(t)âi(t)〉
,

(18)

which can be rewritten in terms of the correlation functions
defined in Eq. (1) as

SMZ
2 (τ ) = 1 + 4g

(2)
si (τ )

× 〈â†
s (t)âs(t)〉〈â†

i (t)âi(t)〉
g

(2)
ss (0)〈â†

s (t)âs(t)〉2 + g
(2)
ii (0)〈â†

i (t)âi(t)〉2
. (19)

Let us note that the constant 1 in Eqs. (18) and (19) originates
from zero-delay self-interference terms gss(0) and gii(0).

Therefore the intensity cross-correlation function g
(2)
si (τ )

can be directly obtained from the present signal [46] by

g
(2)
si (τ ) = SMZ

2 (τ ) − 1

SMZ
2 (∞) − 1

. (20)

III. EXPERIMENTAL TPC INTERFEROGRAMS

A. Autocorrelation measurements using Michelson TPC

Figures 4(a)–4(d) show the experimental TPC interfer-
ograms of the twin beams obtained using the Michelson
apparatus, under different conditions of chromatic dispersion
and phase matching of the SPDC source. The beam spectra are
shown in the insets on the right. The left insets are closeups
of the interferogram at long delays. Each TPC response is
normalized using the procedure described above, i.e., by the
sum of each TPC generated by photons from one path while
the other is blocked.

In the cases of Figs. 4(a) and 4(b), the two beams are altered
by high chromatic dispersion at degeneracy and far from
degeneracy, respectively. In both cases, no distinguishable
features are observed in the insets on the left. The main
difference between these two interferograms is the modulation
observed in the thick red curve at the center of Fig. 4(b).
This modulation occurring at the (ωs − ωi) frequency in the
nondegenerate case will be explained in Sec. IV A. In such
conditions where chromatic dispersion is not compensated,
one can note that, at degeneracy, the TPC interferogram is
equivalent to the one obtained with chaotic sources [42,43].

In the cases of Figs. 4(c) and 4(d), chromatic dispersion
phenomena are carefully compensated. The modulation at
(ωs − ωi) still occurs and is more clearly visible. The main
difference between these two figures and Figs. 4(a) and 4(b) is
the onset of fast oscillations at long time delays [see left insets
in Figs. 4(a)–4(d)]. In order to analyze this spectral component,
a time-frequency analysis is carried out.

Figure 5 shows the result of this time-frequency analy-
sis, i.e., a plot of the frequency components of the TPC
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FIG. 4. (Color online) Experimental TPC interferograms of the twin beams obtained with the Michelson apparatus of Fig. 2. The thin gray
curves in the central part of the figures are the raw interferograms with no data processing. The thick red curve is obtained by low-frequency
filtering of the thin gray curves. The second-order correlation function g(2)(τ ) is deduced from this thick red curve. The right insets show the
spectrum of the incident beam. The left insets are a closeup of the interferograms at long delay. These four panels map the following situations:
(a) degenerate beams, no dispersion compensation; (b) nondegenerate beams, no dispersion compensation; (c) degenerate beams, dispersion
compensation; (d) nondegenerate beams, dispersion compensation.

interferogram as a function of the delay τ (spectrogram),
in the nondegenerate case [Fig. 4(d)]. Many features may
be observed in this figure where one can easily distinguish
the spectral contents of functions G(2)(τ ) [or g(2)(τ )] at low
frequency [Eq. (6)], F (1)(τ ) centered at ωp/2 [Eq. (11)], and
F (2)(τ ) centered at ωp [Eq. (12)].

Firstly, one can notice that the spectral content of g(2)(τ )
is only visible for short delays (τ < 200 fs) and contains a
modulation term at (ωs − ωi) which is observed for correlated
as well as uncorrelated lights [see Figs. 4(d) and 4(b)]. The
origin of such features is discussed in Sec. IV.

As for g(2)(τ ), the contribution of F (1)(τ ) is only visible for
short delays. It mainly consists of two spectral components at
ωs and ωi , whose origin is also discussed in Sec. IV.

The spectral content of F (2)(τ ) is more remarkable: Besides
second harmonics (2ωs and 2ωi) also visible at short delays
only, an additional component appears at the pump frequency
ωp [see also left inset in Figs. 4(c) and 4(d)] and does not vanish

for very long delay. This long-lasting oscillation at the pump
frequency was previously observed with other techniques [25,
44,51–53]. It is related to the particular coherence of the whole
photon field due to the coherence imposed by the pump field
as discussed in Sec. IV B4.

Second-order correlation functions can be finally extracted
from these interferograms by filtering out high frequencies
and using Eq. (13). Figure 6 shows g(2)(τ ) of several sources
emitting around 1.55 μm and obtained using this technique: a
cw laser, a chaotic source [from Fig. 4(a)], and a degenerate
photon-pair source displaying the same spectral content as
the chaotic one [from Fig. 4(c)]. Let us recall that, by
simply adjusting the dispersion compensation setup, we can
continuously tune our source from highly correlated twin
beams (Fig. 2) to two independent chaotic ones. The distinction
between these three sources is unambiguously underlined by
the experimental value of g(2)(0): 1 for laser, 2 for chaotic
source, and 3 for twin beams. This latter extrabunching can
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FIG. 5. (Color online) Time-frequency analysis (i.e., the spectral
content of the signal as a function of the delay τ ) of the interferogram
in Fig. 4(d).

intuitively be linked to the additional exact coincidences
of photons from the same pair as illustrated in Fig. 1(b)
[44,46].

At this stage, it might be useful to remember that, though
the rough interferograms for the chaotic [Fig. 4(a)] and the
twin beams [Fig. 4(c)] display the same value at zero delay,
the deduced second-order correlation functions are different
since the long term behaviors [S(2)

LPF (∞)] are different [see
Eq. (13)].

B. Nondegenerate biphoton cross-correlation measurements
using the Mach-Zehnder apparatus

Finally, the cross-correlation functions g
(2)
si (τ ) were directly

measured thanks to the modified Mach-Zehnder setup when
signal and idler wavelengths can be conveniently separated,
i.e., in the nondegenerate case.

Figures 7(a) and 7(b) show g
(2)
si (τ ) obtained with the use of

Eq. (20). One notes that g
(2)
si (0) = 2 in contrast to g

(2)
si (0) = 1

for independent beams. This striking behavior is another

FIG. 6. (Color online) Second-order correlation functions g(2)(τ )
of several sources emitting around 1.55 μm obtained by filtering out
Michelson TPC data: a cw laser, a chaotic source [from Fig. 4(a))],
and a photon-pair source with the same spectral content as the chaotic
source [from Fig. 4(c)].

FIG. 7. (Color online) Cross-correlation gsi(τ ) measurements by
the Mach-Zehnder apparatus of Fig. 3: (a) with no dispersion and (b)
altered by a dispersive element on the beam path. Red dashed curve
in (a) is extracted from the Michelson apparatus results of Fig. 4(d)
using Eqs. (21)–(23).

clear signature of additional exact coincidences between
the twin-beam photons. The signal and idler wavelengths
are, respectively, centered at 1.45 and 1.69 μm (inset). In
Fig. 7(a), chromatic dispersion phenomena are well compen-
sated whereas in Fig. 7(b)), the group delay dispersion—the
second derivative of the spectral phase—evaluated at the
degeneracy frequency ϕ′′(ωp/2) is about 4900 fs2 (adding a
dispersive element on the beam path).

These results quantitatively demonstrate the correlations
existing between the signal and idler photons within an
equivalent coherence time of 200 fs and confirm the expected
chromatic dispersion sensitivity [27,28,43].

In order to conveniently describe these striking results of
TPC interferograms, it is clear that the peculiar coherence
properties between signal and idler beams have to be taken
into account. This is developed in the next section.

IV. INTERPRETATION OF EXPERIMENTAL RESULTS

A. Intra- and interbeam contributions

The total second-order correlation function g(2)(τ ) can be
easily related to the signal-signal, idler-idler, and signal-idler
correlation functions from Eqs. (1), (16), and (17) through

g(2)(τ ) = g
(2)
intra(τ ) + g

(2)
inter(τ ), (21)
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where g
(2)
intra(τ ) and g

(2)
inter(τ ) are two different kinds of contri-

butions in the g(2) function:an intrabeam one,

g
(2)
intra(τ ) = 1

4

[
g(2)

ss (τ ) + g
(2)
ii (τ )

]
, (22)

and an interbeam one,

g
(2)
inter(τ ) = 1

2

(
g

(2)
si (τ ) + 4Re

{
e−i(ωi−ωs )τ

× 〈ã†
s (t + τ )ã†

i (t)ãi(t + τ )ãs(t)〉
〈[ã†

s (t) + ã
†
i (t)][ãs(t) + ãi(t)]〉2

})
. (23)

In these equations, g(2)
ss , g

(2)
ii , and g

(2)
si are nonoscillating

functions while the last term in the interbeam contribution
oscillates at the angular frequency (ωs − ωi). This explains
the (ωs − ωi) modulation observed in Figs. 4 and 5.

Equation (23) shows that g
(2)
si (τ ) (see Sec. III B) may also

be obtained from the Michelson apparatus by filtering out
the ωs − ωi oscillating term from the interbeam correlation
function g

(2)
inter(τ ). This result is shown in Fig. 7(a) and

compares well with the result of the Mach-Zehnder apparatus.

B. Calculation of the photon correlation functions from the
twin-beam properties

Our aim is now to relate our observations to the correlation
properties of the SPDC source. Experimental results show that
we clearly need to introduce in our theoretical description the
chromatic dispersion effects and the fact that the SPDC light
contains twin photons.

Given the low quantum yield of two-photon absorption and
the dark count rate (28 s−1), the typical power involved in
our experiments is rather high (photon flux peak value 
 ∼
1018 s−1). Since the bandwidth of the beams is � ≈ 1014 s−1,
the number of photons per mode is high (∼104). We are then
in a situation where quantum correlation effects are involved
in intense beams, a situation reminiscent of the “twin beams”
generated by optical parametric oscillators above threshold
which display strong quantum intensity correlations [54].
In the present case, though the quantum description of the
phenomenon is by far the most satisfying and simple one, a
semiclassical description of the phenomenon is also possible
and proposed in Appendix B.

1. Description of the parametric down-conversion process

A general description of SPDC second-order correlation
and its application to a narrow-bandwidth “two-photon detec-
tor” (SFG or TPA in atoms) can be found in Ref. [26]. Here, we
mainly aim at theoretically underlining the interest of a large
two-photon detection bandwidth. Moreover, since we deal with
a large number of photons per mode, simplifications may be
introduced, leading to simple expressions, the physics of which
may be easily captured. The following detailed description is
based on a continuous-variable description of creation and
annihilation operators [26,43,46,55].

The photon-pair annihilation operator â(ze,ω) at the output
of the nonlinear crystal can be expressed by means of crystal
entrance operators â(ω) and â†(ωp − ω):

â(ze,ω) = [μ(ω)â(ω) + i ν(ω)â†(ωp − ω)]

× exp{i[�k(ω)/2 + k(ω)]L}. (24)

In this equation, k(ω) is the wave vector at angular frequency
ω and �k(ω) is the quasi-phase-mismatch parameter in the
periodically poled crystal given by

�k(ω) = k(ωp) − k(ω) − k(ωp − ω) − 2π


, (25)

where  is the poling period of the PPLN crystal. L is the
crystal length. Finally, the parametric interaction propagation
factors μ(ω) and ν(ω) are given by the formulas [55]

μ(ω) = cosh[γ (ω)L] − i
�k(ω)

2γ (ω)
sinh[γ (ω)L], (26)

ν(ω) = g(ω)

γ (ω)
sinh[γ (ω)L], (27)

where the parametric gain g(ω) can be obtained from the
incident pump intensity Ip, the effective nonlinear coefficient
deff (16 pm/V), the speed of light c, and the vacuum impedance
Z0 (=377 �):

g(ω) = deff

c

√
2ω[ωp − ω]Z0Ip

n(ω)n(ωp − ω)n(ωp)
, (28)

and γ (ω) is the effective parametric gain:

γ (ω) =
√

g(ω)2 − �k(ω)2/4. (29)

As the experimental down-converted spectrum (� 50 nm)
and TPC (∼600 nm) bandwidths are much broader than the
pump bandwidth (∼0.06 nm), we neglected the latter and
considered an infinitely-narrow-band pump at the angular
frequency ωp. Let us note that due to the intrinsic symmetry
of the type 0 generation process, signal and idler propagation
factors are equal, i.e., μ(ω) = μ(ωp − ω) and ν(ω) = ν(ωp −
ω).

2. A generalized expression of the interbeam first-order
correlation function g(1)

si (τ )

By expanding the signal-idler cross correlation function
[Eq. (1)] thanks to Eq. (24) and using the well-known
commutation rule [46],

[â(ω),â+(ω′)] = δ(ω − ω′), (30)

a tedious but straightforward derivation (see Appendix C) [56]
enables us to write g

(2)
si (τ ) for twin beams as

g
(2)
si (τ ) = 1 + ∣∣g(1)

si (τ )
∣∣2

, (31)

which is somewhat similar to the result obtained for chaotic
beams [46]. In Eq. (31), we introduce the following first-order
cross-correlation function defined as

g
(1)
si (τ ) = 〈e−i ϕ0 ãs(t + τ )ãi(t)〉e−iωsτ√

〈ã†
s (t)ãs(t)〉〈ã†

i (t)ãi(t)〉

= 1

2π
√

φsφi

∫ ωp

ωp/2
dω η(ω)η(ωp − ω)ν(ω)μ(ω)e−i ωτ .

(32)

In this equation, ϕ0 = [k(ωp) − 2π


] + π
2 is a convenient

constant phase factor and φs (respectively, φi) is the signal

013844-8



TWO-PHOTON-COUNTING INTERFEROMETRY PHYSICAL REVIEW A 87, 013844 (2013)

(respectively, idler) photon flux given by [46]

φs = 1

2π

∫ ωp

ωp/2
dω |η(ω)ν(ω)|2,

(33)

φi = 1

2π

∫ ωp/2

0
dω |η(ω)ν(ω)|2.

The signal-idler first-order cross-correlation function g
(1)
si (τ )

describes the coherence of the photon-pair field relative to the
pump one. It is linked to the idler-signal function by g

(1)
si (τ ) =

e−i ωpτ g
(1)
is (−τ ). Two other properties have to be noticed here:

(i) |g(1)
si (τ )| can be higher than 1, and (ii) such a function is

sensitive to chromatic dispersion as opposed to usual first-
order correlation function of cw sources.

3. Second-order correlation function g(2)(τ ) of twin beams

By introducing Eq. (24) into Eq. (23) and carrying out
the derivation in the same way as detailed in Appendix C
for the calculation of Eq. (31), the interbeam contribution
can now be expressed by use of a first-order correlation
functions

g
(2)
inter(τ ) = 1

2
+ 1

2
Re

[
g(1)

ss (τ )g(1)∗
ii (τ )

] +
∣∣g(1)

si (τ ) + g
(1)
is (τ )

∣∣2

4
,

(34)

where g(1)
ss (τ ) [respectively, g

(1)
ii (τ )] is the signal (respectively,

idler) first-order correlation function:

g(1)
ss (τ ) = 1

2πφs

∫ ωp

ωp/2
dω |η(ω)ν(ω)|2e−i ωτ ,

(35)

g
(1)
ii (τ ) = 1

2πφi

∫ ωp/2

0
dω |η(ω)ν(ω)|2e−i ωτ .

To illustrate the scope of Eq. (34), one can analyze its value at
zero delay. In this case, g(1)

ss (0) = g
(1)
ii (0) = 1 and g

(2)
inter(τ ) =

1 + 1
4 |g(1)

si (0) + g
(1)
is (0)|2. We recover here the value of “1” if

the two chaotic sources are independent, whereas the last term
[ 1

4 |g(1)
si (0) + g

(1)
is (0)|2] describes the peculiar properties of the

twin-beam correlations.

We are thus proposing the following interpretation of
Eq. (34). The two first terms of the right-hand side (i.e.,
{1 + Re[g(1)

ss (τ )g(1)∗
ii (τ )]}/2) are related to “accidental” coinci-

dences due the chaotic behavior of the source. The third term,
[i.e., |g(1)

si (τ ) + g
(1)
is (τ )|2/4] is the coherent part due to the exact

coincidences between the photons of a same pair [26,43]. It is
easy to see that, compared to a chaotic source, this last term
is responsible for the biphotons’ “extrabunching” parameter
which leads to g(2)(0) > 2, as schematically illustrated in
Fig. 1(b).

To highlight the terms where the carrier frequencies ωs and
ωi are involved, let us introduce the slowly varying envelopes
of the correlation functions defined as

g
(1)
jk (τ ) = g̃

(1)
jk (τ )e−iωkτ . (36)

The intra- and interbeam second-order correlation functions
can then be rewritten as

g
(2)
intra(τ ) = 1

2 + 1
4

[∣∣g̃(1)
ss (τ )

∣∣2 + ∣∣g̃(1)
ii (τ )

∣∣2]
, (37)

and

g
(2)
inter(τ ) = 1

2
+

∣∣g̃(1)
si (τ )

∣∣2 + ∣∣g̃(1)
si (τ )

∣∣2

4

+ 1

2
Re

{[
g̃(1)

ss (τ )g̃(1)∗
ii (τ ) + g̃

(1)
is (τ )g̃(1)∗

si (τ )
]

× e−i(ωs−ωi )τ
}
. (38)

One thus recovers the oscillation at ωs − ωi angular frequency
that is observed in Figs. 4 and 5. One could also note that these
oscillations exist even if the fields are not mutually coherent,
which is experimentally observed. The term “quantum beat-
ing” usually given to this term may be somewhat misleading.
It is related to the indistinguishable nature of the paths taken
by each photon [57].

4. First- and second-order correlation oscillating functions

To complete the TPC interferogram modeling, it remains to
calculate the two contributions F (1)(τ ) and F (2)(τ ) introduced
in Eqs. (7) and (8). These functions are calculated in the same
way as for Eqs. (21), (31), and (34), and are, respectively, given
by

F (1)(τ ) = 1

g(2)(0)

{
g(1)

ss (τ ) + g
(1)
ii (τ ) + g

(1)
si (0)

4

[
g

(1)
si

∗(−τ ) + g
(1)∗
is (−τ )

] + g
(1)∗
si (0)

4

[
g

(1)
si (τ ) + g

(1)
is (τ )

]}
, (39)

F (2)(τ ) = 1

2g(2)(0)

{[
g(1)

ss (τ ) + g
(1)
ii (τ )

]2 + 2
∣∣g(1)

si (0)
∣∣2

e−i ωpτ
}
. (40)

As done with Eqs. (37) and (38), Eqs. (39) and (40) can be rewritten in terms of slowly varying envelope correlation functions:

F (1)(τ ) = 1

g(2)(0)

{[
g̃(1)

ss (τ ) + g̃
(1)
si (0)

4
g̃

(1)∗
is (−τ ) + g̃

(1)∗
si (0)

4
g̃

(1)
is (τ )

]
e−iωsτ

+
[
g̃

(1)
ii (τ ) + g̃

(1)
si (0)

4
g̃

(1)∗
si (−τ ) + g̃

(1)∗
si (0)

4
g̃

(1)
si (τ )

]
e−iωiτ

}
, (41)

F (2)(τ ) = 1

2g(2)(0)

{[
g̃(1)

ss (τ )
]2

e−2iωsτ + [
g̃

(1)
ii (τ )

]2
e−2iωiτ + 2

[
g̃(1)

ss (τ )g̃(1)
ii (τ ) + ∣∣g̃(1)

si (0)
∣∣2]

e−i ωpτ
}
. (42)
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It is clear from Eq. (39) that the first-order correlation
functions g(1)(τ ) can be extracted from the measurement of
F (1)(τ ).

We shall now show how Eqs. (40)–(42) explain the
experimental results of Figs. 4 and 5. One notes from Eq. (41)
that F (1)(τ ) contains only terms oscillating at carrier angular
frequencies ωs and ωi . These oscillations exist inasmuch as the
different first-order correlation functions g̃(1)

xy (τ ) (x,y = s,i) are
nonzero, i.e., within the coherence time.

Equations (40) and (42) show that for a chaotic source, the
contribution F (2)(τ ) is proportional to the square of the first-
order correlation function of the total field g(1)(τ ) = g(1)

ss (τ ) +
g

(1)
ii (τ ), leading to oscillating terms at angular frequencies 2ωs ,

2ωi , and ωp. Oscillations at 2ωs and 2ωi exist inasmuch as
g̃(1)

ss (τ ) and g̃
(1)
ii (τ ) are nonzero. Similarly, oscillations at ωp

exist inasmuch as g̃(1)
ss (τ )g̃(1)

ii (τ ) is nonzero [we recall that
g̃

(1)
si (0) = 0 for mutually incoherent beams]. These oscillations

are thus present for delays shorter than the coherence time of
the chaotic source.

In the case of a twin-beam field, an additional term appears,
proportional to |g(1)

si (0)|2 and oscillating at the pump frequency
ωp in our case. This oscillation persists during the whole pump
pulse duration [25,44,58,59].

C. “High-gain” regime

Taking into account our experimental conditions (high-gain
regime), some further simplifications can be made. The phase-
mismatch parameter �k(ω) can be neglected compared to the
parametric gain g(ω). This assumption leads to the well-known
propagation factor approximation in Eqs. (26) and (27):

μ(ω) ≈ ν(ω) ≈ 1
2 exp[g(ω)zc]. (43)

Moreover, as the chromatic dispersion is compensated
by a prism pair setup, the dispersion factor η(ω) is equal
to 1. The first-order cross-correlation functions [g(1)

si (τ ) and
g

(1)
is (τ )] are thus equal to their respective first-order corre-

lation function: g(1)
ss (τ ) = g

(1)
si (τ ) = g

(1)∗
si (−τ ) and g

(1)
ii (τ ) =

g
(1)
is (τ ) = g

(1)∗
is (−τ ) [see Eqs. (32) and (35)].

Using the above approximations, the components of inter-
ferograms given in Eqs. (21), (39), and (40) are found to be

g(2)(τ ) = 1 +
∣∣g(1)

ss (τ ) + g
(1)
ii (τ )

∣∣2

2
, (44)

F (1)(τ ) = g(1)
ss (τ ) + g

(1)
ii (τ )

2
, (45)

F (2)(τ ) =
[
g(1)

ss (τ ) + g
(1)
ii (τ )

]2

6
+ e−iωpτ

3
. (46)

Equation (44) shows that for high gain and if the dispersion
is zero, the g(2)(0) value is 3 [g(1)

ss (0) = g
(1)
ii (0) = 1]. Of course,

values higher than 3 can be obtained at lower gain. So as to
emphasize the specificities of twin beams vs chaotic light,
let us write the corresponding expressions of g(2)(τ ), F (1)(τ ),
and F (2)(τ ) for uncorrelated beams [g(1)

si (τ ) = 0]. Thereby,

Eqs. (21), (39), and (40) become

g
(2)
chao.(τ ) = 1 +

∣∣g(1)
ss (τ ) + g

(1)
ii (τ )

∣∣2

4
, (47)

F
(1)
chao.(τ ) = g(1)

ss (τ ) + g
(1)
ii (τ )

2
, (48)

F
(2)
chao.(τ ) =

[
g(1)

ss (τ ) + g
(1)
ii (τ )

]2

4
= [

F
(1)
chao.(τ )

]2
. (49)

As already highlighted, a first obvious difference between
twin beams and uncorrelated light can be seen when one
compares the g(2)(τ ) and g

(2)
chao.(τ ) expressions given by

Eqs. (44) and (47). Indeed, even in the high-gain “classical”
regime, there is an unequivocal extrabunching effect linked
to the twin character of the beams, i.e., g(2)(0) = 3 while
g

(2)
chao.(0) = 2.

On the other hand, the expressions of the interferogram
components F (1)(τ ) are identical for the twin beams [see
Eq. (45)] and the chaotic beams [see Eq. (48)]. This is not
surprising since F (1)(τ ) describes the first-order coherence
properties. Consequently chaotic and twin beams with iden-
tical spectral content will display the same interferogram
component F (1)(τ ). TPC interferometry thus provides a si-
multaneous measurement of the first-order coherence function
g(1)(τ ) from which the spectral content of the beams may be
determined by the Wiener-Khintchine theorem.

Even in the high-gain regime, the second-order oscillating
function F (2)(τ ) still exhibits the discriminating features
discussed in the previous subsection concerning Eq. (40). The
study of F (2)(τ ) thus provides an alternative way to recover
the specific properties of twin beams, i.e., the evaluation
of the extrabunching correlation term |g(1)

si (0)|2 [here with
|g(1)

si (0)|2 = 1] and the determination of the biphoton coher-
ence properties.

Figure 8 shows the TPC interferogram modeling using
Eq. (5) and Eqs. (34)–(40) without further approximation.
All the physical parameters used in Eqs. (24)–(29) have been
experimentally determined so that no adjustable parameters
have been used. The agreement between experiment (Fig. 4)
and theory (Fig. 8) is excellent.

V. CONCLUSION

In this paper, we have described and theoretically backed
up in detail the operation principles of two-photon-counting
interferometry. This technique is shown to offer drastic advan-
tages compared to those of SHG: (i) It is more convenient since
no phase matching condition is required and (ii) it is a non-
resonant technique so that accidental as well as exact photon
coincidences can be detected and rated relative to each other.
Moreover it provides a huge detection bandwidth, allowing
the correlation properties to be determined at the femtosecond
time scale. Using this experimental configuration, different
light beams have been investigated: lasers, blackbody, and
twin beams issued from parametric down-conversion. Photon
bunching in blackbody chaotic sources [i.e., g(2)(0) = 2] as
well as photon extrabunching in bright twin beams [i.e.,
g(2)(0) = 3], either degenerate or nondegenerate, have been
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FIG. 8. (Color online) Modeling of the TPC interferograms
corresponding to the experimental conditions of (a) Fig. 4(c) and
(b) Fig. 4(d). The quantum model is described in Sec. IV.

unambiguously demonstrated at the femtosecond time scale.
We have described how these results could be intuitively
explained in terms of accidental and exact coincidences
between pairs of photons.

We have shown how and which second-order correlation
parameters can be extracted from our measurements, particu-
larly the cross-correlation function between two beams g

(2)
si (τ )

but also intrabeam g
(2)
intra(τ ) and interbeam g

(2)
inter(τ ) ones. Using

a quantum optics theory as well as a stochastic semiclassical
approach, we have been able to find relations between these
correlation terms and attribute specific terms to accidental
and exact coincidences between photons. Theoretical models
(either based on the quantum or stochastic approach) are in
excellent agreement with our experimental results, with no
adjustable parameters. Particularly, all the features appear-
ing in the time-frequency analysis of our TPC spectra are
thoroughly explained and used for the determination of the
different second-order correlation functions.

This technique could also be applied to the determination
of antibunching in quantum beams. For this, in order to fit our
experimental time scales, a single-photon source delivering at
least one photon every 100 fs (on average) would be necessary
(i.e., in the microwatt range for ≈1 eV photon). Moreover, it
would be interesting to investigate an experimental situation

in which there is less than one photon per mode (i.e., 
 � �

where 
 is the photon flux and � is the bandwidth, both in
s−1), for which important extrabunching effects [g(2)(0) � 3]
can be obtained [60]. Work is currently in progress to develop a
TPC device with an enhanced two-photon detectivity allowing
the investigation of such low photon fluxes.
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APPENDIX A: ESTIMATION OF THE TPC YIELD IN GaAs

In order to estimate the quantum yield of TPC in GaAs, we
will resort to the usual semiclassical approach in which the
two-photon transition rate s2 in a semiconductor detector is
given by a quadratic law of the form

s2 = qβ
P 2

S
, (A1)

where P is the incident light power, S is the light spot
area on the photocathode, and β is the TPC coefficient.
β (in cm2 W−2 s−1) is related to the two-photon absorption
coefficient α2 (in cm W−1) through the relation β = α2 W

h̄ω

where W is the effective space-charge layer width [47] and h̄ω

is the photon energy.
Assuming an ideal Gaussian beam, s2 can be written as a

function of the photocathode position zd relative to the beam
waist position:

s2 = β
P 2

πw2
0

1

1 + (zd/z0)2
, (A2)

where z0 = πw2
0/λ is the Rayleigh length, λ is the source

wavelength (1.55 μm) and w0 is the beam waist. Figure 9
shows a TPC Z scan [61] together with a theoretical fit by
Eq. (A2). The agreement is excellent, indicating a coefficient
β of 402 m2 W−2 s−1 (i.e., α2 ≈10.25 cm GW−1) assuming a
1-μm effective collection length W . This value is somewhat
smaller than the expected 15 cm GW−1 but little is known on

FIG. 9. (Color online) Variation of the TPC signal as a function of
the detector position relative to the focus of a cw 1.55-μm laser diode.
The result of this TPC Z scan experiment is fitted using Eq. (A2).
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the collection efficiency in the space-charge layer, the emission
efficiency of the electrons in the vacuum, and additional losses
within the detector.

APPENDIX B: STOCHASTIC DESCRIPTION OF
TWIN-PHOTON BEAMS

In Ref. [46], Loudon proposed the following definition of
a nonclassical regime, involving the self- and cross-second-
order correlations between beams:∣∣g(2)

si (0)
∣∣2

>
∣∣g(2)

ss (0)
∣∣∣∣g(2)

ii (0)
∣∣. (B1)

Since, in our experiments, the equality |g(2)
si (0)|2 =

|g(2)
ss (0)||g(2)

ii (0)| = 4 applies, a description using the stochastic
fluctuation of light is thus likely to take our results into account.
The goal of this Appendix is to provide such a stochastic
description.

We consider an assembly of n independent dipoles (n � 1)
radiating at mean carrier frequencies ωs and ωi . In this way,
the signal field can be written as

Es(t) = Es,ele
−iωs t

n∑
j=1

e−iϕs,j (t), (B2)

where ϕs,j (t) is the phase angle of an elementary signal field
from the dipole j , which is completely unrelated to the other
dipoles (as ones of a chaotic source) and Es,el is the elementary
dipole field amplitude [46]. The idler field is given by a similar
expression by replacing subscript s by i.

We shall start with the evaluation of the cross-correlation
function g

(2)
si (τ ):

〈Is(t)Ii(t + τ )〉

= E4
s,ele

i(ωs−ωi )τ

〈∣∣∣∣∣
n∑

j=1

e−iϕs,j (t)

∣∣∣∣∣
2∣∣∣∣∣

n∑
j ′=1

e−iϕ′
i,j (t)

∣∣∣∣∣
2〉

. (B3)

The following derivation is based on the classical relation
between the phases of parametrically mixed waves:

ϕs,j (t) + ϕi,j (t) = ϕpump(t) − π

2
. (B4)

This last expression describes the coherence between the idler
and signal beams, enforced by the coherence of the pump
ϕpump(t) = ϕpump. Using this latter relation in Eq. (B3), and
neglecting the terms in n, one finds

〈Is(t)Ii(t + τ )〉 = n2I 2
el(1 + |〈e−i[ϕs,j (t+τ )+ϕi,j (t)]〉|2). (B5)

Introducing the interbeam first-order correlation function,

g
(1)
si (τ ) = 〈ei ωptEs(t + τ )Ei(t)〉√

IiIs

= e−i ωsτ 〈exp{−i[ϕs,j (t + τ ) + ϕi,j (t)]}〉, (B6)

Eq. (B5) also reads

g
(2)
si (τ ) = 1 + ∣∣g(1)

si (τ )
∣∣2

, (B7)

which is similar to Eq. (31) derived in the frame of the quantum
theory.

The second-order correlation function of the twin beams
is now given by Eqs. (21)–(23) which still holds in this
stochastic approach. We are left with evaluating the quantity
Re〈e−i(ωi−ωs )τEs(t)E∗

s (t + τ )Ei(t + τ )E∗
i (t)〉.

Using Eq. (B2), the quantity in brackets can be expanded
as

〈ei(ωs−ωi )τEs(t)E
∗
s (t + τ )Ei(t)E

∗
i (t + τ )〉

= Es,el
4ei(ωs−ωi )τ

〈(
n∑

j=1

e−iϕs,j (t)

)(
n∑

j ′=1

eiϕs,j ′ (t+τ )

)

×
(

n∑
j ′′=1

eiϕi,j ′′ (t)

)(
n∑

j ′′′=1

e−iϕi,j ′′′ (t+τ )

)〉
. (B8)

Using the correlation of Eq. (B4) and neglecting the terms in
n, one finds

〈ei(ωs−ωi )τEs(t)E
∗
s (t + τ )Ei(t)E

∗
i (t + τ )〉

≈ n2I 2
ele

i(ωs−ωi )τ 〈e−i[ϕs,j (t)−ϕs,j (t+τ )]〉〈ei[ϕi,j (t)−ϕi,j (t+τ )]〉
+ n2I 2

ele
i(ωs−ωi )τ 〈e−i[ϕs,j (t)+ϕs,j (t+τ )]〉〈ei[ϕi,j (t)+ϕi,j (t+τ )]〉.

(B9)

Considering the intrabeam first-order correlation functions
given by [46],

g(1)
ss (τ ) ≡ 〈Es(t)Es ∗ (t + τ )〉

〈|Es(t)|2〉
= e−i ωsτ 〈exp{−i[ϕs,j (t) − ϕs,j (t + τ )]}〉,

(B10)

g
(1)
ii (τ ) ≡ 〈Ei(t)Ei ∗ (t + τ )〉

〈|Ei(t)|2〉
= e−i ωiτ 〈exp{−i[ϕi,j (t) − ϕi,j (t + τ )]}〉,

Eq. (B9) finally leads to

Re〈ei(ωs−ωi )τEs(t)E
∗
s (t + τ )Ei(t)E

∗
i (t + τ )〉

= I 2
0

[∣∣g(1)
ss (τ )

∣∣∣∣g(1)
ii (τ )

∣∣ + ∣∣g(1)
si (τ )

∣∣2]
cos(ωs − ωi)τ.

This last term |g(1)
si (τ )|2 cos(ωs − ωi)τ would be missing if the

idler and signal were not linked by the coherence condition of
Eq. (B4).

Finally, from Eqs. (21)–(23), the second-order correlation
function of the twin beams is given by

g(2)(τ ) = 1
4

[
g(2)

ss (τ ) + g
(2)
ii (τ ) + 2g

(2)
si (τ )

]
+ 1

2

[∣∣g(1)
ss (τ )

∣∣∣∣g(1)
ii (τ )

∣∣ + ∣∣g(1)
si (τ )

∣∣2]
cos(ωs − ωi)τ.

(B11)

Let us assume that idler and signal beams are individually
chaotic, i.e., g(2)

ss (τ ) = g
(2)
ii (τ ) = 1 + |g(1)

chao.(τ )|2. The second-
order correlation function [Eq. (B11)] now reads

g(2)(τ ) = 1 +
∣∣g(1)

chao.(τ )
∣∣2

2
[1 + cos(ωs − ωi)τ ]

+
∣∣g(1)

si (τ )
∣∣2

2
[1 + cos(ωs − ωi)τ ]. (B12)

This latter expression is consistent with Eqs. (21), (22), and
(34) and exhibits all the main features observed in this study:
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(i) The term “1” is the second-order function at very long
delay when the fields have lost all their coherence properties.

(ii) The term |g(1)
chao(τ )|2

2 [1 + cos(ωs − ωi)τ ] describes acci-
dental coincidences. It provides the usual bunching behavior
for incoherent beams. As already discussed in Sec. IV B 3, one
could note that the oscillations exist even if the fields are not
mutually coherent, which is experimentally observed.

(iii) The last term, |g(1)
si (τ )|2

2 [1 + cos(ωs − ωi)τ ], exists only
if the fields are mutually coherent. It describes exact coinci-
dences between twin photons.

Finally one notes that at zero delay,

g(2)(0) = 2 + ∣∣g(1)
si (0)

∣∣2
, (B13)

an expression which highlights the extrabunching effect when
the beams are mutually coherent.

APPENDIX C: DERIVATION OF THE GENERALIZED
EXPRESSION OF THE INTERBEAM CORRELATION

FUNCTION OF TWIN BEAMS [EQ. (31)]

We start with the definition of the interbeam second-order
correlation function according to Eq. (1):

g
(2)
si (τ ) = 〈â†

i (t)â†
s (t + τ )âs(t + τ )âi(t)〉

〈â†
s (t)âs(t)〉〈â†

i (t)âi(t)〉
, (C1)

where âs(t) and âi(t) are, respectively, defined in Eqs. (16) and
(17). Let us first consider the numerator of Eq. (C1), i.e.,

〈â†
i (t)â†

s (t + τ )âs(t + τ )âi(t)〉 = 1

4π2

∫ ωp2

0
dω1

∫ ωp

ωp/2
dω2

∫ ωp

ωp/2
dω3

∫ ωp/2

0
dω4 η(ω1)η(ω2)η(ω3)η(ω4)

×〈â†(ze,ω1)â†(ze,ω2)â(ze,ω3)â(ze,ω4)〉ei[ω1t+ω2(t+τ )−ω3(t+τ )−ω4t]. (C2)

After substituting the operator â(ze,ω) by its expression as a function of crystal input operators â(ω) and â†(ωp − ω), i.e.,
Eq. (24), Eq. (C2) can be rewritten as follows:

〈â†
i (t)â†

s (t + τ )âs(t + τ )âi(t)〉 = 1

4π2

∫ ωp/2

0
dω1

∫ ωp

ωp/2
dω2

∫ ωp

ωp/2
dω3

∫ ωp/2

0
dω4 η∗(ω1)η∗(ω2)η(ω3)η(ω4)

×〈ν∗(ω1)â(ωp − ω1)[μ∗(ω2)â†(ω2) − i ν∗(ω2)â(ωp − ω2)]

× [μ(ω3)â(ω3) + i ν(ω3)â†(ωp − ω3)] ν(ω4)â†(ωp − ω4)〉
× ei{[ω1t+ω2(t+τ )−ω3(t+τ )−ω4t]−[�k(ω1)/2+k(ω1)+�k(ω2)/2+k(ω2)−�k(ω3)/2−k(ω3)−�k(ω4)/2−k(ω4)]L}. (C3)

Using the operator commutation rule [Eq. (30)], Eq. (C3) yields

〈â†
i (t)â†

s (t + τ )âs(t + τ )âi(t)〉 = 1

4π2

∫ ωp/2

0
dω1

∫ ωp

ωp/2
dω2

∫ ωp

ωp/2
dω3

∫ ωp/2

0
dω4 η∗(ω1)η∗(ω2)η(ω3)η(ω4)

× ν∗(ω1)ν(ω4){μ∗(ω2)μ(ω3)δ(ωp − ω1 − ω2)δ(ωp − ω3 − ω4)

+ν∗(ω2)ν(ω3)[δ(ω1 − ω3)δ(ω2 − ω4) + δ(ω1 − ω4)δ(ω2 − ω3)]}
× ei{[ω1t+ω2(t+τ )−ω3(t+τ )−ω4t]−[�k(ω1)/2+k(ω1)+�k(ω2)/2+k(ω2)−�k(ω3)/2−k(ω3)−�k(ω4)/2−k(ω4)]L}. (C4)

Equation (C4) can then be rewritten as

〈â†
i (t)â†

s (t + τ )âs(t + τ )âi(t)〉 =
∣∣∣∣ i

2π

∫ ωp

ωp/2
dω η(ω)η(ωp − ω)ν(ω)μ(ω)e−i{ωτ−[�k(ω)+k(ω)+k(ωp−ω)]L}

∣∣∣∣
2

+
[

1

2π

∫ ωp/2

0
dω|η(ω)ν(ω)|2

][
1

2π

∫ ωp

ωp/2
dω|η(ω)ν(ω)|2

]
. (C5)

Inserting Eq. (C5) into Eq. (C1) and using the definitions provided by Eqs. (25), (32), and (33), one straightforwardly recovers
Eq. (31), i.e., g

(2)
si (τ ) = 1 + |g(1)

si (τ )|2.
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