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Pulsed-squeezed-light generation in a waveguide with second-subharmonic generation
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Quantum pulsed second-subharmonic generation in a planar waveguide with a small periodic corrugation at the
surface is studied. Backscattering of the interacting fields on the corrugation enhances the nonlinear interaction,
giving larger values of squeezing. The problem of backscattering is treated by perturbation theory, using the
Fourier transform for nondispersion propagation, and by numerical approach in the general case. Optimum
spectral modes for squeezed-light generation are found using the Bloch-Messiah reduction. An improvement in
squeezing and increase of the numbers of generated photons are quantified for the corrugation resonating with
the fundamental and second-subharmonic field. Splitting of the generated pulse by the corrugation is predicted.
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I. INTRODUCTION

The process of second-subharmonic generation, which is
just the inverse process to that of second-harmonic generation
[1], is interesting not only as a means of frequency conversion.
It can also serve as an efficient source of squeezed light [2] in
which amplitude fluctuations are suppressed below the limit
given by quantum uncertainty relations (for a review, see,
e.g., [3–6]). Such nonclassical light can be emitted both in
the fundamental as well as second-subharmonic frequency
(SSF) fields [7]. Also, light with nonclassical photon-number
statistics can be obtained in this process under suitable con-
ditions [8,9]. The process of second-subharmonic generation
belongs to the whole family of optical parametric processes,
which share many common features [10–12]. Among them,
spontaneous parametric down-conversion, with its ability to
generate entangled photon pairs, plays an important role [4].

In homogeneous nonlinear media, the perfectly phase-
matched nonlinear interaction gives the largest possible
squeezing of amplitude fluctuations. The principal squeeze
variance of the SSF field asymptotically reaches zero for
large values of the gain of nonlinear interaction [13]. That is
why enhancement of the effective nonlinearity is important
as it immediately results in larger squeezing and lower
pumping intensities needed for reaching a given value of
squeezing. For this purpose, configurations with cavities filled
by a nonlinear medium have been usually used to generate
squeezed light (e.g., [7,14]). Also, nonlinear waveguides,
for which strong spatial localization of optical fields in the
transverse plane is characteristic, profit from enhancement of
the effective nonlinearity. This enhancement has been widely
exploited when generating photon pairs in classical [15–17],
multilayer [18], Bragg-reflection [19,20], and photonic-wire
[21] waveguides. Effective nonlinearity in a waveguide can
also be increased by the use of mode coupling through
evanescent waves with fields in a neighboring waveguide.
This occurs due to an additional spatial modulation induced
by energy exchange [22,23]. Additional spatial modulation
can also be introduced in a simpler geometry using a linear
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periodic corrugation at or below the waveguide surface [24,25].
Backscattering occurring at the corrugation modifies electric-
field amplitudes of the nonlinearly interacting fields, which
results in the enhancement of effective nonlinearity under
suitable conditions [26–28]. Backscattering on a periodic
corrugation has already been exploited for cw squeezed-light
generation both in the process of second-harmonic [29] and
second-subharmonic generation [28]. Scattering on a periodic
corrugation in a waveguide can also be used to enhance second-
harmonic generation in a Čerenkov configuration [30–32].
Squeezed-light generation in nonlinear photonic structures has
been discussed in general in [33].

Photonic structures modify, in general, phase-matching
conditions of the nonlinear interaction. Propagation constants
in waveguiding structures represent a typical example. In
particular, Bragg-reflection waveguides offer wide possibili-
ties in this direction [34,35]. Also, scattering on a periodic
corrugation gives an additional term to nonlinear phase-
matching conditions [36–38]. For this reason, we need a tool
that allows us to reach nonlinear phase-matching conditions
for an arbitrary photonic structure. Periodic poling [39–42]
of χ (2) susceptibility has proven to be extraordinarily useful
here and has resulted in the so-called quasi-phase-matched
nonlinear interactions. Using this method, even a spectrally
broadband two-mode nonlinear interaction with femtosecond
pulses has become possible [43].

Due to temporal energy concentration, the pulsed regime
of the nonlinear process allows one to use lower pumping
powers to observe the needed level of squeezing. It also
brings to attention new features of the generated light,
namely, its spectral modal structure. In the pulsed regime and
traveling-wave configuration, squeezed-light generation in the
considered nonlinear interaction has been studied with the
help of phase-space quasidistributions or the corresponding
Langevin stochastic equations [44]. A local oscillator in the
form of an ultrashort optical pulse is needed to observe
pulsed squeezing experimentally using homodyne detection.
The effort to observe the largest possible values of squeezing
has raised the question about an optimum shape of the
local-oscillator field [45–47]. The Bloch-Messiah reduction
of the evolution matrices (operators) has been proposed for
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the solution of the modal structure [48]. This method has
been elaborated in detail in [49,50] for degenerate parametric
down-conversion in a beta barium borate (BBO) crystal.
Also, the relation between the Bloch-Messiah reduction and
Schmidt decomposition of a two-photon spectral amplitude
characterizing spontaneous parametric down-conversion has
been found. The results obtained in single-pass geometry
have been generalized to the nonlinear interaction in a cavity
[51]. The mode structure of nonclassical states arising from
squeezed states after postselection done with on/off detectors
has been analyzed in [52]. The discussed effects occurring in
temporal (or spectral) domains have their counterparts in the
spatial domain, i.e., in the transverse plane of the beams. Also,
here eigenmodes typical for the nonlinear interaction can be
revealed [53]. Circular symmetry of the usual optical beams,
however, results in different types of eigenmodes defined in
the transverse plane. Despite this, a close similarity in the
behavior of fields in the spectral and spatial domains can
be found. As an important example, correlations between
intensities of the interacting fields in their transverse planes
can be mentioned [54,55].

Here, continuing the investigation in [28], we pay attention
to the pulsed SSF generation in a waveguide with linear
periodic corrugation on its surface that causes backscattering
of the interacting fields. Assuming a strong pulsed fundamental
field, we study squeezed-light generation in the SSF field.
We pay attention to the enhancement of nonlinearity and
the related increase of squeezing, applying three different
approaches. We utilize a sophisticated perturbation approach,
the method of Fourier transformation in nondispersion field
propagation, and numerical solution for the general case.
Squeezing is characterized by a principal squeeze variance
introduced in [2,3,5] that is determined for suitable spectral
modes.

The paper is organized as follows. In Sec. II, a multimode
quantum model of the nonlinear interaction using the appropri-
ate momentum operator and the related Heisenberg equations
is presented. Section III is devoted to the perturbation solution
of the model that is divided into three parts. A general
perturbation solution is found in Sec. III A, the Gaussian
spectral approximation to the solution is applied in Sec. III B,
and squeezing is analyzed in Sec. III C. If intermode dispersion
is omitted, the model can be solved by the Fourier transform,
as shown in Sec. IV. Discrete formulation of the model is
elaborated in Sec. V, which is devoted to the numerical
solution. Also, quantities useful in the characterization of the
generated field are introduced in this section. A discussion of
squeezing and appropriate spectral eigenmodes is contained
in Sec. VI. Whereas the model with nondispersion field
propagation is analyzed in Sec. IV A, the results of the general
approach are studied in Sec. VI B. Conclusions are drawn
in Sec. VII. An optimum mode profile giving the maximum
pulsed squeezing is found in the Appendix.

II. QUANTUM MULTIMODE MODEL OF
SECOND-SUBHARMONIC GENERATION

We consider a nonlinear waveguide made of LiNbO3

(see Fig. 1) in the configuration that allows one to generate
a second-subharmonic (SSF) field using χ (2) nonlinearity

FIG. 1. Scheme of a periodically poled nonlinear waveguide
with a rectangular transverse profile (thickness t and width �y)
and length L having χ (2) susceptibility. A linear corrugation with
period �l and depth tl occurs on the waveguide upper surface;
�nl denotes the period of nonlinear poling. The waveguide is
made of LiNbO3 in which the optical axis coincides with the x

axis. Four fields interact inside the waveguide: forward-propagating
fundamental (electric-field amplitude ApF

), backward-propagating
fundamental (ApB

), forward-propagating second-subharmonic (AsF ),
and backward-propagating second-subharmonic (AsB ) fields.

and pumping, e.g., by the second harmonic of a Nd:YAG
laser at the wavelength of λs = 1.064 × 10−6 m. Under a
suitable choice of waveguide parameters, the waveguide is
single mode for both the fundamental and SSF field and
allows for efficient nonlinear interaction. A linear corrugation
fabricated at the top of the waveguide leads to backscattering
of the interacting fields, which results in the enhancement of
electric-field amplitudes inside the waveguide under suitable
conditions. This leads to an effective increase of the nonlinear
interaction and gives a larger amount of squeezing of the
SSF light. Quasi-phase matching of the nonlinear interaction
is guaranteed by periodic poling with an appropriate poling
period. A detailed description of the waveguide was given
in [28]. It has been shown that the investigated waveguide
can be described by the following parameters: propagation
and coupling constants of the fundamental and SSF fields and
constants characterizing the nonlinear interaction occurring
among both the forward- and backward-propagating fields.
When losses inside the waveguide, caused both by absorption
and scattering of the light outside the guided modes, are
neglected, we can describe the nonlinear interaction in the
waveguide as follows.

According to quantum theory, the electric-field vector
operator amplitudes Êa(x,y,z,t) (a = p,s) at time t and spatial
point (x,y,z) inside the waveguide can be decomposed into
harmonic plane waves with mode operator amplitudes âa in
the Heisenberg picture [6,9]:

Êa(x,y,z,t) =
∫ ∞

0
dωaÊa(x,y,z,ωa) exp(−iωat), (1)

Êa(x,y,z,ωa) = i
[
âaF

(z,ωa)ea(x,y,ωa)

+ âaB
(z,ωa)ea(x,y,ωa) − H.c.

]
, a = p,s.

(2)

In Eq. (2), âaF
(z,ωa) [âaB

(z,ωa)] denotes an annihilation
operator of the mode with frequency ωa in field a propagating
forward [backward]. We note that the mode vector functions ea

as well as the corresponding propagation constants βa depend
on the frequency ωa and their form can be found in [28].

Evolution of the nonlinearly interacting quantum optical
fields inside the waveguide is described by the following
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momentum operator Ĝ [9,23]:

Ĝ(z) =
∑

a=p,s

∑
b=F,B

∫ ∞

0
dωa(±1)bh̄βab

(ωa)â†
ab

(z,ωa)âab
(z,ωa)

+
[∑

a=p,s

∫ ∞

0
dωah̄Ka(ωa) exp

(
i

2π

�a

z

)

× â†
aF

(z,ωa)âaB
(z,ωa) + H.c.

]
−
[ ∑

b=F,B

2i

∫ ∞

0
dωs

∫ ∞

0
dω′

s(±1)bKnl,q(ωs,ω
′
s)

× exp

(
i
2πq

�nl

z

)
â†

sb
(z,ωs)â

†
sb

(z,ω′
s)âpb

(z,ωs + ω′
s)

+ H.c.] , (3)

where (±1)F ≡ 1 and (±1)B ≡ −1. The linear coupling con-
stants Kp(ωp) [Ks(ωs)] describe scattering on the corrugation
with period �p [�s] that leads to the coupling between the
fundamental (SSF) fields propagating forward and backward.
Under suitable conditions, this scattering leads to increased
values of the electric-field amplitudes inside the waveguide.
However, this increase is much lower than that found in layered
photonic band-gap structures [56–59]. On the other hand, the
nonlinear coupling constants Knl,q(ωs,ω

′
s) characterize the

nonlinear interaction among copropagating fields and obey
the symmetry relation Knl,q(ωs,ω

′
s) = Knl,q(ω′

s ,ωs). Constant
�nl gives the poling period, whereas the integer number q

determines a harmonic frequency employed in the quasi-phase
matching. The Planck constant is denoted as h̄ and the symbol
H.c. represents the Hermitian conjugated term.

The Heisenberg equations, dX̂/dz = −i/h̄[Ĝ,X̂] for an
arbitrary operator X̂, written for the momentum operator Ĝ in
Eq. (3), attain the form

dâsF
(z,ωs)

dz
= iβs(ωs)âsF

(z,ωs)

+ iKs(ωs) exp

(
i
2π

�s

z

)
âsB

(z,ωs)

+ 4
∫ ∞

0
dω′

sKnl,q(ωs,ω
′
s) exp

(
i
2πq

�nl

z

)
× âpF

(z,ωs + ω′
s)â

†
sF

(z,ω′
s),

dâsB
(z,ωs)

dz
= −iβs(ωs)âsB

(z,ωs)

− iK∗
s (ωs) exp

(
−i

2π

�s

z

)
âsF

(z,ωs)

− 4
∫ ∞

0
dω′

sKnl,q(ωs,ω
′
s) exp

(
i
2πq

�nl

z

)
× âpB

(z,ωs + ω′
s)â

†
sB

(z,ω′
s),

dâpF
(z,ωp)

dz
= iβp(ωp)âpF

(z,ωp)

+ iKp(ωp) exp

(
i

2π

�p

z

)
âpB

(z,ωp)

− 2
∫ ∞

0
dωsK

∗
nl,q (ωs,ωp − ωs)

× exp

(
−i

2πq

�nl

z

)
âsF

(z,ωs)âsF
(z,ωp − ωs),

dâpB
(z,ωp)

dz
= −iβp(ωp)âpB

(z,ωp)

− iK∗
p(ωp) exp

(
−i

2π

�p

z

)
âpF

(z,ωp)

+ 2
∫ ∞

0
dωsK

∗
nl,q (ωs,ωp − ωs)

× exp

(
−i

2πq

�nl

z

)
âsB

(z,ωs)âsB
(z,ωp − ωs).

(4)

Creation and annihilation operators of the incident fields
are assumed to fulfill the boson commutation relations, i.e.,

[âaF
(0,ωa),â†

a′
F
(0,ωa′ )] = δa,a′δ(ωa − ωa′ ),

(5)
[âaB

(L,ωa),â†
a′

B
(L,ωa′)] = δa,a′δ(ωa − ωa′ ), a = p,s.

The remaining commutators are zero. It has been shown in [60]
for quadratic momentum operators Ĝ that the output operators
also obey the boson commutation relations:

[âaF
(L,ωa),â†

a′
F
(L,ωa′)] = δa,a′δ(ωa − ωa′ ),

(6)
[âaB

(0,ωa),â†
a′

B
(0,ωa′ )] = δa,a′δ(ωa − ωa′ ), a = p,s,

and commutators not mentioned in Eq. (6) are zero.
We note that the nonlinear operator equations written

in Eq. (4) have one integral of motion arising from the
conservation of energy flux,

d

dz

[∫ ∞

0
dωs â†

sF
(z,ωs)âsF

(z,ωs)

−
∫ ∞

0
dωs â†

sB
(z,ωs)âsB

(z,ωs)

+ 2
∫ ∞

0
dωp â†

pF
(z,ωp)âpF

(z,ωp)

− 2
∫ ∞

0
dωp â†

pB
(z,ωp)âpB

(z,ωp)

]
= 0. (7)

It is convenient to introduce new operators Â that take
into account the harmonic spatial evolution induced by the
corrugation present in general in both the fundamental and SSF
fields, âaF

(z,ωa) = ÂaF
(z,ωa) exp(iπz/�a) and âaB

(z,ωa) =
ÂaB

(z,ωa) exp(−iπz/�a) for a = p,s. Equations (4) written
for the operators Â take the form

dÂsF
(z,ωs)

dz
= i

δs(ωs)

2
ÂsF

(z,ωs) + iKs(ωs)ÂsB
(z,ωs)

+ 4
∫ ∞

0
dω′

sKnl,q(ωs,ω
′
s) exp[iδnl,qz]

× ÂpF
(z,ωs + ω′

s)Â
†
sF

(z,ω′
s),

dÂsB
(z,ωs)

dz
= −i

δs(ωs)

2
ÂsB

(z,ωs) − iK∗
s (ωs)ÂsF

(z,ωs)

− 4
∫ ∞

0
dω′

sKnl,q(ωs,ω
′
s) exp[−iδnl,qz]

× ÂpB
(z,ωs + ω′

s)Â
†
sB

(z,ω′
s), (8)

013833-3
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dÂpF
(z,ωp)

dz
= i

δp(ωp)

2
ÂpF

(z,ωp) + iKp(ωp)ÂpB
(z,ωp)

− 2
∫ ∞

0
dωsK

∗
nl,q (ωs,ωp − ωs) exp[−iδnl,qz]

× ÂsF
(z,ωs)ÂsF

(z,ωp − ωs),

dÂpB
(z,ωp)

dz
= −i

δp(ωp)

2
ÂpB

(z,ωp) − iK∗
p(ωp)ÂpF

(z,ωp)

+ 2
∫ ∞

0
dωsK

∗
nl,q (ωs,ωp − ωs) exp[iδnl,qz]

× ÂsB
(z,ωs)ÂsB

(z,ωp − ωs). (9)

Linear phase mismatches δp, δs and nonlinear phase mismatch
δnl,q (q = 0, ± 1) are defined as

δa(ωa) = 2βa(ωa) − 2π

�a

, a = p,s,

(10)

δnl,q = π

�p

− 2
π

�s

+ 2πq

�nl

.

We note that whereas q was used for the nonlinear interaction
among the forward-propagating fields, −q was chosen for the
interaction among the backward-propagating fields in Eqs. (8)
and (9). We also note that equations similar to (8) and (9) can
be derived from the wave equation considering classical fields
and invoking paraxial approximation [12].

We assume that the fundamental field is strong and its
depletion due to the interaction with the SSF field can be
neglected. In this case, the equations in (9) become linear
and break into groups with two linear equations for a given
frequency ωp:

dÂpF
(z,ωp)

dz
= i

δp(ωp)

2
ÂpF

(z,ωp) + iKp(ωp)ÂpB
(z,ωp),

dÂpB
(z,ωp)

dz
= −i

δp(ωp)

2
ÂpB

(z,ωp) − iK∗
p(ωp)ÂpF

(z,ωp).

(11)

The solution of Eqs. (11) can be easily obtained in the
matrix form[

ÂpF
(z,ωp)

ÂpB
(z,ωp)

]
=
∑
±

B±
p (ωp) exp[±i�p(ωp)z]

×
[

ÂpF
(0,ωp)

ÂpB
(L,ωp)

]
(12)

using the eigenfrequencies ±�p, �p(ωp) =√
δ2
p(ωp)/4 − |Kp(ωp)|2. Symbol

∑
± in Eq. (12) means the

summation over the terms differing in their signs. We note
that the boundary condition for the backward-propagating
field is chosen at z = L. The matrices B±

p (ωp) are defined as

B±
p (ωp) = Dp

[(
± δp

2 + �p

)
exp(∓i�pL) ±Kp

∓K∗
p exp(∓i�pL) ∓ δp

2 + �p

]
,

(13)

and Dp(ωp) = [2�p cos(�pL) − iδp sin(�pL)]−1.
If the corrugation is missing, then the matrices B±

p in
Eq. (13) take a simple form obtainable in the limit Kp −→ 0

together with �p −→ ∞:

B+
p =

[
1 0
0 0

]
, B−

p =
[

0 0
0 exp(iβpL)

]
. (14)

It also holds that δp = 2βp, �p = βp, and Dp =
exp(iβpL)/(2βp) in this limit.

III. PERTURBATION SOLUTION

The perturbation solution of the two Eqs. (8) can be
found after substituting the solution for the fundamental
field contained in Eq. (12). In the perturbation approach,
the required solution Âsb

(z,ωs) for b = F,B is expressed as∑∞
n=0 Â(n)

sb
(z,ωs), where an nth term Â(n)

sb
(z,ωs) is proportional

to Kn
nl,q .

A. General solution up to the first order in nonlinearity

The zeroth-order terms Â(0)
sF

(z,ωs) and Â(0)
sB

(z,ωs) are given
as a solution to the equations

dÂ(0)
sF

(z,ωs)

dz
= i

δs(ωs)

2
Â(0)

sF
(z,ωs) + iKs(ωs)Â

(0)
sB

(z,ωs),

dÂ(0)
sB

(z,ωs)

dz
= −i

δs(ωs)

2
Â(0)

sB
(z,ωs) − iK∗

s (ωs)Â
(0)
sF

(z,ωs).

(15)

This solution can be written in the compact matrix form[
ÂsF

(z,ωs)

ÂsB
(z,ωs)

]
=
∑
±

B̃±
s (ωs) exp[±i�s(ωs)z]

×
[

ÂsF
(0,ωs)

ÂsB
(0,ωs)

]
, (16)

where �s(ωs) = √
δ2
s (ωs)/4 − |Ks(ωs)|2. The matrices

B̃±
s (ωs) are expressed as

B̃±
s (ωs) = 1

2�s

[
± δs

2 + �s ±Ks

∓K∗
s ∓ δs

2 + �s

]
. (17)

The equations for the first-order terms Â(1)
sF

(z,ωs) and
Â(1)

sB
(z,ωs) have a more complex structure,

dÂ(1)
sF

(z,ωs)

dz
= i

δs(ωs)

2
Â(1)

sF
(z,ωs) + iKs(ωs)Â

(1)
sB

(z,ωs)

+ 4
∫ ∞

0
dω′

sKnl,q(ωs,ω
′
s) exp[iδnl,qz]

× ÂpF
(z,ωs + ω′

s)Â
(0)†
sF

(z,ω′
s),

dÂ(1)
sB

(z,ωs)

dz
= −i

δs(ωs)

2
Â(1)

sB
(z,ωs) − iK∗

s (ωs)Â
(1)
sF

(z,ωs)

− 4
∫ ∞

0
dω′

sKnl,q(ωs,ω
′
s) exp[−iδnl,qz]

× ÂpB
(z,ωs + ω′

s)Â
(0)†
sB

(z,ω′
s). (18)
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Equations (18) for a fixed frequency ωs represent a coupled
set of two linear differential equations with nonzero right-hand
sides. They can be formally written as

dA(z)

dz
= iKA(z) + F (z), (19)

where A and F are vectors with two elements and K is a
2 × 2 matrix. Direct inspection confirms a nonhomogeneous
solution to Eq. (19) in the form

A(z) =
∫ z

0
dz′Ahom(z − z′)F (z′), (20)

provided that dAhom(z)/(dz) = iKAhom(z).
The sum of the zeroth- and first-order solutions gives us

the solution to the Eqs. (8) valid up to Knl,q . It can be again
written in the matrix form using the matrices B̃±

s (ωs) from

Eq. (17),[
ÂsF

(z,ωs)

ÂsB
(z,ωs)

]
=
∑
±

B̃±
s (ωs) exp[±i�a(ωa)z]

×
[

ÂsF
(0,ωs)

ÂsB
(0,ωs)

]
+
[

F̂sF
(z,ωs)

F̂sB
(z,ωs)

]
. (21)

Operators F̂sb
(z,ωs) for b = F,B describe the solution propor-

tional to the first power of nonlinear constants Knl,q . They are
expressed for z = L below in Eq. (23).

Now we write the solution in Eq. (21) for z = L and
partially invert the obtained linear relations in order to find
the input-output relations of the waveguide. The result can be
expressed as

[
ÂsF

(L,ωs)

ÂsB
(0,ωs)

]
= Ds

[
2�s 2iKs sin(�sL)

2iK∗
s sin(�sL) 2�s

][
ÂsF

(0,ωs)

ÂsB
(L,ωs)

]
+
[

F̂sF
(L,ωs) − 2iKsDs sin(�sL)F̂sB

(L,ωs)

−2�sDsF̂sB
(L,ωs)

]
.

(22)

In Eq. (22), the definition Ds(ωs) = [2�s cos(�sL) − iδs sin(�sL)]−1 has been used. The expressions on the right-hand side of
Eq. (22) can be substantially simplified if the signal field fulfills the resonance condition �s ≈ mπ/L, m = 1,2, . . ., which gives
the maximum enhancement of its electric-field amplitudes in the waveguide. In this case, sin(�sL) ≈ 0.

The operators F̂sb
(L,ωs) at z = L are obtained in the form

F̂sa
(L,ωs) = (±1)a4

∫ ∞

0
dω′

sKnl,q(ωs,ω
′
s) exp

[
(±1)a

iδnl,qL

2

]∑
±s

∑
b=F,B

B̃
±s

s,ab exp

[
±s

i�s(ωs)L

2

]

×
∑
±p

∑
c=F,B

B
±p

p,bc exp

[
±p

i�p(ωs + ω′
s)L

2

]
Âpc(ωs + ω′

s)

×
∑

d=F,B

B
±s∗
s,bd exp

[
∓s

i�s(ω′
s)L

2

]
Â

†
sd (ω′

s)S
±p,∓s

a (ωs,ω
′
s), a = F,B, (23)

where

S
±p,±s

a (ωs,ω
′
s) = 2Lsinc{[(±1)aδnl,q ±p �p(ωs + ω′

s)

±s�s(ωs) ±s �s(ω
′
s)]L/2}, a = F,B,

(24)

where sinc(x) = sin(x)/x. The matrices B±
s (ωs) introduced in

Eq. (23) are defined analogously to those given in Eq. (13)
and characterizing the fundamental field. We note that the
expression in Eq. (23) contains only one-half of all possible
terms. The missing terms are far from the quasi-phase-
matching conditions and thus give negligible contributions.

B. Gaussian spectral approximation in a resonant term

The right-hand side of Eq. (23) giving F̂sa
(L,ωs) is

composed of four terms that differ in the signs of eigenvalues
�p and �s (resolved by the symbols ±p, ±s). Quasi-phase-
matching conditions in the waveguide are such that they
emphasize only one out of the four terms. The remaining terms

give small contributions. That is why we pay attention only
to one of them. We also consider only the incident forward-
propagating fundamental field in a multimode coherent state
with a Gaussian spectral shape and spectral phase variations
such that the fundamental field in the middle of the waveguide
has the same phase along the spectrum,

ApF
(0,ωp) = ξp

√
τp√
2π

3 exp

[
−τ 2

p(ωp − ω0
p)2

4

]

× exp

[
∓p

i�p(ωp)L

2

]
,

ApB
(L,ωp) = 0. (25)

The fundamental pulse has amplitude ξp, duration τp, and
carrying frequency ω0

p.
We further assume that both the fundamental and SSF

spectra are not too wide and so the propagation constants
βa(ωa) can be approximated by their second-order Taylor
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JAN PEŘINA, JR. PHYSICAL REVIEW A 87, 013833 (2013)

expansions,

βa(ωa) = β0
a + β1a(ωa − ω0

a) + β2a

(
ωa − ω0

a

)2
,

β0
a = βa

(
ω0

a

)
, (26)

βia = 1

i!

diβa

dωi
a

∣∣∣∣
ωa=ω0

a

, i = 1,2, a = p,s.

In this approximation, the eigenvalues �a(ωa) can be ex-
pressed as

�a(ωa) = �0
a + �1a

(
ωa − ω0

a

)+ �2a

(
ωa − ω0

a

)2
,

�0
a = �a

(
ω0

a

)
,

�1a = β1a

(
β0

a − π/�a

)
�0

a

,

�2a = β2a

(
β0

a − π/�a

)+ β2
1a

2�0
a

− β2
1a

(
β0

a − π/�a

)2

2(�0
a)3

,

a = p,s. (27)

Efficient nonlinear interaction occurs if quasi-phase-
matching conditions for the central frequencies ω0

p and ω0
s =

ω0
p/2 are fulfilled, i.e.,

δnl,q ±p �p

(
ω0

p

)∓s 2�s

(
ω0

s

) = 0. (28)

The function S
±p,±s

a in Eq. (24) can then be rewritten as

S±p,±s (ωs,ω
′
s) = 2Lsinc

{[
(±p�1p ±s �1s)

(
ωs + ω′

s − ω0
p

)

±s

�2s(ωs − ω′
s)

2

2

]
L

2

}
, (29)

assuming �1a 
 �2a�ω for a = p,s; �ω characterizes the
fields’ spectral width.

The use of the Gaussian approximation to the sinc function
in Eq. (29), sinc(αx + βy2) ≈ exp(−α2x2/5 − |β|y2/3) for
constants α, β, allows one to derive the useful relation

S±p,±s (ωs,ω
′
s)ApF

(0,ωs + ω′
s)

= 2Lξp

√
τp√
2π

3

× exp

[
∓p

i�p(ωs + ω′
s)L

2

]
(ωs,ω

′
s). (30)

In Eq. (30), the function ,

(ωs,ω
′
s) = exp

[
− (ωs − ω′

s)
2

�2−
−
(
ωs + ω′

s − ω0
p

)2

�2+

]
, (31)

1

�2−
= �2sL

12
,

1

�2+
= (±p�1p ±s �1s)2L2

20
+ τ 2

p

4
, (32)

determines the structure of the spectral modes.
These spectral modes can be revealed using the Schmidt

decomposition [49,61] of function ,

(ωs,ω
′
s) =

∞∑
n=0

μnφn(ωs)φn(ω′
s). (33)

Eigenvalues μn introduced in Eq. (33) take the form

μn = 2
√

π

�+�−
θn/2,

(34)

θ =
(

�+ − �−
�+ + �−

)2

.

Eigenmode spectral functions φn can be expressed in terms of
the Hermite polynomials Hn,

φn(ωs) =
√

τs

2nn!
√

π
exp

[
−τ 2

s

(
ωs − ω0

s

)2
]

× Hn

(
τs

[
ωs − ω0

s

])
, (35)

τs =
√

1 − θ2

θ
. (36)

For the considered waveguide, �+ � �− and thus a typical
time constant τs of the SSF field defined in Eq. (36) can be
approximated as

τs ≈ 8
�+
�−

. (37)

The Schmidt decomposition in Eq. (33) allows us to
transform Eqs. (22) written for the “continuous index” ωs

to those related to spectral modes. The appropriate unitary
transformation of the input and output operators takes the form

âin
sF ,n =

∫ ∞

0
dωsφn(ωs)âsF

(0,ωs) exp

[
− iπL

2�s

]

× exp

[
∓s

i�s(ωs)L

2

]
,

âin
sB ,n =

∫ ∞

0
dωsφn(ωs)âsB

(L,ωs) exp

[
iπL

2�s

]

× exp

[
±s

i�s(ωs)L

2

]
,

(38)

âout
sF ,n =

∫ ∞

0
dωsφn(ωs)âsF

(L,ωs) exp

[
− iπL

2�s

]

× exp

[
∓s

i�s(ωs)L

2

]
,

âout
sB ,n =

∫ ∞

0
dωsφn(ωs)âsB

(0,ωs) exp

[
iπL

2�s

]

× exp

[
±s

i�s(ωs)L

2

]
.

When weak spectral dependencies of multiplicative factors
occurring in Eqs. (22) and (23) are neglected, the transformed
Eqs. (22) valid either close to the resonance condition or for a
nonscattered SSF field are expressed as[

âout
sF ,n

âout
sB ,n

]
= 2�0

sD
0
s exp

[
iπL

�s

] [
1 0

0 1

] [
âin

sF ,n

âin
sB ,n

]

+
[

F̂sF ,n

F̂sB ,n

]
, (39)

where D0
s = Ds

(
ω0

s

)
.
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Defining suitable nonlinear coupling constants ξn for individual spectral modes,

ξn = 8LKnl,q

(
ω0

s ,ω
0
s

)√ τp√
2π

3 ξpμn, (40)

the operator coefficients F̂sF ,n and F̂sB ,n introduced in Eq. (39) take the form

F̂sF ,n = ξn exp

[
iδnl,qL

2

]
D0

pD0∗
s

2�0
s

{[(
±s

δ0
s

2
+ �0

s

)2
(

±p

δ0
p

2
+ �0

p

)
±p K0∗

p

(
K0

s

)2

]
âin†

sF ,n +
[(

δ0
s

2
±s �0

s

)

×K0∗
s

(
±p

δ0
p

2
+ �0

p

)
±p K0

s K0∗
p

(
δ0
s

2
∓s �0

s

)]
âin†

sB ,n

}
,

F̂sB ,n = −ξn exp

[
− iδnl,qL

2

]
exp

(±s i�
0
sL
)
D0

p|D0
s |2
{[

K0∗
s

(
δ0
s

2
±s �0

s

)(
∓p

δ0
p

2
− �0

p

)
∓p K0∗

p K0∗
s

×
(

δ0
s

2
∓s �0

s

)]
âin†

sF ,n +
[(

∓p

δ0
p

2
− �0

p

) (
K0∗

s

)2 ∓p K0∗
p

(
δ0
s

2
∓s �0

s

)2
]

âin†
sB ,n

}
, (41)

where D0
p = Dp(ω0

p).
If the corrugation is only in the fundamental field, then the

expressions for operator coefficients F̂sF ,n and F̂sB ,n in Eq. (41)
simplify to

F̂sF ,n = ξn exp

[
iδnl,qL

2

]
D0

p exp
(− iβ0

s L
)

×
(

±p

δ0
p

2
+ �0

p

)
âin†

sF ,n,

F̂sB ,n = −ξn exp

[−iδnl,qL

2

]
D0

p exp
(− iβ0

s L
)

× (∓p K0∗
p

)
âin†

sB ,n. (42)

On the other hand, the corrugation resonating with the SSF
field leads to the following expressions:

F̂sF ,n = ξn exp

[
iδnl,qL

2

]
exp

(
iβ0

pL
)D0∗

s

2�0
s

(
±s

δ0
s

2
+ �0

s

)

×
{(

±s

δ0
s

2
+ �0

s

)
âin†

sF ,n ± K0∗
s âin†

sB ,n

}
,

F̂sB ,n = −ξn exp

[
− iδnl,qL

2

]
exp

(
iβ0

pL
)

exp
(±s i�0

sL
)

× ∣∣D0
s

∣∣2K0∗
s

{(
−δ0

s

2
∓s �0

s

)
âin†

sF ,n − K0∗
s âin†

sB ,n

}
.

(43)

Multiplicative factors occurring in the expressions in
Eqs. (41)–(43) describe the enhancement of nonlinear in-
teraction due to scattering of the fundamental and SSF
fields. This enhancement can be quantified by the expression
(±aδ

0
a/2 + �0

a)/(2�0
a) for a = p,s. Let us consider first the

corrugation present in the fundamental field. In this case,
the quasi-phase-matching condition written in Eq. (28) takes
the form

δ
nat,0
nl,q − δ0

p

2
±p �0

p = 0, (44)

where δ
nat,0
nl,q = β0

p − 2β0
s + 2πq/�nl describes the natural

quasi-phase mismatch. Efficient quasi-phase matching can
be reached only if δ

nat,0
nl,q and δ0

p have the same sign [28].

Considering a positive value of phase mismatch δ
nat,0
nl,q , the sign

+ (−) in Eq. (44) is suitable for δ
nat,0
nl,q < |K0

p| (δnat,0
nl,q > |K0

p|).
The enhancement of fundamental-field amplitudes is then
described by the expression

δ0
p/2 + �0

p

2�0
p

= 1 ±p 1

2
+ δ

nat,0
nl,q

2�0
p

> 1. (45)

On the other hand, a negative value of phase mismatch
δ

nat,0
nl,q requires the opposite choice of signs in Eq. (44), and

the enhancement of fundamental-field amplitudes can be
quantified by the expression

−δ0
p/2 + �0

p

2�0
p

= 1 ∓p 1

2
− δ

nat,0
nl,q

2�0
p

> 1. (46)

The presence of corrugation in the SSF field needs the
following quasi-phase-matching conditions:

δ
nat,0
nl,q + δ0

s ∓s 2�0
s = 0. (47)

In this case, the quantities δ
nat,0
nl,q and δ0

s have to differ in their
signs. The enhancement factors of the SSF-field amplitudes
can be analyzed similarly as for the fundamental field.

C. Principal squeeze variance

The enhancement of electric-field amplitudes due to the
presence of the corrugation results in larger squeezing of
fluctuations of these amplitudes. The suppression of amplitude
fluctuations can be quantified by a principal squeeze variance
λ [2,3,23] that can be determined along the relations

λsb
= 1 + 2(Bsb

− |Csb
|), (48)

Bsb
= 〈�â†

sb
�âsb

〉,
(49)

Csb
= 〈(�âsb

)2〉, b = F,B.
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In Eqs. (49), �â = â − 〈â〉 and the symbol 〈·〉 means the
quantum-mechanical mean value.

Substitution of the expressions in Eq. (41) into Eqs. (48)
and (49) provides the formulas for principal squeeze variances
λsF ,n and λsB,n of individual spectral modes,

λsF ,n = 1 − |ξn|
4�0

p(�0
s )2

∣∣∣∣∣
(

±s

δ0
s

2
+ �0

s

)(
±p

δ0
p

2
+ �0

p

)

×
(

±s

δ0
s

2
+ �0

s ± K0∗
s

)

±p K0∗
p K0

s

(
δ0
s

2
∓s �0

s + K0
s

)∣∣∣∣ ,
λsB,n = 1 − |ξn|

4�0
p(�0

s )2

∣∣∣∣∣K0∗
s

(
±p

δ0
p

2
+ �0

p

)

×
(

−δ0
s

2
∓s �0

s − K0∗
s

)
∓p K0∗

p

(
∓s

δ0
s

2
+ �0

s

)

×
(

∓s

δ0
s

2
+ �0

s ∓s K0
s

)∣∣∣∣ . (50)

The enhancement factors discussed for the fundamental field
in Eqs. (45) and (46) are clearly recognized in the expressions
(50). Also, the factors δ0

s /2 ±s �0
s + K0

s and δ0
s /2 ±s �0

s +
K0∗

s found in Eqs. (50) significantly contribute to the enhance-
ment of squeezing of SSF electric-field amplitudes due to the
same signs in front of δ0

s and K0
s .

The formulas in Eq. (50) considerably simplify for the
corrugation in the fundamental field only:

λsF ,n = 1 − |ξn|
�0

p

∣∣∣∣∣
(

±p

δ0
p

2
+ �0

p

)∣∣∣∣∣ ,
(51)

λsB,n = 1 −
∣∣ξnK

0
p

∣∣
�0

p

.

On the other hand, the presence of corrugation only in the
SSF field leaves us with the expressions

λsF ,n = 1 − |ξn|
2(�0

s )2

∣∣∣∣
(

±s

δ0
s

2
+ �0

s

)

×
(

±s

δ0
s

2
+ �0

s ± K0∗
s

)∣∣∣∣ ,
(52)

λsB,n = 1 −
∣∣ξnK

0
s

∣∣
2
(
�0

s

)2

∣∣∣∣
(

±s

δ0
s

2
+ �0

s ±s K0∗
s

)∣∣∣∣ .

IV. NONPERTURBATION SOLUTION FOR
NONDISPERSION PROPAGATION

The linear coupling constants Kp, Ks and nonlinear
coupling constants Knl,q depend usually only weakly on
frequencies in a relatively wide interval. Weak frequency
dependence of the coupling constants Kp, Ks , and Knl,1

in the considered range [approx. 80 nm (40 nm) for the
fundamental (SSF) field] is shown in Figs. 2(a), 3(a), and
4(a), respectively, for the analyzed waveguide. Also, intermode
dispersion both in the fundamental and SSF fields can be in the
first approximation neglected [see Figs. 2(b), 3(b), and 4(b) for

(a)

(b)

FIG. 2. (a) Absolute value of linear coupling constant Kp and (b)
linear phase mismatch δp − δ0

p for the fundamental field as they de-
pend on relative frequency ωp/ω0

p; t = 5 × 10−7 m, tl = 5 × 10−8 m.

frequency dependence of the linear phase mismatches δp and
δs and nonlinear phase mismatch δnl,1]. We note that the needed
spectral range of the SSF field roughly depends inversely
proportionally on the waveguide length L. The solution of
operator equations considerably simplifies when the frequency
dependencies are omitted, and even certain analytical results
can be obtained.

(a)

(b)

FIG. 3. (a) Absolute value of linear coupling constant Ks and
(b) linear phase mismatch δs − δ0

s for the SSF field as functions of
relative frequency ωs/ω

0
s ; values of parameters are the same as in

Fig. 2.
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(a)

(b)

FIG. 4. Contour plots of (a) absolute value |Knl,1| of nonlinear
coupling constant and (b) nonlinear phase mismatch δnl,1 − δ0

nl,1 as
they depend on relative frequencies ωs/ω

0
s and ω′

s/ω
0
s . Values of

parameters are the same as in Fig. 2.

In this case, Eqs. (8) and (9) for the operator amplitudes
Âab

(z,ω), where a = p,s and b = F,B, can be decoupled in
their frequency “index” using the Fourier transform,

Âab
(z,τa) =

∫ ∞

−∞
dωaÂab

(z,ωa) exp(−iωaτa), (53)

Âab
(z,ωa) = 1

2π

∫ ∞

−∞
dτaÂab

(z,τa) exp(iωaτa). (54)

After the transformation, Eqs. (8) attain the form

dÂsF
(z,τ )

dz
= i

δ0
s

2
ÂsF

(z,τ ) + iK0
s ÂsB

(z,τ )

+ 4K0
nl,q exp[iδnl,qz]ÂpF

(z,τ )Â†
sF

(z,τ ),

dÂsB
(z,τ )

dz
= −i

δ0
s

2
ÂsB

(z,τ ) − iK0∗
s ÂsF

(z,τ )

− 4K0
nl,q exp[−iδnl,qz]ÂpB

(z,τ )Â†
sB

(z,τ ),

(55)

where K0
nl,q = Knl,q(ω0

s ,ω
0
s ). The solution of Eqs. (9) written

in Eq. (12) is transformed in the considered approximation of
strong fundamental field as follows:

[
ÂpF

(z,τ )

ÂpB
(z,τ )

]
=
∑
±

B±0
p exp[±i�0

pz]

[
ÂpF

(0,τ )

ÂpB
(L,τ )

]
(56)

and B±0
p = B±

p (ω0
p) defined in Eq. (13). The fundamental-

field operator amplitudes ÂpF
(0,τ ) and ÂpB

(L,τ ) describe the
incident pulses.

We further discuss the solution to Eqs. (55) for the
corrugation present either in the fundamental or SSF field.

A. Corrugation in the pump field only

In this case, two operator equations (55) are independent.
Moreover, we are interested in a solution close to the resonance
where the nonlinear terms in Eqs. (55) give considerable
contribution. We further pay attention to the SSF forward-
propagating field and assume only the incident fundamental
field at z = 0. Using Eq. (56), the first equation in (55) can
be rewritten for two different resonant conditions indicated by
upper indices ±,

dÂsF
(z,τ )

dz
= i

δ0
s

2
ÂsF

(z,τ ) + 4K±(τ )

× exp
[
i
(
δ0
nl,q ± �0

p

)
z
]
Â†

sF
(z,τ ). (57)

The effective nonlinear coupling constant K±(τ ) ≡
K0

nl,qB
±0
p,FF ApF

(0,τ ) incorporates the enhancement of nonlin-
ear interaction due to the fundamental-field scattering.

The substitution ÂsF
(z,τ ) = ÂsF

(z,τ ) exp[i(δ0
nl,q ±

�0
p)z/2], Â

†
sF

(z,τ ) = Â†
sF

(z,τ ) exp[−i(δ0
nl,q ± �0

p)z/2]
in Eq. (57) leads to differential equations with constant
coefficients obeyed by the operator amplitudes ÂsF

and Â†
sF

.
Their solution transformed to the original operators can be
written as

ÂsF
(L,τ ) = UFF (τ )ÂsF

(0,τ ) + VFF (τ )Â†
sF

(0,τ ), (58)

UFF (τ ) = 1

2
exp(iβ0

s L) exp

(
i
�±L

2

)

×
[(

1 − i�±

2λ±(τ )

)
exp[λ±(τ )L]

+
(

1 + i�±

2λ±(τ )

)
exp[−λ±(τ )L]

]
,

VFF (τ ) = 2K±(τ )

λ±(τ )
exp(iβ0

s L) exp

(
i
�±L

2

)
× [

exp[λ±(τ )L] − exp[−λ±(τ )L]
]
. (59)

The phase mismatches �± and eigenvalues λ± are given by
the expressions

�± = δnl,q − δ0
s ± �0

p,

λ±(τ ) =
√

16|K±(τ )|2 − �±2/4. (60)

Ideal phase matching leads to �± = 0.
The inverse Fourier transform (54) of the expression

for operator amplitude ÂsF
(L,τ ) in Eq. (58) provides the

spectral operator amplitude ÂsF
(L,ωs) that equals the operator

amplitude âout
sF

(ωs) in the limit �s −→ ∞,

âout
sF

(ωs) =
[∫ ∞

0
dω′

sUFF (ωs − ω′
s)â

in
sF

(ω′
s)

+
∫ ∞

0
dω′

sVFF (ωs + ω′
s)â

in†
sF

(ω′
s)

]
. (61)
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The functions UFF (ω) and VFF (ω) are given by the inverse
Fourier transform of the expressions in Eqs. (59) and can be
found numerically.

B. Corrugation in the second-subharmonic field only

We consider only the forward-propagating fundamental
field and quasi-phase matching of the nonlinear interaction
given by the condition δnl,q + δ0

p/2 = 0. The Eqs. (55) can
then be written in the following matrix form:

d

dz

⎡
⎢⎢⎢⎢⎣

ÂsF
(z,τ )

ÂsB
(z,τ )

Â
†
sF

(z,τ )

Â
†
sB

(z,τ )

⎤
⎥⎥⎥⎥⎦ = iM(τ )

⎡
⎢⎢⎢⎢⎣

ÂsF
(z,τ )

ÂsB
(z,τ )

Â
†
sF

(z,τ )

Â
†
sB

(z,τ )

⎤
⎥⎥⎥⎥⎦ ,

M(τ ) =

⎡
⎢⎢⎢⎣

δ0
s /2 K0

s −4iKF 0

−K0∗
s −δ0

s /2 0 0

−4iK∗
F 0 −δ0

s /2 −K0∗
s

0 0 K0
s δ0

s /2

⎤
⎥⎥⎥⎦ ,

(62)

introducing the nonlinear coupling constant KF (τ ) =
K0

nl,qApF
(0,τ ).

Eigenvalues λj of matrix M in Eq. (62) can be derived as
follows:

λ1,2(τ ) =
√(

�0
s

)2 − 8|KF |2 ± 4|KF |
√

4|KF |2 + ∣∣K0
s

∣∣2,
λ3,4(τ ) = −λ1,2(τ ). (63)

These eigenvalues are real for |KF | < �0
s /(4

√
2) and describe

an oscillating solution. Two real and two pure imaginary
eigenvalues are found for |KF | > �0

s /(4
√

2), reflecting the
presence of amplified and attenuated components of the fields.
Using the eigenvalues λj , the solution to Eqs. (62) can be
written in a general form using operator constants α̂j and β̂j ,

ÂsF
(z,τ ) =

4∑
j=1

α̂j (τ ) exp[iλj (τ )z],

(64)

ÂsB
(z,τ ) =

4∑
j=1

β̂j (τ ) exp[iλj (τ )z].

Substitution of the general solution (64) into the second (or
the fourth) equation in (62) provides the relations giving the
coefficients β̂j in terms of the coefficients α̂j ,

β̂j = − K0∗
s

λj + δ0
s /2

α̂j , j = 1, . . . ,4. (65)

Assuming real eigenvalues λj , the first (or the third) equation
in (62) is fulfilled provided that

α̂3,4 = γ1,2α̂
†
1,2,

(66)

γ1,2 = − 4iKF

(
λ3,4 + δ0

s /2
)

λ2
3,4 − (

δ0
s

)2
/4 + ∣∣K0

s

∣∣2 .

The operator constants α̂1, α̂2, α̂
†
1, and α̂

†
2 are finally

determined from the boundary conditions that give us the

following formulas:

⎡
⎢⎢⎢⎣

α̂1(τ )

α̂2(τ )

α̂
†
1(τ )

α̂
†
2(τ )

⎤
⎥⎥⎥⎦ = M−1

1 (τ )

⎡
⎢⎢⎢⎢⎣

ÂsF
(0,τ )

ÂsB
(L,τ )

Â
†
sF

(0,τ )

Â
†
sB

(L,τ )

⎤
⎥⎥⎥⎥⎦ ,

M1(τ ) =

⎡
⎢⎢⎢⎣

1 1 γ1 γ2

ϑ1 ϑ2 ϑ3γ1 ϑ4γ2

γ ∗
1 γ ∗

2 1 1

ϑ∗
3 γ ∗

1 ϑ∗
4 γ ∗

2 ϑ∗
1 ϑ∗

2

⎤
⎥⎥⎥⎦ ,

(67)

where ϑj = −K0∗
s /(λj + δ0

s /2) exp(iλjL).
Using Eqs. (64) and (65), the solution for the output

operators can be written as

ÂsF
(L,τ ) =

4∑
j=1

α̂j (τ ) exp[iλj (τ )L],

(68)

ÂsB
(0,τ ) = −

4∑
j=1

K0∗
s

λj (τ ) + δ0
s /2

α̂j (τ ).

The inverse Fourier transform of the formulas in Eq. (68)
and returning to the original operators âsF

and âsB
leaves us

with the input-output relations written in the form

âout
sb

(ωs) =
∑

c=F,B

[∫ ∞

0
dω′

sUbc(ωs − ω′
s)â

in
sc

(ω′
s)

+
∫ ∞

0
dω′

sVbc(ωs + ω′
s)â

in†
sc

(ω′
s)

]
, b = F,B.

(69)

The matrices Ubc and Vbc in Eq. (69) can be determined
numerically in general.

V. GENERAL NUMERICAL SOLUTION AND THE
BLOCH-MESSIAH REDUCTION

To investigate the model numerically, we have to replace
Eqs. (8) for the SSF field by their discrete variants. That
is why we introduce discrete monochromatic-mode operator
amplitudes Âsb,i that scan the spectral profiles with period �ω,

Âsb,i(z) =
√

�ω Âab

(
z,ω0

s + i�ω
)
,

b = F,B, i = 0, ± 1, ± 2, . . . . (70)

The discrete mode operator amplitudes Âab,i obey the usual
boson commutation relations instead of those written in
Eq. (6). These operator amplitudes can be ordered into vectors
ÂsF

and ÂsB
. Using these vectors, the discrete form of Eqs. (8)
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can be written as follows:

d

dz

⎡
⎢⎢⎢⎢⎣

ÂsF
(z)

Â†
sF

(z)

ÂsB
(z)

Â†
sB

(z)

⎤
⎥⎥⎥⎥⎦ = iM(z)

⎡
⎢⎢⎢⎢⎣

ÂsF
(z)

Â†
sF

(z)

ÂsB
(z)

Â†
sB

(z)

⎤
⎥⎥⎥⎥⎦ , M(z) =

⎡
⎢⎢⎢⎣

Ds −4iKsF (z) Ks 0

−4iK∗
sF (z) −Ds 0 −K∗

s

−K∗
s 0 −Ds 4iKsB (z)

0 Ks 4iK∗
sB (z) Ds

⎤
⎥⎥⎥⎦ . (71)

Matrix elements of the matrices Ds , Ks , KsF (z), and KsB (z)
are defined as

Ds,jk = δjk

δs

(
ω0

s + k�ω
)

2
,

Ks,jk = δjkKs

(
ω0

s + k�ω
)
,

KsF,jk(z) = �ωKnl,q

(
ω0

s + j�ω,ω0
s + k�ω

)
× exp(iδnl,qz)ApF

[
z,ω0

p + (j + k)�ω
]
,

KsB,jk(z) = �ωKnl,q

(
ω0

s + j�ω,ω0
s + k�ω

)
× exp(−iδnl,qz)ApB

[
z,ω0

p + (j + k)�ω
]
,

(72)

where δjk denotes the Kronecker symbol.
As the matrixM in Eq. (71) depends on z, only a numerical

solution is possible in general. We also need to keep quantum
features in the solution and so we have to solve the system of
linear differential equations (71) for initial vectors that form a
basis. In this way, we reveal the whole evolution matrix U that
maps the operator fields at z = 0 to those at z = L:⎡
⎢⎢⎢⎢⎣

ÂsF
(L)

Â†
sF

(L)

ÂsB
(L)

Â†
sB

(L)

⎤
⎥⎥⎥⎥⎦ = U

⎡
⎢⎢⎢⎢⎣

ÂsF
(0)

Â†
sF

(0)

ÂsB
(0)

Â†
sB

(0)

⎤
⎥⎥⎥⎥⎦ , U =

[UFF UFB

UBF UBB

]
. (73)

We note that the operator amplitudes contained in vectors
ÂsF

(L) and ÂsB
(L) obey certain kind of commutation relations

that are useful in the numerical solution (for details, see [37]).
Partial inversion of the linear relations in Eq. (73) reveals

the input-output relations among the operator amplitudes,⎡
⎢⎢⎢⎢⎣

ÂsF
(L)

Â†
sF

(L)

ÂsB
(0)

Â†
sB

(0)

⎤
⎥⎥⎥⎥⎦ = Upinv

⎡
⎢⎢⎢⎢⎣

ÂsF
(0)

Â†
sF

(0)

ÂsB
(L)

Â†
sB

(L)

⎤
⎥⎥⎥⎥⎦ ,

Upinv =
[
UFF − UFBU−1

BBUBF UFBU−1
BB

−U−1
BBUBF U−1

BB

]
. (74)

The output operator amplitudes in the vectors ÂsF
(L) and

ÂsB
(0) obey the boson commutation relations provided that

the input operator amplitudes given in the vectors ÂsF
(0) and

ÂsB
(L) fulfill boson commutation relations. That is why it is

convenient to rewrite the relations in Eq. (74) into the form of
Bogoliubov transformation. Using the operators âin

sb,i
and âout

sb,i

defined in analogy with their continuous counterparts, we have[
âout

sF

âout
sB

]
= U

[
âin

sF

âin
sB

]
+ V

[
âin†

sF

âin†
sB

]
. (75)

The vectors âin
sb

and âout
sb

(b = F,B) are composed of the
operator amplitudes âin

sb,i
and âout

sb,i
, respectively.

As the matrices U and V describe the Bogoliubov trans-
formation, their Bloch-Messiah reduction [48,49,62] can be
found,

U = X�U Y†, V = X�V YT , (76)

where † means the Hermitian conjugation and T stands
for the matrix transposition. The matrices �U and �V are
diagonal and contain real non-negative eigenvalues of the
decomposition. The matrix Y (X) in Eq. (76) contains the
right (left) eigenvectors Yi (Xi).

The eigenvectors defined by the Bloch-Messiah reduction
give typical modes of the nonlinear interaction and represent
a discrete form of eigenmode spectral functions φn found in
Eq. (35) in the analytical perturbation approach.

Coefficients Bs,n and Cs,n of the generalized superposition
of signal and noise [9] written for an nth eigenmode of the
Bloch-Messiah reduction (76) and defined in Eqs. (49) can be
expressed using the eigenvalues of the decomposition,

Bs,n = �2
U,nn

(
B in

s,nA − 1
)+ �2

V,nnB
in
s,nA

+ (
�U,nn�V,nnC

in
s,nA + c.c.

)
,

(77)
Cs,n = �2

U,nnC
in
s,nA + �2

V,nnC
in∗
s,nA

+�U,nn�V,nn

(
2B in

s,nA − 1
)
.

The symbol c.c. stands for the complex conjugated term. The
coefficients B in

s,nA and C in
s,nA related to antinormal operator

ordering characterize the incident field of eigenmode n and
can be written as

B in
s,nA = cosh2(rn) + nn,noise,

(78)

C in
s,nA = exp(iθn) sinh(2rn)

2
,

where rn is the squeeze parameter, θn is the squeeze phase,
and nn,noise is the mean number of noisy photons in eigenmode
n. The number Ns,n of photons in eigenmode n [N = 〈â†â〉]
attains a simple form,

Ns,n = |ξs,n|2 + Bs,n, (79)

where ξs,n gives the initial coherent amplitude in eigenmode n.
The principal squeeze variance λs,n of eigenmode n is obtained
by the formula analogous to that in Eq. (48) above.
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The importance of the Bloch-Messiah reduction in the
investigation of squeezing is emphasized by the fact that
an eigenmode with the lowest value of the principal
squeeze variance λsF ,n represents the solution of the op-
timization problem for a suitable spectral mode profile
that gives the best possible amount of squeezing (see the
Appendix).

In the experiment, either forward- or backward-propagating
fields are interesting. Their properties can be obtained if
we decompose the eigenvectors Xn of the Bloch-Messiah
reduction into their mutually orthogonal forward- (XF,n)
and backward- (XB,n) propagating parts. The corresponding
principal squeeze variances λsb,n and mean photon numbers
Nsb,n are given by the weighted sums of the quantities
related to the eigenvectors of the original Bloch-Messiah
reduction,

λsb,n =
∑
n′

cb,nn′λs,n′ ,

(80)
Nsb,n =

∑
n′

cb,nn′Ns,n′ , b = F,B.

Using the scalar product, the coefficients cb,nn′ are given as

cb,nn′ = |X†
b,n · Xn′ |2

X†
b,n · Xb,n

, b = F,B. (81)

The number of effectively populated modes belongs to
the most important characteristics of the SSF field. It can
be obtained from the analysis of the amplitude correlation
functions 〈âout

s,nâ
out
s,n′ 〉vac giving the correlations between the

amplitudes âout
s,n associated with the eigenmodes of the Bloch-

Messiah reduction. For simplicity, the correlation functions
are defined for the incident vacuum state | 〉vac in the SSF field.
Suitability of these correlation functions for the determination
of the number of effective modes originates in the fact that
they describe paired photons in the SSF field. These paired
photons are, according to the formula for momentum operator
Ĝ in Eq. (3), the elementary entities characterizing the process
of second-subharmonic generation. Using the Bloch-Messiah
decomposition in Eq. (76), the amplitude correlation functions
can be written as〈

âout
s,nâ

out
s,n′
〉
vac = δnn′�V,nn�U,nn. (82)

According to Eq. (82), the real number �V,nn�U,nn deter-
mines the weight of the contribution of an nth eigenmode.
After proper renormalization of these weights guaranteeing∑

n(�V,nn�U,nn)2 = 1, the number K of effectively populated
modes is given by the cooperativity parameter,

K =
[∑

n(�V,nn�U,nn)2
]2∑

n(�V,nn�U,nn)4
. (83)

Monochromatic modes play a dominant role in the
experimentally determined quantities. They can be easily
evaluated using the matrices U and V occurring in the
solution in Eq. (75). For example and assuming the incident
vacuum state in the SSF field, the amplitude frequency
correlation function Nsbsb′ ,ω(ωs,j ,ωs,j ′ ) is determined by the

expression

Nsbsb′ ,ω(ωs,j ,ωs,j ′ )

= 〈âout†
sb

(ωs,j )âout
sb′ (ωs,j ′ )〉vac

= 1

�ω

∑
d=F,B

∑
k

V ∗
bd,jkVb′d,j ′k, b,b′ = F,B, (84)

where ωs,j = ω0
s + j�ω. The matrices Vbd introduced in

Eq. (84) (and, similarly, the matrices Ubd used later) are
obtained from the matrix V [U] in Eq. (75) by grouping its
matrix elements with respect to the propagation direction. The
spectral photon-number density in mode b is given by the
quantity Nd

sbsb,ω
(ωs,j ,ωs,j ).

In the time domain, amplitude correlations at two instants τ

and τ ′ are characterized by the temporal amplitude correlation
function Nsbsb′ ,τ (τ,τ ′) expressed as

Nsbsb′ ,τ (τ,τ ′) =
∫

dωs

∫
dω′

s exp(iωsτ ) exp(−iω′
sτ

′)

×Nsbsb′ ,ω(ωs,ω
′
s)

= (�ω)2
∑
j,j ′

exp(iωs,j τ ) exp(−iωs,j ′τ ′)

×Nsbsb′ ,ω(ωs,j ,ωs,j ′ ). (85)

For τ = τ ′, the quantity in Eq. (85) gives the flux expressed in
photon numbers.

VI. DISCUSSION OF THE PULSED-SQUEEZED-LIGHT
GENERATION

We assume that the incident forward-propagating funda-
mental field is given by a Gaussian ultrashort pulse with the
central wavelength λ0

p = 532 × 10−9 m and pulse duration
τp = 1 × 10−13 s [see Eq. (25)] originating in the second-
harmonic frequency generation from a pulsed Nd:YAG laser.
Knowing its incident power PpF

and repetition rate f (f =
1 × 108 s−1), the incident amplitude ξp defined in Eq. (25) is
obtained by the formula

ξp =
√

PpF
Lβ0

p

h̄(ω0
p)2f

. (86)

The waveguide’s depth t equals 5 × 10−7 m. Its width �y

is 1 × 10−6 m. Depth tl of the periodic corrugation is 5 ×
10−8 m, which guarantees single-mode operation at the studied
frequencies (for more details, see [28]). Period �l of this
corrugation is determined by Eq. (10) such that the scattered
field a fulfills the resonant condition �0

a = mπ/L for the first
transmission peak (m = 1), i.e., δ0

a = ±√π2/L2 + |K0
a |2. The

natural quasi-phase mismatch δ
nat,0
nl,q is then given in Eq. (44)

for the fundamental field and in Eq. (47) for the SSF field, and
determines the period �nl of nonlinear periodic poling (for
details, see the end of Sec. III B). We consider two different
waveguide’s lengths, L = 1 × 10−3 m and L = 1 × 10−2 m, in
the discussion. Spectral and modal properties of the SSF field
are conveniently discussed in the shorter waveguide, which
provides wider SSF spectra. On the other hand, the nonlinear
interaction is sufficiently developed in the longer waveguide,
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which results in useful values of the principal squeeze variance
λ.

The section is divided into two parts. In the first part,
spectral modes and their structure are discussed using the
simplified model with nondispersion propagation developed
in Sec. IV. A general discussion of the behavior of the SSF
field as it arises from numerical solution of the model of Sec. V
is contained in the second part.

A. Spectral modes and their properties

The simplified model with nondispersion propagation is
useful in revealing spectral properties of eigenmodes of the
nonlinear interaction. When the fundamental-field scattering
is considered, the SSF-field eigenmodes maintain qualitatively
the features obtained in the perturbation Gaussian approach
in Sec. III, resulting in the formula (35) (see also [47,50]).
Thus, an nth eigenmode (n = 1,2, . . .) has n − 1 zeros in its
intensity profile [see Fig. 5(a)]. Also, the larger the number n

of eigenmode, the wider the mode is.
The eigenmode structure is more complex for the scattered

SSF field that has the forward- and backward-propagating
components. Intensity profiles of these components in one
eigenmode are the same. Moreover, there exist pairs of
eigenmodes with the same intensity profile. However, they
are mutually orthogonal due to their different spectral phase
profiles. Also here intensity profiles of the components have
n − 1 zeros for an nth pair of eigenmodes [see Fig. 5(b)].

(a)

(b)

FIG. 5. Intensity spectral profiles |Xs,n|2 for the scattered (a)
fundamental and (b) SSF field for the first (solid curve without
symbols), second (solid curve with ∗), third (solid curve with
◦), and fourth (solid curve with �) eigenmode obtained in the
model with nondispersion propagation. The profiles are normalized
such that

∫
dω|Xs,n(ω)|2/ω0

s = 1. In (a), �l = 1.151 × 10−7 m and
�nl = 3.5510 × 10−6 m. In (b), �l = 2.459 × 10−7 m and �nl =
3.5547 × 10−6 m. PpF

= 1 × 10−6 W, L = 1 × 10−3 m.

FIG. 6. Principal squeeze variances λs,n of the maximum-
squeezed 15 eigenmodes for the scattered fundamental (solid curve
with ∗) and SSF (solid curve with �) field determined assuming
nondispersion propagation. Also, the principal squeeze variances
λsF ,n of the forward-propagating SSF field are shown (solid curve
with ◦). For comparison, principal squeeze variances λs,n of the real
waveguide without the scattered fields (solid curve with �) are drawn;
PpF

= 1 × 10−6 W, L = 1 × 10−3 m.

The absence of intermode dispersion leads to the fact that
spectral widths of eigenmodes are given by the bandwidth
of a frequency filter used in the experiment. The fact that
the propagating monochromatic waves of the SSF field are
in phase effectively increases the nonlinear interaction. As a
consequence, smaller values of principal squeeze variances
λs,n and greater SSF-field photon numbers Ns,n compared to
the real ones are predicted in the model. The principal squeeze
variances λs,n of the first 15 eigenmodes are drawn in Fig. 6
for the scattered fundamental and SSF fields. The principal
squeeze variances λs,n for the fundamental-field scattering are
smaller than those for the SSF-field scattering because the
scattering in the SSF field is weaker [compare the curves in
Figs. 2(a) and 3(a)]. In the case of the scattered SSF field,
even the principal squeeze variances λsF ,n characterizing the
forward-propagating field and given by the formula (80) are
shown. The values of variances λsF ,n can clearly be grouped
into pairs, which originates in the pairing of eigenmodes
discussed above. However, we note that the modes of the
forward-propagating SSF field arising from the decomposition
of eigenmodes into their forward- and backward-propagating
components are not mutually orthogonal. In fact, the number
of such modes is twice that given by the dimension of the
appropriate space. The comparison of values of principal
squeeze variances λs,n obtained for the waveguide with and
without scattering reveals substantial improvement caused by
the scattering (see Fig. 6).

B. Pulsed-squeezed-light generation

We analyze the general solution using the model of Sec. V
assuming the fundamental-field scattering and compare the ob-
tained results with those appropriate for the waveguide without
scattering. Considering the shorter waveguide, the intensity
spectral profiles of the first four eigenmodes are plotted in
Fig. 7 for both cases. Compared to the profiles of the model
without dispersion shown in Fig. 5(a), the obtained intensity
spectral profiles are naturally bounded by spectral properties
of the waveguide (material and waveguiding dispersion; see
Fig. 7). Whereas the intensity spectral profiles maintain the
appropriate number of zeros in the case without scattering,
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(a)

(b)

FIG. 7. Intensity spectral profiles |Xs,n|2 for the first (solid curve
without symbols), second (solid curve with ∗), third (solid curve
with ◦), and fourth (solid curve with �) SSF-field eigenmode for (a)
no scattered field and (b) scattered fundamental field. In (a), �nl =
3.5516 × 10−6 m, and in (b), �l = 1.151 × 10−7 m, �nl = 3.5510 ×
10−6 m; PpF

= 1 × 10−6 W, L = 1 × 10−3 m.

scattering of the fundamental field leads to the replacement of
zeros by nonzero minima in these profiles. Scattering in the
fundamental field considerably broadens eigenmode spectral
profiles [compare Figs. 7(a) and 7(b)] on one side, and on
the other side it makes the overall spectra narrower [see
Fig. 9(a) below]. This is caused by a complex phase structure
of the generated SSF field that requires a greater number of
eigenmodes in its decomposition. As these eigenmodes have
to be mutually orthogonal, their spectra have to be wider. The
mode structure does not significantly change when the incident
power of the fundamental field increases. This is caused by the
approximation assuming a nondepleted fundamental field.

On the other hand, increasing values of the incident
fundamental-field power PpF

decrease the principal squeeze
variances λs,n in all eigenmodes. This is documented in Fig. 8,
showing the variances λs,n for three different values of the
power PpF

. A comparison of the curves in Figs. 8(a) and
8(b) allows one to judge the effectiveness of scattering in the
fundamental field from the point of view of squeezed-light
generation.

Scattering of the fundamental field not only increases
squeezing in the eigenmodes, it also considerably increases
the number K of effectively populated eigenmodes. Whereas
K ≈ 11 for the case without scattering, K ≈ 49 is found for
the scattered fundamental field. Larger values of the number
K of effectively populated modes are important for pulsed
homodyne detection [7], as they lower the requirements to the
amplitude profile of the used local-oscillator field.

As the nonlinear interaction populates a larger number
of eigenmodes, the intensity spectrum Nd

ss,ω of the overall

(a)

(b)

FIG. 8. Principal squeeze variances λs,n depending on the mode
number n for PpF

= 1 × 10−7 W (solid curve with ◦), PpF
= 1 ×

10−6 W (solid curve with �), and PpF
= 1 × 10−5 W (solid curve

with ∗) for (a) no scattered field and (b) scattered fundamental field.
Values of the parameters are the same as in the caption of Fig. 7.

SSF field is relatively wide [see Fig. 9(a)]. This is caused
by nearly linear spectral dependencies of the linear phase
mismatches [see the curves in Figs. 2(b) and 3(b)]. On the
other hand, amplitude spectral correlations given mainly by
the fundamental-field spectral width are narrow for both
considered cases [see Fig. 9(b) for a cut across the correlation
function Nss,ω(ωs,ω

′
s)]. Also, spectral oscillations originating

in dispersion evolution along the z axis can be found in these
correlations.

The SSF field is generated in the form of an ultrashort
pulse (see Fig. 10). Whereas its temporal profile is close to a
rectangular shape for the case without scattering, its profile is
broken into two parts when scattering of the fundamental field
is considered. This scattering makes the SSF-field intensity
spectra narrower and, as a consequence, it also extends the
SSF-field duration (from approximately 1.3 ps to 2 ps). This
extension of field duration is also caused by complex spectral
phase relations imposed by the scattering of the fundamental
field. Splitting of the SSF-field pulse reflects spectral antisym-
metry around the central frequencies ω0

s and ω0
p. Period �l of

linear corrugation and period �nl,1 of nonlinear modulation are
optimum only for the central frequencies. Whereas their values
lead to insufficient compensation on one side of the spectrum,
they overcompensate the nonlinear interaction on the other side
of the spectrum. We note that the nearly rectangular shape in
the case without scattering is given by the chosen values of
fundamental-field pulse duration and waveguide length and
their relation to the group velocities at the fundamental and
SSF central frequencies.

In order to reach useful (i.e., sufficiently small) values of the
principal squeeze variances λs,n, either greater fundamental-
field powers or longer waveguides have to be considered.
Achievable values of the variances λs,n as well as numbers Ns,n
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FIG. 9. (a) Intensity spectrum Nd
ss,ω(ω) ≡ Nss,ω(ω,ω) and (b) cut

Nc
ss,ω(ω) ≡ |Nss,ω(ω0

s ,ω)| across the amplitude correlation function
of the overall SSF field for the waveguide with the fundamental-
field scattering (solid curve without symbols) and without scat-
tering (solid curve with ∗). The spectra are normalized such that∫

dωNd
ss,ω(ω)/ω0

s = 1. Values of the parameters are the same as in
the caption to Fig. 7.

of generated photons depend on the fundamental-field power
and are plotted in Fig. 11 for the 10-mm-long waveguide.
As shown in Fig. 11, small values of the variances λs,n as
well as greater values of photon numbers Ns,n are practically
found in all of the first K eigenmodes. The improvement of
squeezing caused by scattering in the fundamental field is
dramatic [see Fig. 11(a)]. Scattering also increases the numbers
Ns,n of generated SSF-field photons by more than two orders
of magnitude for the analyzed waveguide [see Fig. 11(b)]. As
scattering also increases the number K of effectively populated
modes (from 14 to 23), the overall number Ns of generated

FIG. 10. Flux Nd
ss,τ (τ ) ≡ Nss,τ (τ,τ ) of photon numbers in the

SSF field for the waveguide with the fundamental-field scattering
(solid curve without symbols) and without scattering (solid curve
with ∗). It holds that

∫
dτNd

ss,τ (τ ) = 1 and values of the parameters
are the same as in the caption to Fig. 7.

(a)

(b)

FIG. 11. (a) Principal squeeze variances λs,n and (b) numbers
Ns,n of generated photons as they depend on incident fundamental-
field power PpF

. The quantities are shown for the waveguide with
fundamental-field scattering (�l = 1.151 × 10−7 m, �nl = 3.5510 ×
10−6 m, solid curves) as well as without scattering (�nl = 3.5516 ×
10−6 m, dashed curves). Curves without symbols are for n = 1,
whereas the curves with ∗ are for n = 23 (with scattering) and n = 14
(without scattering) equal to the number K of effectively populated
modes; L = 1 × 10−2 m. In (b), the logarithmic y axis is used.

photons is nearly three orders of magnitude greater when the
fundamental field is scattered (see Fig. 12).

Thus, a linear periodic corrugation with suitable parameters
present in a nonlinear waveguide leads to an important increase
of effective nonlinearity that results in great improvement of
amplitude squeezing of the generated light.

VII. CONCLUSIONS

A quantum model of pulsed second-subharmonic genera-
tion in a nonlinear waveguide with a periodic linear corrugation

FIG. 12. Numbers Ns of generated photons depending on incident
fundamental-field power PpF

for the waveguide with fundamental-
field scattering (solid curve) and without scattering (dashed curve);
L = 1 × 10−2 m. The logarithmic y axis is used.

013833-15
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has been developed. Assuming a strong fundamental field,
the model has been solved for lower second-subharmonic
field intensities using the perturbation approach generalized
to backscattered fields. More intense second-subharmonic
fields with negligible intermode dispersion have been treated
by the Fourier-transform approach that allows one to find
partly analytical solutions. A numerical approach has been
applied in the general case. Using the Bloch-Messiah reduc-
tion, spectral eigenmodes suitable for squeezed-light gener-
ation have been revealed. Scattering by the corrugation is
more efficient in the fundamental field than in the second-
subharmonic one. Although scattering by the corrugation
makes the second-subharmonic spectra narrower, it broadens
the spectral eigenmodes. It also leads to a larger number
of populated eigenmodes. Phase relations in the nonlinear
interaction imposed by the corrugation also cause splitting
of the temporal second-subharmonic pulse. In a sufficiently
long waveguide, the corrugation dramatically increases the
number of generated photons and, hand in hand, suppresses
quantum amplitude fluctuations. A periodic corrugation thus
represents a very important and efficient tool for tailoring
properties of the light generated in modern nonlinear photonic
waveguides.
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APPENDIX: AN OPTIMUM MODE FOR THE
PULSED SQUEEZED LIGHT

We look for a suitable linear combination of the output
operator amplitudes âout

s,i that minimizes the value of principal
squeeze variance λs . Using the Bloch-Messiah reduction of
matrices U and V in Eq. (76), we can express this combination
as follows [61]:

âout
s =

∑
i,j

tj Xij â
out
s,i . (A1)

Coefficients tj fulfill the normalization condition
∑

j |tj |2 = 1.
Using Eqs. (48) and (49), the principal squeeze variance λL

s

with the Lagrange term as a function of tj and t∗j can be
expressed in the following form:

λL
s (t,t∗) = 1 + 2t†�2

V t − 2|tT �V �U t| − μt† · t,

= 1 + 2t†�2
V t − 2t†�V �U t − μt† · t. (A2)

Symbol μ in Eq. (A2) denotes a Lagrange multiplier related
to the normalization of vector t composed of coefficients tj .

Derivation of the function λL
s in Eq. (A2) with respect to

the coefficients t∗i and ti gives the conditions

2
[
�2

V − �V �U

]
t = μt, 2t†

[
�2

V − �V �U

] = μt†. (A3)

Assuming μ = 2(�2
V,ii − �V,ii�U,ii), the solution to

Eqs. (A3) is ti = 1 and tj = 0 for j �= i. As we look for the
minimum value of λs , we choose i such that its principal
squeeze variance given by 1 + μ is minimum.
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(1988).
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[30] J. Čtyroký and L. Kotačka, Opt. Quantum Electron. 32, 799
(2000).
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