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Solitons in PT -symmetric periodic systems with the quadratic nonlinearity
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We introduce a one-dimensional system combining the PT -symmetric complex periodic potential and the
χ (2) (second-harmonic-generating) nonlinearity. The imaginary part of the potential, which represents spatially
separated and mutually balanced gain and loss, affects only the fundamental-frequency (FF) wave, while the real
potential acts on the second-harmonic (SH) component too. Soliton modes are constructed, and their stability
is investigated (by means of the linearization and direct simulations) in semi-infinite and finite gaps in the
corresponding spectrum, starting from the bifurcation which generates the solitons from edges of the gaps’
edges. Families of solitons embedded into the continuous spectrum of the SH component are found too, and it is
demonstrated that a part of the families of these embedded solitons is stable. The analysis is focused on effects
produced by the variation of the strength of the imaginary part of the potential, which is a specific characteristic
of the PT system. The consideration is performed chiefly for the most relevant case of matched real potentials
acting on the FF and SH components. The case of the real potential acting solely on the FF component is briefly
considered too.
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I. INTRODUCTION

There is a growing interest in physical systems possessing
the so-calledPT (parity-time) symmetry [1,2], i.e., dissipative
quantum systems with the antisymmetry between spatially
separated gain and loss. If the strength of the gain-loss terms
does not exceed a certain threshold value, the PT -symmetric
system has a purely real spectrum and its non-Hermitian
Hamiltonians can be transformed into a Hermitian form [3].
Making use of the similarity of the quantum-mechanical
Schrödinger equation to the parabolic propagation equation
in optics, it was proposed theoretically [4] and demonstrated
experimentally [5] that the PT symmetry can be realized, in
the purely classical context of the wave propagation, in optics,
where it implies that a waveguide with the PT -balanced gain
and losses allows the transmission of wave modes, emulating
the index-guiding transmission in ordinary (conservative)
waveguides. These findings stimulated numerous additional
studies of the linear wave propagation in [2] PT -symmetric
systems with particular attention being focused on the periodic
potentials [6] (see also review [7]).

Due to optical applications, additional interest has been
recently attracted by nonlinear PT -symmetric optical systems
with periodic modulation of the refractive index [8] which
demonstrated that stable solitons can be supported by the
combination of the Kerr nonlinearity and periodic complex
potentials, whose spatially odd imaginary part accounts for
the balanced gain and loss. The stability of such solitons
was rigorously analyzed in Ref. [9]. Solitons can also be
naturally found in linearly coupled dual-core systems with
balanced gain and loss in the two cores and intrinsic Kerr
(cubic) nonlinearity in each one [10], and discrete solitons were
predicted in coupled chains of PT -symmetric elements [11]
and in general networks of coupled PT -symmetric oligomers
(dimers, quadrimers, etc.) [12]. In addition to introducing

the usual Kerr nonlinearity, the PT -symmetric part of the
system can be made nonlinear too, by introducing mutually
balanced cubic gain and loss terms [13]. Properties of solitons
in PT systems may differ significantly from what is known
about usual solitons in conservative models. In particular,
different families of solutions bifurcating from different linear
modes may merge in a single family, exhibiting increased
stability [14]. On the other hand, the increase of the gain-loss
coefficient in the PT -symmetric Kerr-nonlinear coupler leads
to shrinkage of the stability areas for PT -symmetric and
antisymmetric solitons, until they vanish when this coefficient
becomes equal to the intercore coupling constant. We also
mention recent intensive activity in the study of the combined
effect of linear and nonlinear PT [15] on the existence and
stability of optical solitons.

Apart from the Kerr nonlinearity, another fundamental type
of nonlinear interaction in optical media is quadratic (χ (2)),
which gives rise to the second-harmonic-generation systems,
which generate families of two-color solitons [16]. Recently
the soliton dynamics in χ (2) materials was considered in the
presence of a PT -symmetric localized impurity [17]. The
objective of the present work is to introduce a generic one-
dimensional (1D) system with the PT -symmetric periodic
complex potential and conservative χ (2) nonlinearity, and
construct stable solitons in it. The realization of such a
system in the spatial domain is quite possible in optics,
using appropriately juxtaposed gain and loss elements, like
in Ref. [5], inserted into a χ (2) medium. Here we focus on the
search for gap solitons (GSs) in the system with the periodic
potential, i.e., localized solutions whose propagation constant
belongs to regions of the forbidden propagation (gaps) in the
underlying linear spectra. Similarly to the usual χ (2) systems
(which do not include gain and loss) [16], the quadratic nature
of the nonlinearity makes the interplay between the gaps of
the fundamental-frequency (FF) and second-harmonic (SH)
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fields a fundamental factor affecting GS families. In particular,
the generic mechanism of the creation of the families via
bifurcations from edges of the band gaps [18] can work in
the FF or SH component, or in both [17]. We here analyze all
these possibilities.

It is relevant to mention that, as PT -symmetric systems
are a special type of setting at the border between conservative
and dissipative systems, the solitons that exist in them may
be naturally compared not only to their counterparts in
conservative models (as mentioned above, concerning the
relation to GSs in the conservative χ (2) systems), but also to
solitons in generic dissipative systems, with unbalanced gain
and loss. The crucial difference of the dissipative solitons from
their conservative counterparts is that they exist, as isolated
attractors of the system, at a single value of the propagation
constant, rather than continuous families parametrized by an
arbitrary propagation constant [19]. In particular, as concerns
GSs, 1D and 2D dissipative gap solitons in the complex
Ginzburg-Landau equations with periodic potentials were
reported in Ref. [20]. In this sense nonlinear PT -symmetric
systems, being not conservative and thus requiring a balance
between dissipation and gain, but still allowing for the
existence of the continuous families of the solutions (which is
the generic property of such a system provided the nonlinearity
obeys the same symmetry as the linear part [21]), occupy an
intermediate position between the conservative and dissipative
systems, and reduced to the former ones when the gain-loss
coefficient becomes zero or thelater ones when ther appears a
disbalance between gain and loss.

The paper is organized as follows. The model is introduced
in Sec. II. In Sec. III results are reported for soliton families
found in the model, including the analysis of their stability,
using both direct simulations and linearized equations for small
perturbations. The paper is concluded in Sec. IV. Some special
cases are separately considered in the two Appendixes.

II. THE MODEL

We consider the χ (2) system, based on the evolution
equations for the FF and SH components u1 (ζ,ξ ) and u2 (ζ,ξ ),
including the periodic PT -symmetric potential, with an
imaginary component of amplitude α, which is assumed to
act only onto the FF field:

i
∂u1

∂ζ
= ∂2u1

∂ξ 2
+ [V1 cos(2ξ ) + iα sin(2ξ )]u1 + 2u∗

1u2, (1a)

i
∂u2

∂ζ
= 1

2

∂2u2

∂ξ 2
+ 2[V2 cos(2ξ ) + q]u2 + u2

1. (1b)

Here ζ and ξ are the propagation and transverse coordinates,
q is the mismatch parameter, the χ (2) coefficient is scaled to be
1, the asterisk stands for the complex conjugate, V1 and V2 are
amplitudes of the real part of the periodic potential for the FF
and SH components, while the period of the potential is set to
be π by means of rescaling. Note that the conservative version
of model (1), with α = 0, was studied in Refs. [22,23], where
stable solitons were found.

The most straightforward situation, which corresponds to
the periodic potential induced by a material grating etched into
the χ (2) waveguide, corresponds to V1 = V2 in Eqs. (1). Basic

results are reported below for this situation. On the other hand,
a virtual gratingcan be written in the waveguide by means
of the electromagnetically-induced-transparency mechanism
(see, e.g., Ref. [24]). In the latter case, the effective periodic
potential is resonant, acting only in a narrow spectral interval.
In this situation, it is reasonable to consider the system with
V1 �= 0 and V2 = 0, when the potential does not affect the SH
field, which is far detuned from the resonance, and the opposite
case, with V2 �= 0 and V1 = 0. To illustrate similarities and
differences between the different settings, some results for
the systems with V2 = 0 (the virtual grating) and V1 = V2 =
0 (the purely imaginary periodic potential) are presented in
Appendixes A and B, respectively. In the latter case, the GSs
are completely unstable (as might be expected).

As concerns the loss and gain terms, they may be naturally
assumed resonant (e.g., if both are induced by resonant
dopants, with the inverted and uninverted populations in the
gain and loss regions, respectively). For this reason, it is natural
to assume that these terms are present only in the FF equation,
as adopted in the system based on Eqs. (1). The opposite
situation, with the imaginary potential acting on the SH field,
is possible too; it will be considered elsewhere.

We look for localized solutions with propagation constant
b in the form of

ul (ξ,ζ ) = wl (ξ ) eilbζ , l = 1,2, (2)

where complex functions wl (ξ ) obey the stationary equations

d2w1

dξ 2
+ [V1 cos(2ξ ) + iα sin(2ξ ) + b]w1 + 2w∗

1w2 = 0,

(3a)

1

2

d2w2

dξ 2
+ 2[V2 cos(2ξ ) + b + q]w2 + w2

1 = 0. (3b)

Generally speaking, Eqs. (3) allow for solutions obey-
ing one of the following symmetries: {w1(ξ ),w2(ξ )} =
{w∗

1(−ξ ),w∗
2(−ξ )} or {w1(ξ ),w2(ξ )} = {−w∗

1(−ξ ),w∗
2(−ξ )}.

Note also that, in the well-known cascading limit |q| → ∞
[16], Eq. (3b) yields w2 ≈ −w2

1/ (2q), and Eq. (3a) amounts
to the equation with the cubic nonlinearity,

d2w1

dξ 2
+ [V1 cos(2ξ ) + iα sin(2ξ ) + b]w1 − q−1|w1|2w1 = 0.

(4)
As mentioned above, solitons in the PT system based on
Eq. (4) were recently studied in Refs. [8,9].

III. GAP-SOLITON FAMILIES

It is well known that χ (2) equations have particular solutions
with the vanishing FF component, w1 → 0, while the SH
part may either vanish or remain finite. These solutions are
usually subject to the parametric instability [16], but they
may be stabilized by an additional cubic nonlinearity [25],
by an external trapping potential [26], or by a PT -symmetric
localized defect [17].
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To identify bifurcations which give rise to GSs from the
edges of band gaps, it is also necessary to analyze the situation
for w1 → 0. Generally speaking, one should then deal with
three different cases [17], as shown below.

Case 1. Both components are of the same order,

w2 = O(w1), w1 → 0. (5)

Case 2. The SH field remains finite:

w2 = O(1), w1 → 0. (6)

Case 3. The SH amplitude scales as the square of the FF
amplitude:

w2 = O
(
w2

1

)
, w1 → 0. (7)

Below, particular features of these three cases are considered
separately.

A. Case 1

In the limit case defined as per condition (5), the nonlinear
terms in both equations (3) can be neglected, which, at
the leading order, results in the system of decoupled linear
equations:

d2A1

dξ 2
+ [V1 cos(2ξ ) + iα sin(2ξ ) + b]A1 = 0, (8a)

d2A2

dξ 2
+ 4[V2 cos(2ξ ) + b + q]A2 = 0. (8b)

We notice that while Eq. (8b) is the well-known Mathieu
equation, the linear spectral problem (8a) with the PT -
symmetric periodic potential was also thoroughly studied
in literature [1,6,27]. In particular, it is known that subject
to constraint |α| � V1, Eq. (8a) gives rise to the pure real
spectrum. Now we turn to the combined band-gap spectrum
of Eqs. (8a), i.e., to the values of the propagation constant
b which belong to the spectra of both spectral problems. We
denote by b

(m)
l,± the propagation constant at the upper (+) or

lower (−) edge of the mth (m = 0,1,2...) band for the FF
(l = 1) and SH (l = 2) components, the latter being computed
for q = 0 (then the band edges of the SH with q �= 0 are
given by b

(m)
2,± − q). Accordingly, the sequence of finite gaps

is defined as �
(n)
l = (b(n)

l,+,b
(n−1)
l,− ), where n = 1,2,..., and the

semi-infinite gap is interval �
(0)
l = (b(0)

l,+,∞). A total gap is
the intersection of gaps of both components, as illustrated in
panel (a) of Fig. 1.

Condition (5) implies that in Eqs. (8), b is a band edge for
the FF and SH components simultaneously (this situation is
illustrated in the right panel of Fig. 2). Since the band edges of
the FF and the SH are in general independent, to let case (5)
occur, and hence to let a branch bifurcate from the band edge
b

(m)
1,± of the FF, we have to impose the following condition:

b
(m)
1,σ = b

(m′)
2,σ − q, σ = ±, (9)

where m′ can be any band of the SH. Note, however, that only
edges of the same type allow the existence of the bifurcation
we are dealing with, which justifies the same sign, + or −, on

FIG. 1. (Color online) (a) The spectrum of potential (III A) with
α = 0.4. The blue (solid) and green (dashed) curves correspond to the
FF and SH components, respectively. Regions of FF and SH bands are
shaded. The total gap corresponds to white domains, as indicated in
the figure. (b) Propagation constant vs the gain-loss coefficient. Edges
of the total gap determined by the SH component are identifiable by
horizontal lines, as they do not depend on α. The other edges are
imposed by the FF component. The other parameters are V1 = V2 = 1
and q = 0.

both sides of Eq. (9). Indeed, as one can see in panel (a) of
Fig. 1, the individual gaps are located directly above (below)
the band edges b

(m)
l,+ (b(m)

l,−).
Once we impose condition (9), we force individual gaps to

have at least one common edge. Then the total gap only exists
if this edge is either the lower or upper one for both bands
simultaneously, as illustrated in Fig. 2.

FIG. 2. A schematic diagram illustrating matching the band edges
of the FF and SH for configuration of case 1. The left part of the figure
represents the system without mismatch (q = 0). The arrow in the
middle shows to what configuration the band structure is transferred
when the mismatch q = q

(m,m′)
− , resulting in the existence of the total

gap, is imposed.
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Condition (9) imposes constraints on the design of the
periodic structure. Typically, Vl would be fixed, and one could
change the concentration of the dopant, which amounts to
varying the amplitude of the imaginary part of the potential,
α, or mismatch q. Accordingly, for given values of b

(m)
1,σ and

b
(m′)
2,σ , which are determined by the real part of the potential, it

is possible to satisfy Eq. (9) by setting q = q(m,m′)
σ , where

q(m,m′)
σ = b

(m)
1,σ − b

(m′)
2,σ , σ = ±. (10)

All edges of the FF and the SH bands may be, in principle,
matched with q = q(m,m′)

σ . Additionally it is possible to match
the edges by tuning α alone, as can be seen in the third gap of
panel (b) in Fig. 1 for q = 0. It is also possible to see that case
1 in the semi-infinite gap cannot be realized solely through
adjusting α.

1. Solitons in the semi-infinite gap

In Fig. 3, we display branches of the fundamental solitons,
found numerically in case 1 in the semi-infinite gap, using
matching q = q

(0,0)
+ . The branches are presented in the plane

(b,P ), where P = P1 + P2, with Pl ≡ l
∫ ∞
−∞ |wl|2 dξ (l =

1,2), is the total power. Examples of fundamental soliton
solutions, i.e., the energy flows in each component as well
as the currents, are defined as

jl(ξ ) = |wl|2 dθl

dξ
, θl(ξ ) = arg wl(ξ ), (11)

corresponding to the total power P = 0.5, and are shown in
Fig. 4. We observe that while the currents having maximum
in the center and domains with alternating signs have very
similar shapes of the spatial profiles, the power density is
mainly concentrated in the FF and SH in cases 3 and 2,
respectively, and is approximately equally split between the
two components in case 1 [as this is expected due to (5)]. In
all three cases the real valued FF current j1 has a significantly
higher amplitude than the current of the SH, j2, i.e., the balance
between gains and losses is accomplished mainly due to the FF.

FIG. 3. (Color online) Branches of fundamental solitons for α =
0.7 and different values of q, found in the semi-infinite gap. The
left, central, and right panels correspond to cases 1, 2, and 3, with
values q = q

(0,0)
+ = −0.316, q = 0, and q = −0.5134, respectively

[see Eqs. (5), (6), and (7)]. Insets show power components P1 (line)
and P2 (dashed line) close to an edge of the semi-infinite total gap.
Here and below, thick and thin lines represent stable and unstable
solutions, respectively. Shaded regions denote bands of the FF and/or
SH. Parameters are V1 = V2 = 1 and α = 0.7.
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FIG. 4. (Color online) Examples of stable fundamental solitons
found in the semi-infinite gap pertaining to all three cases, which
are indicated by black circles in Fig. 3. The upper panels correspond
to case 1, with b = 0.25 and band-edge matched with q = q

(0,0)
+ =

−0.316. The middle panels correspond to case 2, with b = 0.43 and
q = 0. Lower panels show a solution of case 3 with b = 0.21 and
q = −0.5134. The parameters are V1 = V2 = 1 and α = 0.7.

Here and in the rest of the paper, localized solutions satis-
fying zero boundary conditions were calculated numerically
using a shooting method described in detail in Ref. [23] for the
conservative case α = 0, and then extended to given α > 0 by
means of the Newton-Raphson method.

2. Solitons in the third finite gap

The main focus of this work is on the effects of the gain-
loss coefficient α on branches of the fundamental solitons. To
concentrate on this point, in what follows we set q = 0. For this
choice it turns out possible to obtain the matching condition
b

(1)
1,+ = b

(2)
2,+ = 1.29 only in the third finite gap at α = 0.792

[the value indicated by an arrow in Fig. 1(b)]. In this context the
consideration of the third gap becomes particularly relevant,
as one can examine all three cases using only small deviations
in parameter α. The respective modifications of the branches
subject to variation of the amplitude of the imaginary part of
the potential α are illustrated Fig. 5. Examples of the profiles
of the respective gap solitons are shown in Fig. 6, where all
three presented solutions have the same energy flow: P = 0.5.
The most significant distinction with the situation observed
in Fig. 4 for the solitons in the semi-infinite gap is that (i)
now the intensity of the FF is always bigger than the intensity
of the SH and (ii) the energy currents of the FF and SH are
counterpropagating and have constant signs (the current j1 is
negative, while j2 is positive).

B. Stability analysis

The stability of the solutions found as outlined above was
tested in direct simulations, as well as within the framework

013832-4



SOLITONS IN PT -SYMMETRIC PERIODIC . . . PHYSICAL REVIEW A 87, 013832 (2013)

FIG. 5. (Color online) Branches of fundamental GSs found in the
third finite gap for several values of amplitude α of the imaginary
part of the periodic potential. All three cases, 1, 2, and 3, which are
defined as per Eqs. (5), (6), and (7), respectively, are presented. The
gray region denotes the band of the SH component. The parameters
are V1 = V2 = 1, q = 0.

of the linear stability analysis. The latter is based on the ansatz

ul(ξ,ζ ) = (wl + δl+e−iλζ + δ∗
l−eiλ∗ζ )eilbζ , (12)

where δl± are amplitudes of small perturbations. The substi-
tution of this ansatz into Eqs. (II) leads to the linear spectral
problem,

L

⎛
⎜⎜⎜⎝

δ2+
δ1+
δ2−
δ1−

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

δ2+
δ1+
δ2−
δ1−

⎞
⎟⎟⎟⎠ , (13)
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FIG. 6. (Color online) Examples of stable fundamental gap
solitons in the third finite gap pertaining to all three cases, which
are indicated by black circles in Fig. 5. The upper panels correspond
to case 1, with b = −1.207 and band-edge matched with α = 0.7919.
The middle panels correspond to case 2, with b = −1.234 and
α = 0.7. The lower panels show a solution of case 3 with b = 1.553
and α = 0.9. The total power of all three solitons is P = 0.5. The
parameters are V1 = V2 = 1, q = 0.

FIG. 7. (Color online) Top plots: The evolution of two GS
solutions with 10% of amplitude random perturbations in case 1 [see
Eq. (5)] in the semi-infinite gap. The left panel has b = 0.25 and is
stable. The right panel corresponds to unstable evolution of a solution
with b = 0.5. The corresponding eigenvalues of small perturbations
are shown in the lower panels. The parameters of the structure are
V1 = V2 = 1, α = 0.7, and q = q

(0,0)
+ = −0.316.

where

L =

⎛
⎜⎜⎜⎝

L2 + 2b 2w1 0 0

2w∗
1 L1 + b 0 2w2

0 0 −L2 − 2b −2w∗
1

0 −2w∗
2 −2w1 −L∗

1 − b

⎞
⎟⎟⎟⎠ , (14)

with

L1 = d2

dξ 2
+ V1 cos(2ξ ) + iα sin(2ξ ), (15a)

L2 = 1

2

d2

dξ 2
+ 2[V2 cos(2ξ ) + q]. (15b)

Turning now to the stability properties of branches located in
the semi-infinite gap, we obtain that the fundamental branches
may have one or more instability intervals (see Fig. 3). The
lengths of these intervals increase with α approaching the
PT -symmetry breaking point. This is a feature observed in
all the cases considered below for semi-infinite gaps. In Fig. 7
we show examples of the evolution of stable and unstable
localized solutions. The observed oscillatory instability is due
to a quartet of complex λ, and instability develops as amplitude
oscillations that increase with ζ .

Stability of the solitons of the fundamental branches in
the third finite gap (case 1 with α = 0.792) is shown in
Fig. 5. We observe an interval of stability which starts at
the bifurcation point b = b

(1)
1,+ = b

(2)
1,+ = 1.29, the rest of the

branch corresponding to unstable solutions.
Explicit examples of the direct propagation compared with

the linear stability analysis are shown in Fig. 8. Stable and
unstable GSs with slightly modified b belonging to the third
finite gap are shown in the left and right columns, respectively.
The two eigenvalues of the stable solution collide when b is
varied and assume purely imaginary values. It can be seen in

013832-5



F. C. MOREIRA, V. V. KONOTOP, AND B. A. MALOMED PHYSICAL REVIEW A 87, 013832 (2013)

FIG. 8. (Color online) Top plots: The evolution of two GS
solutions with 10% of amplitude random perturbations in case 1
[see Eq. (5)] in the third finite gap. The left panel has b = −1.207
and is stable. The right panel corresponds to unstable evolution of a
solution with b = −1.101. The corresponding eigenvalues of small
perturbations are shown in the lower panels. The parameters of the
structure are V1 = V2 = 1, α = 0.7919, and q = q

(0,0)
+ = 0.

the upper right panel that the perturbed solution decays very
rapidly.

C. Case 2

Now we turn to numerical studies of solutions satisfying
condition (6), in the vicinity of the total gap, which coincides
with an mth SH gap edge, i.e., with b

(m)
2,σ . While the FF

component is vanishing in this case, i.e., w1 → 0 as b → b
(m)
2,σ ,

the amplitude of the SH w2 persists finite while its width
increases (i.e., the SH in this limit becomes delocalized).

In particular, the effect of the delocalization is responsible
for the growth of the total power, i.e., divergence of P , at
b → b

(0)
2,+ and α = 0.7 shown in the central panel of Fig. 3 and

at b → b
(2)
2,+ shown in Fig. 5 for the branches with α = 0 and

α = 0.7. Note that, in branches of case 2 represented in Fig. 5
for both α = 0 and α = 0.7, P diverges at the same b = b

(2)
2,+,

as the spectrum of Eq. (8b) is independent of α. Similar results
for the conservative system, with α = 0, were previously
obtained in Refs. [22,23]. On the other hand, no delocalization
of the SH component was observed for the branches satisfying
condition (6) in Ref. [17], where a PT -symmetric localized
potential was considered, since the bifurcation of the second
harmonic in that case departed from the localized defect state.
The SH amplitude (we denote it by C2 = max |w2|) of a
solution with b close to b

(m)
2,σ , i.e., at |b − b

(m)
2,σ | 	 1, depends

on the phase mismatch and on the gain-loss coefficient.
This is illustrated in the left panel of Fig. 9, where we

display plots C2 vs α, calculated at the SH edge b = b
(1)
2,+ which

coincides with the edge of the third finite gap [like illustrated
in the panel (a) of Fig. 1] for fixed q = 0. In the right panel
of Fig. 9 we show dependence of C2 on the mismatch q at the
SH edge b = b

(0)
2,+ coinciding with the semi-infinite gap edge

for fixed α = 0.7. We found that C2 → 0 in the C2(α) and
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FIG. 9. (Color online) Left panel: C2 vs α at the SH edge b =
b

(1)
2,+ = −1.293 of the third finite gap for q = 0. C2 = 0 at b(1)

1,+ = b
(1)
2,+.

Right panel: C2 vs q for α = 0.7, at the edge b = b
(0)
2,+ = 0.3784.

The shaded region represents the interval where b = b
(0)
2,+ + q falls

inside the band [b(0)
1,−,b

(0)
1,+]. C2 = 0 at q = q

(0,0)
+ and q = q

(1,0)
+ . The

parameters are V1 = V2 = 1.

C2(q) cases at specific values of the gain-loss coefficient: at
α ≈ 0.7919 and q = q

(m,0)
+ , respectively. In respect to values

in which C2(q) → 0 we obtain this whenever q just adjusts the
edge of the SH band edge, which in the present analysis is b =
b

(0)
2,+, to be located exactly at an edge of the FF of the same type

(in the figure this means it is a edge of upper type, +), exactly
as described by formula (10). In Fig. 9 we show only the values
q = q

(0,0)
+ and q = q

(1,0)
+ , which translates to the matching of

edges b
(0)
1,+ = b

(0)
2,+ + q

(0,0)
+ and b

(1)
1,+ = b

(0)
2,+ + q

(1,0)
+ . In respect

to the left panel of Fig. 9, C2(α) vanishes at the given value of
the gain-loss coefficient corresponding to the situation when
the edges of the FF and SH gaps coalesce (i.e., b

(1)
1,+ = b

(2)
2,+).

Thus, whenever C2 → 0 is attained by a proper choice of
α or q, both the FF and SH components emerge with infinitely
small amplitudes w1,2 when condition (9) is met, i.e., when
case 2 transforms in case 1.

Examples of field profiles w1,2 pertaining to the fundamen-
tal GS branches in the semi-infinite and in the third finite
band gap are displayed in the middle panels of Figs. 4 and 6,
respectively. In both figures the solutions are in the region
close to the respective SH band edges b

(0)
2,+ and b

(1)
2,+, where (6)

is satisfied.
As concerns the stability of the GSs, case 2 has one notable

difference in the semi-infinite and in the third finite gaps in
comparison with case 1, whenever a given branch satisfying (6)
bifurcates from a SH edge b

(m)
2,σ , a small unstable region close to

b
(m)
2,σ that persists even when α = 0 exists. In Fig. 10 the curves

separating stable and unstable solutions of the fundamental
branch values of q = 0 and q = −0.5134 are shown in the
plane (b,α). The case 2 branch is the curve with q = 0 in
the semi-infinite gap, where it can be seen that the stability
threshold abruptly decays to zero. The other curve with q =
−0.5134, a case 1 bifurcation, does not share this property.
In both curves it is possible to see that, as we reported in the
previous section, there may be one or more unstable intervals
with lengths that increase with α.

Examples of the propagation of stable and unstable solu-
tions with variations in b in the semi-infinite gap are shown
in Fig. 11. Instability appears due to the collision of internal
modes with the band edges of the spectrum of (13) resulting
in four complex eigenvalues λ. The propagation, however,
shows that the perturbed solution can remain localized despite
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FIG. 10. (Color online) The boundary between stable (below
the curves) and unstable (above the curves) gap-soliton solutions
in the plane of (b,α) obtained from the linear-stability analysis.
The curve with q = 0 represents a case 2 branch bifurcating from
b

(0)
2,+ = 0.3786 and the curve with q = −0.5134 represents a case 3

branch bifurcating from b
(0)
1,+. Note that while b

(0)
2,+ can be identified

easily in the case 2 curve as the point where the curve goes to α = 0,
b

(0)
1,+ is not fixed because it depends on α [see panel (b) of Fig. 1]. The

parameters are V1 = V2 = 1.

amplitude oscillations as is possible to see in the upper left
panel of Fig. 11. At about ζ = 300 there is an emission of
energy from the localized field region but the structure quickly
regains energy and remains localized. However, not all linearly
unstable solutions have this behavior. In Fig. 12 we show an
unstable solution that rapidly decays.

Examples of solutions in the third finite gap with slightly
different b are shown in Fig. 13. Unstable eigenvalues with
positive λ appear when b is slightly bigger than b = −1.268
of the stable solution. Instability develops as a rapid increase
of the amplitudes of the intensities |w1,2|2 with propagation.

FIG. 11. (Color online) Top plots: The evolution of two GS
solutions with 20% of amplitude random perturbations in case 2
[see Eq. (6)] in the semi-infinite gap. The left panel has b = 0.4
and is stable. The right panel corresponds to unstable evolution of a
solution with b = 0.6. Note that the linearly unstable solution remains
localized. The corresponding eigenvalues of small perturbations are
shown in the lower panels. The parameters of the structure are
V1 = V2 = 1, α = 0.7, and q = 0.

FIG. 12. (Color online) The left plot shows the evolution of an
unstable localized solution with b = 0.8 added by 10% of amplitude
random perturbations in case 2 [see Eq. (6)] in the semi-infinite
gap. The right plot shows the corresponding eigenvalues of small
perturbations. The parameters of the structure are V1 = V2 = 1, α =
0.7, and q = 0.

D. Case 3

Finally, we consider GS branches generated by bifurcations
which obey condition (7) satisfied in the vicinity of the FF edge
of the total gap, b = b

(m)
1,σ . The branch of the fundamental GS

solutions pertaining to case 3 is displayed in the right panel of
Fig. 3 for the semi-infinite gap.

An example of GS solution is displayed in the lower
panels in Fig. 4. It can be seen that |w1|2 has a much higher
amplitude than |w2|2. Fundamental branches of case 3 are
also represented by the branches with α = 0.9 and α = 0.95
in Fig. 5 for the third gap. An example of the respective
field profiles for the GS branch in the third finite band gap,
bifurcating from b

(1)
1,+, is shown in the lower panels in Fig. 6.

In the same figure, it can also be noted that while |w1|2 is
strictly positive, j1 is strictly negative. The current j2 is strictly
positive.

FIG. 13. (Color online) Top plots: The evolution of two GS
solutions with 10% of amplitude random perturbations in case 2
[see Eq. (6)] in the third finite gap. The left panel has b = −1.11
and is unstable. The right panel corresponds to stable evolution of a
solution with b = −1.268. The corresponding eigenvalues of small
perturbations are shown in the lower panels. The parameters of the
structure are V1 = V2 = 1, α = 0.7, and q = 0.
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FIG. 14. (Color online) Branches of fundamental GSs for several
values of α in the second finite gap. The bifurcations are of the case
3 type. The shaded region denotes the band of the SH component.
The branches extend into the SH band, as embedded solitons, at
α > 0.41. Thick and thin lines represent stable and unstable solutions,
respectively. The parameters are V1 = V2 = 1, q = 0.

We observe in Fig. 14, where branches for several values
of α are found in the second finite gap, that the branch which
bifurcates from b

(0)
1,+ at α = 0.6 goes into the band of the SH,

where it becomes a family of embedded solitons (ESs) [28,29],
i.e., those existing inside (embedded into) the continuous
spectrum. The existence of such solitons is explained by
fact that their decaying asymptotic tails at |ξ | → ∞ follow
relation (7), hence the SH equation is nonlinearizable for
the decaying tails, invalidating the standard argument for the
nonexistence of solitons whose propagation constant falls into
the band. We have found that the GS branches extend into the
SH band for α > 0.41. In Fig. 15 we show a typical example
of stable ES. In particular, it is possible to see that both |w1,2|2
decay rapidly despite being in the SH band.

Note that no ESs were found for the conservative version
of the present system, with α = 0 [22,23]. Embedded solitons
were found in Ref. [29] in the conservative model without the
potential (V1 = V2 = 0), but with cubic nonlinear terms added
to the equations, otherwise only quasisolitons can be found,
with nonvanishing tails at |ξ | → ∞ [30]. Furthermore, in the
conservative system the ESs were found only at discrete values
of b. A noteworthy feature of ESs in the present system is that
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FIG. 15. (Color online) An example of a stable embedded soliton
with b = −0.6, indicated by the black circle in Fig. 14 inside the SH
band. This solution belongs to the branch of fundamental solitons
that bifurcates from b

(0)
1,− in the second finite gap. The parameters are

α = 0.6, V1 = V2 = 1, and q = 0.

FIG. 16. (Color online) Top plots: The evolution of two GS
solutions with 10% of amplitude random perturbations in case 3
[see Eq. (7)] in the second finite gap. The left panel has b = −0.6
and is stable. The right panel corresponds to unstable evolution of
a solution with b = −0.65. The corresponding eigenvalues of small
perturbations are shown in the lower panels. The parameters of the
structure are V1 = V2 = 1, α = 0.6, and q = 0.

a part of their family is stable, as seen in Fig. 14 and in the left
panels in Fig. 16, while in the conservative system the isolated
ES is semistable. (In Ref. [29], the ES was stable against
perturbations that increased the total power, but unstable
against those which decreased it.) The unstable perturbations
in the semistable conservative system grow subexponentially
[in fact, as ζ 2, rather than as exp (const × ζ )]. In our system,
the gain component supplies the power and helps to stabilize
perturbed solitons (see Fig. 17). Instability, when it appears, is
due to the emergence of quartets of complex eigenvalues, as is
possible to see in the right panels of Fig. 16. The propagation
of perturbed unstable solution revealed that the decay is
oscillatory. We also mention that in Ref. [31] continuous
families of ESs in a system with a cubic nonlinearity were
found for moving solitons in the plane of (v,b), where v is
the soliton’s velocity. However, the ES solutions still formed

FIG. 17. (Color online) An example of the stable evolution of the
GS with b = −0.6, indicated by the black circle in Fig. 14, inside
the SH band pertaining to the fundamental branch that bifurcates
from b

(1)
1,+, in the third finite gap. In the left panel the initial condition

is u1,2(ξ,0) = 0.95 × w1,2(ξ ) and in the right panel it is u1,2(ξ,0) =
1.05 × w1,2(ξ ). In both cases, the soliton is stable. The parameters
are α = 0.6, V1 = V2 = 1, and q = 0.
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FIG. 18. (Color online) Top plots: The evolution of two GS
solutions with 10% of amplitude random perturbations in case 3 [see
Eq. (7)] in the semi-infinite gap. The left panel has b = 0.21 and is
stable. The right panel corresponds to unstable evolution of a solution
with b = 0.25. Note that the linearly unstable solution remains
localized. The corresponding eigenvalues of small perturbations are
shown in the lower panels. The parameters of the structure are
V1 = V2 = 1, α = 0.7, and q = −0.5134.

discrete sets for any given v, including the case of the quiescent
solitons, v = 0, considered here. The present system furnishes
an example of a continuous branch of ESs in a system with
a purely quadratic nonlinearity, a part of the branch being
stable. In the semi-infinite gap, the behavior of solitons in case
3 is similar to that in case 1, outlined above, with one or more
alternating stable and unstable intervals, whose lengths depend

FIG. 19. (Color online) Top plots: The evolution of two GS
solutions with 20% of amplitude random perturbations in case 3 [see
Eq. (7)] in the second finite gap. The left panel has b = −1.155 and is
stable. The right panel corresponds to unstable evolution of a solution
with b = −1.1. Note that the linearly unstable solution remains
localized. The corresponding eigenvalues of small perturbations are
shown in the lower panels. The parameters of the structure are
V1 = V2 = 1, α = 0.9, and q = 0.
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FIG. 20. (Color online) The intensities |w1,2|2 and currents j1,2 of
a stable GS solution with propagation constant b = 0.2 pertaining to
the semi-infinite gap. The parameters of the system are V1 = 1,V2 =
0, q = 0, and α = 0.9.

on the gain-loss strength α. In Fig. 18 we show examples of
stable and unstable evolutions in the semi-infinite gap. The
linear stability analysis shows four complex eigenvalues in the
case of the unstable solution. Dynamics shows that instability
develops as increasing amplitude oscillations.

In all the finite gaps, we have found two regions, one stable,
starting at the bifurcation point, and the other unstable, as one
can see in Fig. 3 for values α = 0.9 and α = 0.95 and Fig. 14.
In Fig. 19 we show examples of stable and unstable solutions
in the second finite gap. The linear stability analysis shows
that in the unstable solution the eigenvalues responsible for the
instability are purely real. Dynamics shows that the amplitude
of the perturbed unstable solution grows without oscillations.

Lastly, stable solutions have never been found for |α| > V1.
This conclusion is qualitatively similar to that made in other
nonlinear PT systems, where solitons do not exist above a
critical level of the gain-loss coefficient [8,10].

IV. CONCLUSION

In this work we have introduced the model combining the
linear PT -symmetric part and the χ (2) nonlinearity. The PT
terms are represented by the complex potential acting on the FF
component, whose imaginary part, accounting for the spatially
separated and mutually balanced gain and loss, is, as usual,
the odd function of the coordinate. The potential acting on the
SH wave is assumed to be purely real. The complex linear
potential gives rise to the corresponding band-gap spectrum.
Solutions for solitons were looked for in the semi-infinite and
finite gaps, starting from the bifurcation which gives rise to
such solitons at edges of the respective gap. Families of the
solitons have been thus constructed, and their stability was
investigated by means of linearization and direct simulations
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0
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FIG. 21. (Color online) The stability boundary in the plane of
(P,α), in the system with V1 = 1 and V2 = 0. The instability area is
located above the boundary.
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FIG. 22. (Color online) The intensities |w1,2|2 and currents j1,2

of a GS with b = 0.06, in the system with V1 = V2 = 0 (no real
potential) and q = 0, α = 0.5.

alike. While the system contains several parameters, we have
primarily focused on effects produced by the variation of the
amplitude of the imaginary part of the potential, which is
specific to the PT -symmetric system. A noteworthy result is
that the present system may support the continuous family
of solitons embedded into the continuous spectrum of the SH
component, and a part of the family of such embedded solitons
is stable. The analysis has been reported, chiefly, for the most
physically relevant case of equal effective amplitudes of the
real potentials acting on the FF and SH waves. In addition, a
more exotic case of the real potential acting solely on the FF
component was investigated too (in Appendix A).

A natural extension of this analysis may be performed
for the two-dimensional version of the χ (2) system with the
PT -symmetric periodic potential. In that case, it may be
also interesting to construct vortex solitons, in addition to the
fundamental ones, and investigate their stability.
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APPENDIX A: The SYSTEM WITH THE “VIRTUAL
GRATING”

Here we consider the case of V2 = 0, i.e., the periodic
potential acting only on the FF component. A typical example
of a stable GS, found as solutions to Eqs. (3a) and (3b) in the
absence of the periodic potential acting on the SH, is displayed
in Fig. 20. It is seen that its shape is

FIG. 23. (Color online) Solitons in the system with V1 = V2 =
q = 0 and α = 0.5. The upper left panel: The power-vs-propagation-
constant (b) branch. The lower left panel: The instability eigenvalue
λ, with the largest imaginary part, as a function of b. The upper
right panel: Stability eigenvalues for the soliton with b = 0.06, the
instability being accounted for by a pair of small purely imaginary
eigenvalues. The lower right panel: the unstable propagation of the
soliton randomly perturbed at the 1% amplitude level.

conspicuously different from that of the solitons found above
in the system with V2 = V1 (cf. Fig. 6).

The analysis of the stability of solitons in Eqs. (1a) and (1b)
in the case of V2 = 0 reveals a stability boundary, shown in
in Fig. 21, which is qualitatively similar to its counterparts
presented above for the system with V2 = V1 (cf. Fig. 10). In
particular, the instability area appears for values of α above
a certain threshold. However, the difference is that only one
instability interval exists in this case, and the threshold for its
appearance, α ≈ 0.75, is higher than in the system where the
periodic potential acts on both components.

APPENDIX B: THE CASE OF A PURELY
IMAGINARY POTENTIAL

Here we consider the limit case of the system when the
potential in Eq. (1a) is purely imaginary, and no potential
appears in Eq. ((1b) ), i.e., V1 = V2 = 0. A typical example of
the soliton found in this case is shown in Fig. 22.

In this case, all the solitons are unstable at α > 0. The
respective instability growth rate being rather small, Fig. 23
shows that the growth of the instability in direct simulations
starts abruptly, as the instability eigenvalues are purely
imaginary [see Eq. (12)].
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