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Nonlinear graphene plasmonics: Amplitude equation for surface plasmons
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Using perturbation expansion of Maxwell equations, an amplitude equation is derived for nonlinear transverse
magnetic (TM) and transverse electric (TE) surface plasmon waves supported by graphene. The equation describes
the interplay between in-plane beam diffraction and nonlinearity due to light intensity induced corrections to
graphene conductivity and susceptibility of dielectrics. For strongly localized TM plasmons, graphene is found
to bring the superior contribution to the overall nonlinearity. In contrast, nonlinear response of the substrate and
cladding dielectrics can become dominant for weakly localized TE plasmons.
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I. INTRODUCTION

Applications of graphene in photonics and optoelectron-
ics have been actively discussed in recent years [1,2]. In
particular, graphene plasmonics is considered a promising
alternative to conventional plasmonics with noble metals [3].
Recently, hybrid metal-graphene plasmonic structures have
been proposed as the propitious platform for novel optical
devices [4].

Graphene supports two types of surface plasmons: trans-
verse magnetic (TM) and transverse electric (TE) modes [5,6].
TM graphene plasmon is in many ways analogous to the
surface plasmon excited at a metal-dielectric interface [7],
although specific features of collective electron excitation
in the purely two-dimensional graphene lead to qualitative
differences in the spectra of plasmons in these two systems
[6]. Compared to its metal analog, TM plasmon supported
by graphene offers substantial enhancement of the field
localization, accompanied by the considerable decrease of the
propagation loss—all being crucial for potential applications
of surface plasmons in miniature photonic components. The
existence of TE plasmon is directly related to the linear
(Dirac) spectrum of electrons in graphene [5]; there is no
analog of such surface wave in conventional plasmonics. TE
plasmon is only weakly localized at the surface, however,
it is characterized by considerably low propagation losses
even at room temperature. Spectral characteristics of TE and
TM graphene plasmons are defined by the charge density,
which can be controlled chemically [8] or electrically [9]. This
tunability represents another important advantage of graphene
plasmons over metal plasmons.

Optical properties of doped graphene are encapsulated in
the induced suface current K. So far, graphene plasmons
have been studied under the assumption of a linear relation
between the currentK and the field amplitude E :K = σE [10].
This is true only at low light intensities, while generally the
dependence K(E) is predicted to be highly nonlinear [11,12].
The particularly strong nonlinear response of graphene has
been confirmed in several experiments, including direct
measurements with optical Kerr gate [13] and z-scan [14]
techniques, as well as observation of four-wave mixing with
graphene flakes [15] and a range of nonlinear effects in a
graphene-coated photonic crystal nanocavity [16]. Altogether
these findings put forward the great potential of graphene for
building functional nanophotonic devices.

In this work we consider nonlinear surface waves supported
by graphene in the simple planar geometry shown in Fig. 1.
Allowing for light intensity corrections to the surface current
and to the susceptibility of dielectrics surrounding graphene,
as well as introducing diffraction due to a finite beam width in
the unbound (y) direction, we develop asymptotic expansion
of Maxwell equations and boundary conditions to obtain an
amplitude equation for quasi-TM and quasi-TE surface waves.
The asymptotic expansion procedure is similar to that recently
developed for semiconductor and metal nanowaveguides
[17,18]. Further, we analyze the relative contribution from
dielectrics and graphene to the overall effective nonlinearity
of the system for the two types of plasmons, and the impact of
geometry on the nonlinearity enhancement.

II. SETUP AND ASYMPTOTIC EXPANSION
OF MAXWELL EQUATIONS

We consider the planar geometry, in which single-layer
graphene is sandwiched in-between two dielectrics. We choose
the x axis to be perpendicular to the interfaces, z is the
direction of propagation, and y is the unbound direction in
which light can diffract (see Fig. 1). For monochromatic
fields �E = 1

2
�Ee−iωt + c.c. and �H = 1

2
�He−iωt + c.c., in each

dielectric domain we solve stationary Maxwell equations:

�∇ × �∇ × �E =
�D
ε0

. (1)

Here spatial coordinates are normalized to the inverse wave
number k = 2π/λ = ω/c. For homogeneous isotropic di-
electrics, the displacement vector takes the form

�D = ε0[ε �E + �N ], (2)

�N = 1
2χ3

(| �E|2 �E + 1
2

�E2 �E∗). (3)

Adapting complex amplitude notation to the surface current
�K = 1

2
�Ke−iωt + c.c., �K = [0,Ky,Kz]T , the boundary condi-

tions can be written as

�[Ey] = 0, �[Ez] = 0, (4)

−�[Hy] = icε0�[∂zEx − ∂xEz] = Kz, (5)

−�[Hz] = icε0�[∂xEy − ∂yEx] = −Ky, (6)
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FIG. 1. (Color online) Schematic illustration of a surface plasmon
propagating along a graphene sheet. Fields are exponentionally
localized in x (across the interface), as shown in the left panel.

where operators � and 
 are defined as

�[f (x)] = lim
δ→0

[f (x − δ) − f (x + δ)], (7)


[f (x)] = 1
2 lim

δ→0
[f (x − δ) + f (x + δ)]. (8)

Taking into account first order nonlinear corrections to
the relationship between surface current and electric field
amplitude �K( �E) [12] and neglecting the effect of higher
harmonics generation, we obtain

Ky,z = 


[
σ1Ey,z + σ3

2

(
| �E|2Ey,z + 1

2
�E2E∗

y,z

)]
. (9)

If the nonlinear response is neglected altogether (σ3 = 0,
χ3 = 0), and no losses due to electron-phonon scattering or
defects are considered at zero temperature [Re(σ1) = 0], the
above system admits solutions in the form of surface plasmons
propagating in the z direction: E,H ∼ eiβz. Field amplitudes
in such solutions are exponentially localized at the interface
x = 0 and constant along the unbound direction y. For the
case of the positive (negative) imaginary part of conductivity
σ1 only TM (TE) surface plasmon exists [5].

Below we consider a weakly dissipative case, so that
σ1 = σ

(R)
1 + iσ

(I )
1 and σ

(R)
1 /σ

(I )
1 ∼ s � 1, where s is a dummy

small parameter. This assumption is valid for a highly doped
graphene |μ| � kT and h̄ω < 2|μ|, where μ is the chemical
potential [5]. Furthermore, we assume that nonlinear correc-
tions to the dielectric susceptibility ∼χ3| �E|2 and graphene
conductivity ∼σ3| �E|2 are of the same order of smallness O(s).
We let the mode amplitude ψ vary slowly with the propagation
distance ∂zψ � βψ , and consider weak diffraction ∂yψ 	= 0.
Using asymptotic expansion of the Maxwell equation (1)
and the boundary conditions (4)–(6), below we derive the
propagation equation for the mode amplitude ψ .

Note, with the account of diffraction, the separation into
TM and TE modes can no longer be performed; instead one
deals with quasi-TM and quasi-TE modes.

III. QUASI-TM SURFACE PLASMON

We seek a guided mode solution in the form

Ex = [Ax(ψ,x) + Bx(ψ,x) + O(s5/2)]eiβz, (10)

Ey = [C(ψ,x) + O(s2)]eiβz, (11)

Ez = [Az(ψ,x) + Bz(ψ,x) + O(s5/2)]eiβz, (12)

where ψ = ψ(z,y) is a slowly varying function: ∂zψ ∼ s,
∂yψ ∼ s1/2, Ax,z ∼ s1/2, C ∼ s, and B ∼ s3/2. The chosen
orders of smallness are justified below by consistently solving
boundary value problems, which emerge in different orders of
s. Following substitution into Maxwell equations, in the order
O(s1/2) we obtain the following boundary value problem:

L̂TM �A = 0, (13)

�[Az] = 0, �[iβAx − ∂xAz] = α
(I )
1 
[Az], (14)

where �A = [Ax,Az]T , α1 = σ1/(cε0), and operator L̂TM is
defined as

L̂TM =
[

β2 − ε iβ∂x

iβ∂x −∂2
xx − ε

]
. (15)

We choose the solution in the form �A = I 1/2ψ(z,y)�e, where
�e = [ex,ez]T is the linear surface plasmon mode:

x < 0 : ez = eqsx, ex = −iβ

qs

eqsx, (16)

x > 0 : ez = e−qcx, ex = iβ

qc

e−qcx, (17)

qs,c =
√

β2 − εs,c, (18)

where εs and εc correspond to dielectric layers at x < 0
(substrate) and x > 0 (cladding), respectively. Propagation
constant β is defined through the dispersion relation [6]

εs√
β2 − εs

+ εc√
β2 − εc

= α
(I )
1 . (19)

The normalization factor I is chosen in a way that |ψ |2 is
the power density (measured in watts per meter) carried in the
z direction [17]:

I = 2βk

ε0cQ
, (20)

Q =
∫ +∞

−∞
ε|ex |2dx = β2

2

(
εs

q3
s

+ εc

q3
c

)
. (21)

Collecting terms of the order O(s) we obtain

(β2 − ε)C − ∂2
xxC = −I 1/2∂yψ(iβez + ∂xex), (22)

�[C] = 0, �[∂xC − I 1/2∂yψex] = −α
(I )
1 
[C]. (23)

From �∇ · �E = 0 in the order O(s1/2) it follows that iβez +
∂xex = 0, and therefore C solves the homogeneous equation.
It is nonzero due to simultaneous diffraction (∂yψ 	= 0)
and discontinuity of the ex component at the interface [see
Eq. (23)]. Substituting C = I 1/2∂yψey , it is easy to see that
ey satisfies the same homogeneous equation as ez. Comparing
boundary conditions for ey and ez, we obtain ey = (−i/β)ez.

In the order O(s3/2) we obtain the following boundary value
problem:

L̂TM �B = I 1/2 �J , (24)

�[Bz] = 0, (25)
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�[iβBx + ∂zψI 1/2ex − ∂xBz]

= −iα
(R)
1 I 1/2ψ
[ez] + α

(I )
1 
[Bz]

− i

2
α3I

3/2|ψ |2ψ


[
|�e|2ez + 1

2
�e2e∗

z

]
, (26)

where α3 = σ3/(cε0) and

Jx = ∂zψ(2iβex − ∂xez) + ∂2
yyψ(ex − ∂xey) + |ψ |2ψnx,

(27)

Jz = −∂zψ∂xex + ∂2
yyψ(ez − iβey) + |ψ |2ψnz, (28)

where nx,z = INx,z(ex,0,ez).
Next, we project Eq. (24) onto the linear mode �e:∫ +∞

−∞
(�e∗ · L̂TM �B)dx = I 1/2

∫ +∞

−∞
(�e∗ · �J )dx, (29)

take
∫ +∞
−∞ = ∫ 0

−∞ + ∫ +∞
0 in the left-hand side, apply integra-

tion by parts, and use the boundary conditions in Eqs. (14) and
(26) to obtain∫ +∞

−∞
(�e∗ · L̂TM �B)dx

= �[iβ(e∗
zBx + e∗

xBz) − e∗
z ∂xBz + Bz∂xe

∗
z ]

= −∂zψI 1/2�[exe
∗
z ] − iα

(R)
1 ψI 1/2
[|ez|2]

− i

2
α3|ψ |2ψI 3/2


[
|�e|2|ez|2 + 1

2
�e2(e∗

z )2

]
. (30)

Finally, computing integrals in the right-hand side of
Eq. (29), we obtain the amplitude equation

i
∂ψ

∂(z/k)
+ 1

2βk

∂2ψ

∂(y/k)2
+ i�ψ + ϒ |ψ |2ψ = 0, (31)

where the nonlinear parameter ϒ combines the contributions
of graphene and dielectrics:

ϒ = g(γG + γD), (32)

γG = iα3k
2

2ε0cβ2P 2



[
|�e|2|ez|2 + 1

2
�e2(e∗

z )2

]
, (33)

γD = k2

2ε0cβ2P 2

∫ +∞

−∞
χ3

(
|�e|4 + 1

2
|�e2|2

)
dx, (34)

P =
∫ +∞

−∞
|�e|2dx = 2β2 − εs

2q3
s

+ 2β2 − εc

2q3
c

, (35)

the surface-induced nonlinearity enhancement factor g is [17]

g = (1 + η)−2, (36)

η = −i

βP
�[e∗

z ex] = − 1

P

(
1

qs

+ 1

qc

)
, (37)

and the effective linear absorption parameter is given by

� = g1/2 α
(R)
1 k

2βP

[|ez|2]. (38)

In the above derivations we used the auxiliary relation g1/2Q =
β2P , which can be obtained by using iβez = −∂xex and by
taking integral in Eq. (35) by parts [17].

The expression for the graphene nonlinear coefficient in
Eq. (33) can be replaced by the integral similar to the one
in Eq. (34), following introduction of an effective graphene
nonlinear susceptibility:

χ
(gr)
3 = iα3δ(x) = iσ (3)

ε0c
δ(x), (39)

where δ(x) is the Dirac δ function. Note, however, the different
structure of the term under the integral, which is due to
the surface nature of the nonlinear response in graphene [cf.
Eqs. (9) and (3)]. In the limit of high localization, β � εs,c, for
the guided mode one obtains the simple relation ex = ±iez,
and therefore

|�e|2|ez|2 + 1
2 �e2(e∗

z )2 ≈ 1
2 |�e|4, �e2 ≈ 0. (40)

Apparently, in this limit, the effective nonlinear response of
graphene is twice weaker than that of a infinitesimally thin
Kerr medium with the susceptibility χ

(gr)
3 .

IV. QUASI-TE SURFACE PLASMON

For the case of the quasi-TE mode we use the ansatz

Ex = [Cx(ψ,x) + O(s2)]eiβz, (41)

Ey = [A(ψ,x) + B(ψ,x) + O(s5/2)]eiβz, (42)

Ez = [Cz(ψ,x) + O(s2)]eiβz, (43)

where ∂zψ ∼ s, ∂yψ ∼ s1/2, A ∼ s1/2, Cx,z ∼ s, and B ∼
s3/2. Following substitution into Maxwell’s equations, in
the order O(s1/2) we obtain the following boundary value
problem:

L̂TEA = 0, (44)

�[A] = 0, �[∂xA] = −α
(I )
1 
[A], (45)

L̂TE = β2 − ε − ∂2
xx. (46)

We choose the solution in the form A = I 1/2ψ(z,y)ey ,
where ey is the surface plasmon mode:

x < 0 : ey = eqsx, (47)

x > 0 : ey = e−qcx, (48)

qs,c are defined in Eq. (18), and the normalization factor I

ensures |ψ |2 gives the power density carried in the z direction:

I = 4k

βε0cP
, (49)

P =
∫ +∞

−∞
|ey |2dx = 1

2qs

+ 1

2qc

. (50)

The dispersion relation for the TE plasmon is given by√
β2 − εs +

√
β2 − εc = −α

(I )
1 . (51)

In the order O(s) we obtain

L̂TM �C = −I 1/2∂yψ[∂xey,iβey]T , (52)

�[Cz] = 0, �[iβCx − ∂xCz] = α
(I )
1 
[Cz], (53)
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where �C = [Cx,Cz]T , and operator L̂TM is defined in Eq. (15).
Substituting in the above equations �C = I 1/2∂yψ �e and elimi-
nating ex , we obtain

L̂TEez = iβε−1L̂TEey = 0. (54)

In other words, ez solves the same homogeneous equation as
ey . Comparing boundary conditions for ey , Eq. (45), and ez,
Eq. (53), we obtain ez = (i/β)ey and ex ≡ 0. It is easy to
check that this choice also satisfies the condition �∇ · �E = 0 in
the order O(s).

In the order O(s3/2) the following boundary value problem
is obtained:

L̂TE �B = I 1/2
[
i2β∂zψey − ∂2

yyψ(iβez + ∂xex)
]
, (55)

�[B] = 0, (56)

�[∂xB − ∂yCx] = iα
(R)
1 I 1/2ψ
[ey] − α

(I )
1 
[B]

+ i 3
4α3I

3/2|ψ |2ψ
[|ey |2ey]. (57)

Projecting Eq. (55) onto the mode ey and following essentially
the same steps as described in the previous section, in the
left-hand side we obtain∫ +∞

−∞
e∗
yL̂TEB dx = −
[e∗

y∂xB − B∂xe
∗
y]. (58)

Performing projection in the right-hand side of Eq. (55), and
using the boundary conditions in Eqs. (45) and (57), we obtain
the amplitude equation (31) with the following coefficients:

ϒTE = γG,TE + γD,TE, (59)

γG,TE = i3α3k
2

2ε0cβ2P 2

[|ey |4], (60)

γD,TE = 3k2

2ε0cβ2P 2

∫ +∞

−∞
χ3|ey |4dx, (61)

�TE = α
(R)
1 k

2βP

[|ey |2]. (62)

For the quasi-TE mode the enhancement factor g is absent.
Also, due to the linear mode being scalar, in this case the
nonlinear response of graphene is completely analogous to that
of a infinitesimally thin Kerr medium with the susceptibility
χ

(gr)
3 in Eq. (39).

V. ANALYSIS AND DISCUSSION

Conductivity of graphene consists of intra- and interband
contributions, σ1 = σintra + σinter. For the case of a highly
doped graphene |μ| � kT , μ is the chemical potential, intra-
and interband terms are given by the semiclassical formalism
[5]

σintra(�) = ie2

πh̄

1

� + iνintra
, (63)

σinter(�) = ie2

4πh̄
ln

2 − |�| − iνinter

2 + |�| + iνinter
, (64)

where � = h̄ω/μ, excitation below interband absorption
threshold is assumed: � < 2, coefficients ν = h̄/(|μ|τ ) take
into account losses due to electron scatterings at finite

0.5 1 1.5 2
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α 1(I
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full

intra

inter

0.5 1 1.5 2
0
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2

3

4

Ω

10
3

α 1(R
)

(b)

inter

intra

full

FIG. 2. (Color online) Dimensionless conductivity of graphene
α1: imaginary (a) and real (b) parts. Dashed, dotted, and solid curves
correspond to intra-, inter-, and full conductivity, respectively. The
chemical potential is set to μ = 0.1 eV, and relaxation times are
τintra = 100 fs and τinter = 1 ps.

temperatures, and below we take τintra = 100 fs and τinter =
1 ps [6,16]. For the doping level of μ = 0.1 eV we obtain
νintra ≈ 0.066, νinter ≈ 0.007, and the interband absorption
threshold is at ωth = 2μ/h̄ ≈ 3 × 1014 rad/s (λth ≈ 6.3 μm).
The corresponding dimensionless conductivity α1 is plotted in
Fig. 2. The imaginary part of α1 changes its sign at �0 ≈ 1.67,
linear TM plasmons exist for � < �0 (i.e., when α

(I )
1 > 0),

while TE plasmons exist for � > �0 (α(I )
1 < 0) [5]. For the

chosen doping level, �0 corresponds to λ0 ≈ 7.5 μm.
The nonlinear conductivity coefficient σ3 for graphene is

given by [12]

σ3(�) = −i
3

32

e2

πh̄

(eVF )2h̄2

μ4�3
(1 + iαT ). (65)

Here we introduced coefficient αT to account for two-photon
absorption in graphene; recent experiments suggest αT ≈ 0.1
[16]. The negative imaginary part of σ3 suggests that the
nonlinear response is of self-focusing type [cf. Eqs. (31), (33)
and (60)].

Below we consider surface plasmons in configurations with
air (ε = 1) and silicon (ε = 12) as dielectrics. For silicon we
take χ3 = (4/3)cε0εsn2, n2 = 4 × 10−18 m2/W. Two-photon
absorption in silicon is negligible for λ > 2 μm [19]. For
simplicity we neglect dispersion of linear and nonlinear
dielectric constants.

A. Quasi-TM plasmon

First, we consider TM plasmon in the configuration
with silicon substrate and air cladding. The corresponding
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Λ
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FIG. 3. (Color online) Dispersion of TM plasmon in the silicon-
graphene-air geometry: propagation constant β and loss parameter
�/k as functions of �. Imaginary part of β as computed from the full
dispersion relation with complex-valued α1 is shown with squares.

dispersion is plotted in Fig. 3. To validate our theory, the
propagation loss parameter �/k is compared against the
imaginary part of the propagation constant (see open squares in
Fig. 3). The latter is computed from the full dispersion relation
that takes into account complex-valued α1 and obtained by
replacing α

(I )
1 with −iα1 in Eq. (19). The results are found to

be in perfect agreement.
TM plasmon is characterized by a considerable light

confinement in a wide range of frequencies: even at a frequency
as low as � = 0.25 (ω = 7.5 × 1013 rad/s, λ ≈ 25 μm) the
propagation constant is β ≈ 240, and it constantly grows as �

increases toward the threshold value �0. Propagation losses are
relatively low: �/(kβ) < 10−3 when 0.5 < � < 1.6, which is
due to the low absorption rate in graphene below the interband
absorption threshold [cf. Fig. 2(b)].

Due to the high localization of TM plasmon, the surface-
induced enhancement factor g is large and is growing nearly
exponentially with increasing � [see Fig. 4(a)]. This growth
overbalances the decay of graphene nonlinear response σ3 ∼
�−3 [cf. Eq. (65)] and causes the considerable increase of the
nonlinear coefficient ϒ with frequency [see Fig. 4(b)].

Remarkably, the relative contribution of silicon substrate
to the overall nonlinearity remains negligibly small within
the entire frequency window of existence of TM plasmon,
as illustrated in Fig. 4(b). Also, due to the large β, the
diffraction term in Eq. (31) can be neglected for typical beam
widths Ly > 1 μm. Indeed, for � = 1 (λ ≈ 12.4 μm) and the
beam width of Ly = 10 μm the diffraction length is LD =
L2

yβk ≈ 50 mm, which is more than six orders of magnitude
larger that the apparent plasmon wavelength λp = 2π/(βk) ≈
10 nm. Neglecting nonlinear response of dielectrics and
beam diffraction, as well as disregarding linear and nonlinear
absorption (σ (R)

1 = σ
(R)
3 = 0), one can find stationary solutions

of Maxwell equations �E(x,y,z) = Iψ0�e(x,y; βNL)eiβNLz with
the nonlinear boundary conditions in Eqs. (4)–(6) analytically.
The corresponding dispersion relation reads as

εs√
β2

NL − εs

+ εc√
β2

NL − εc

= α
(I )
1 + α

(I )
3

2
I

[
|�e|2|ez|2 + 1

2
�e2(e∗

z )2

]
|ψ0|2. (66)
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FIG. 4. (Color online) Effective nonlinearity of quasi-TM plas-
mon: (a) surface enhancement factor g; (b) nonlinear coefficient ϒ

and the relative dielectric nonlinearity.

At the same time, substituting ψ(y,z) ≡ ψ0e
iβNLz into the

amplitude equation (31) and assuming � = Im(ϒ) = 0, we
obtain βNL = β + (ϒ/k)|ψ0|2. Solving the dispersion re-
lation in Eq. (66) numerically, we found both results to
be in perfect agreement at low power densities |ψ0|2 (see
Fig. 5).

B. Quasi-TE plasmon

As follows from the dispersion relation in Eq. (51), in
order to excite TE plasmon in an asymmetric geometry
with different substrate and cladding dielectrics one has to
make the conductivity of graphene strong enough: |α(I )| >√|εs − εc|. We would like to note, however, in contrast to the

0 5 10
0

100

200

300

|ψ
0
|2 [W/m]

Δβ
 k

 [μ
m

−
1 ]

Ω=1.25
Ω=1

FIG. 5. (Color online) Nonlinear index shift �β = βNL − β vs
power density. Solid curves correspond to the numerical solution of
the dispersion relation in Eq. (66) and dashed lines correspond to the
result given by the amplitude equation (31): �βk = ϒ |�0|2.
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FIG. 6. (Color online) Dispersion of TE plasmon in the
silicon-graphene-silicon geometry: plasmon localization factor q =√

β2 − ε, propagation loss �/k, and imaginary part of the propaga-
tion constant (squares).

case of a conventional dielectric slab waveguide, here only
the difference between the cladding and substrate dielectric
constants matters. Apparently, for the chosen doping level of
graphene, TE plasmon does not exist in the silicon-graphene-
air configuration [cf. Fig. 2(a)]. Instead, we consider the
fully symmetric configuration with silicon in the cladding
and substrate: εs = εc = 12. The corresponding dispersion is
plotted in Fig. 6. Due to the low values of |α(I )|, TE plasmon
is only weakly localized. However, one benefits from much
smaller propagation losses per plasmon period T = 2π/(βk),
compared to TM plasmons.

As the result of weak localization, typical values of the
effective nonlinear coefficient ϒ for TE plasmons are nearly
12 orders of magnitude below those for TM plasmons (see
Fig. 7). Remarkably, for TE plasmon nonlinear contribution
from the dielectrics is dominant over graphene; they become
comparable only when the frequency � approaches the
interband absorption threshold �th = 2.

With the account of small propagation constants β, the
diffraction term and associated effects due to its interplay with
the focusing nonlinearity become important for TE plasmons
with typical widths of the order of several micrometers. Taking
� = 1.9 (corresponding to λ ≈ 6.5 μm), for Ly = 5 μm the
diffraction length becomes LD = L2

yβk ≈ 30 μm, and the
plasmon period is 2π/(βk) ≈ 0.5 μm. However, due to the
low nonlinearity, one requires considerably high powers to
observe basic effects such as self-focusing. For instance,
to form a spatial soliton of width Ly the peak power
density should be |ψ0|2 = (ϒLD)−1 ≈ 3 × 1010 W/m, and
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FIG. 7. (Color online) The same as Fig. 4(b) but for quasi-TE
plasmon in the silicon-graphene-silicon geometry.

therefore the total power must be of the order of several
megawatts.

VI. SUMMARY

Using asymptotic expansion of Maxwell equations and
boundary conditions, we have derived an amplitude equation
for nonlinear TM and TE surface plasmon waves in the
dielectric-graphene-dielectric planar configuration. Induced
surface current in graphene shows strongly nonlinear response
to the applied electromagnetic field. We have shown that this
leads to the effective focusing Kerr-type nonlinearity. For TE
plasmon this nonlinearity is fully analogous to that of an
infinitesimally thin dielectric layer. However, for TM plasmon
the structure of the corresponding nonlinear coefficient is
different and reflects the unique surface-only response of
graphene.

For typical doping levels of graphene of the order of
0.1 eV, TM plasmons are strongly localized. This causes
the significant enhancement of nonlinearity; we predict that
considerable nonlinear phase shifts can be observed for power
densities as low as a few microwatts per meter. Remarkably,
graphene contribution to the overall nonlinearity is shown to
be strongly dominant over that of dielectrics in this case. In
contrast, TE plasmons are only weakly localized, and the major
part of the overall nonlinearity is due to a dielectric substrate
and cladding. Typical values of the nonlinear coefficient for
TE plasmons are found to be about 12 orders of magnitude
below those for TM plasmons.
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