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We consider an optomechanical double-ended cavity under the action of a coupling laser and a probe laser in
an electromagnetically induced transparency configuration. It is shown how the group delay and advance of the
probe field can be controlled by the power of the coupling field. In contrast to single-ended cavities, which only
allow for superluminal propagation, the possibility of both superluminal and subluminal propagation regimes
is found. The magnitudes of the group delay and the advance are calculated to be ∼1 ms and about −2 s,
respectively, at a very low pumping power of a few microwatts. In addition, the interaction of the optomechanical
cavity with a time-dependent probe field is investigated for controlled excitations of mirror vibrations.
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I. INTRODUCTION

The demonstration of an ultraslow group velocity vg of
light [1] in ultracold atoms by electromagnetically induced
transparency (EIT) [2] has inspired appealing applications
[3–8]. Besides the slow light, superluminal phenomena (vg >

c or vg is negative) were observed in atomic cesium gas [9,10]
and in alexandrite crystal [11]. Slow and superluminal light
has also been observed in optomechanical systems [12] whose
superior delay and advancement times, smaller dimensions,
and less demanding thermal requirements make them attractive
for quantum-optomechanical memory and classical signal
processing applications [13–22]. Recent proposals, such as
an optomechanical cavity with a Bose-Einstein condensate
(BEC) [23] and a one-sided cavity with a nanomechanical
mirror (NMM) [24], which was recently demonstrated [21],
are promising but either too costly and difficult to imple-
ment [23] or not sufficiently flexible enough to realize both
superluminal and slow light effects simultaneously [21,24].
The analog of electromagnetically induced transparency has
been demonstrated very recently in a room-temperature cavity
optomechanics setup formed by a thin, semitransparent mem-
brane within a Fabry-Perot cavity [25]. We address the question
of how more controllable and simpler optomechanical systems
that can simultaneously exhibit larger delay and advancement
times can be realized.

In this work, we investigate the time delay of the weak probe
field at the probe resonance in a double-ended high-quality
cavity with a moving NMM under the action of a coupling
laser. We find that the group delay can be controlled by
the power of the coupling field. The time delay is positive,
which corresponds to ultraslow light propagation (subluminal
propagation), when there is a strong coupling between the
nano-oscillator and the cavity. In contrast to single-ended
cavities, which only allow for superluminal propagation [26],
the possibility of both superluminal and subluminal propaga-
tion regimes is found. The magnitude of the group delay is
∼2 ms at a very low pumping power of a few microwatts. The
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transmission group delay that we have found is larger than the
group delay in a coupled BEC-cavity system [23], which is a
costly and difficult system to implement. In addition, we show
that it is possible to control the vibrational excitations of the
NMM with a time-dependent probe field.

The organization of this paper is as follows. In Sec. II we
describe our physical optomechanical system and EIT config-
uration. Quantities such as group delay and advancement times
are redefined there as well. The results are given in Sec. III
in two parts. The first part is dedicated to the case of constant
pump and probe fields, while the other one focuses on the case
of time-dependent fields. Our conclusion is given in Sec. IV.

II. MODEL SYSTEM

We consider the classical probe field εp and calculate the
response of the cavity optomechanical system to the probe field
in the presence of the coupling field εc. The nanomechanical
oscillator of frequency ωm is coupled to a Fabry-Pérot cavity
via radiation pressure effects [14]. In a Fabry-Pérot cavity,
both mirrors have equal reflectivity. We use a configuration
in which a partially transparent NMM is in the middle of a
cavity that is bounded by two high-quality mirrors, as shown
in Fig. 1. The system is driven by a coupling field of frequency
ωc, and the probe field has frequency ωp.

The Hamiltonian of this system is given by

H = h̄(ω0 − ωc)c†c + h̄gc†cq + p2

2m
+ 1

2
mω2

mq2

+ ih̄εc(c† − c) + ih̄(c†εpe−iδt − cε∗
peiδt ), (1)

where δ = ωp − ωc, g = −ωc/L is the coupling constant
between the cavity field and the movable mirror [27], and
c and c† are the annihilation and creation operators of the
photons of the cavity field, respectively. The momentum
and position operators of the nanomechanical oscillator are
p and q, respectively. The amplitude of the pump field is
εc = √

2κPc/h̄ωc, with Pc being the pump power.
Heisenberg equation of motion for the coupled cavity-

mirror system is written and the damping rate 2κ is added
phenomenologically to represent the loss at the cavity mirrors.

013824-11050-2947/2013/87(1)/013824(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.013824
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FIG. 1. (Color online) Schematic of a double-ended cavity with
a moving nanomechanical mirror, adapted from Ref. [14].

The system is examined in the mean-field limit [24]:

〈q̇〉 = 〈p〉
m

,

〈ṗ〉 = −mω2
m〈q〉 − h̄g〈c†〉〈c〉 − γm〈p〉,

(2)
〈ċ〉 = −[2κ + i(ω0 − ωc + g〈q〉)]〈c〉 + εc + εpe−iδt ,

〈ċ†〉 = −[2κ − i(ω0 − ωc + g〈q〉)]〈c†〉 + εc + ε∗
peiδt .

The linear-response solution is developed analytically using
the ansatz [28],

q(t) = q0 + q+εpe−iδt + q−ε∗
peiδt ,

p(t) = p0 + p+εpe−iδt + p−ε∗
peiδt , (3)

c(t) = c0 + c+εpe−iδt + c−ε∗
peiδt ,

where q0,p0, and c0 are the zeroth-order solutions, while
the next terms corresponds to the first-order solutions in the
probe field amplitude. By inserting Eq. (3) into the Heisenberg
equation of motion we first obtain the steady-state solutions
c0 = εc/(2κ + i�) and q0 = −h̄g|c0|2/mω2

m. Using them, the
first-order solutions are analytically determined to be

c+(δ) = m(δ2 − ω2
m + iγmδ)[2κ − i(� + δ)] − iα

m
(
δ2 − ω2

m + iγmδ
)
[(2κ − iδ)2 + �2] + 2�α

, (4)

where � = ω0 − ωc + gq0 is the effective detuning and α =
h̄g2|c0|2. Here |c0|2 is the resonator intensity, and q0 is the
steady-state position of the movable mirror.

We can write the output field as εout(t) = εout0 +
εout+εpe−iδt + εout−ε∗

peiδt [28]. Inserting this to the input-
output relation and comparing the coefficient of εpe−iδt , we get
the probe response (εout+ + 1) = 2κc+. The reflection and the
transmission of the probe response are denoted by εR and εT ,
respectively. The reflection and transmission of the output field
are determined by ER = εRεpe−iωpt and ET = εT εpe−iωpt ,
respectively. εT = 2κc+(δ) is the transmitted component and
εR = 2κc+(δ) − 1 is the reflected component of the probe
field. The amplitude of the transmission output field is ET =
|T |εp exp [iφ(ωp)].

If we expand φ(ωp) around ω to first order,

φ(ωp) = φ(ω) + (ωp − ω)
∂φ

∂ωp

∣∣∣∣
ω

, (5)

the transmitted probe pulse can be expressed as

|T | εpe−iωpt eiφ(ω)e
i(ωp−ω) ∂φ

∂ωp
|ω , where φ(ω) = 0 at resonance.

Combining with e−iωp(t−τ ), the transmitted probe pulse peaks
at t = τ , where τ is the pulse delay, which can defined as

τ =
[

∂φ

∂ωp

] ∣∣∣∣
ω

. (6)

The phase of the output field can be found as

φ = 1

2i
ln

(
εT

ε∗
T

)
. (7)

The time delays of the transmission and reflection pulses can
be determined by

τT = Im

[
1

εT

∂εT

∂ωp

] ∣∣∣∣
ω

, τR = Im

[
1

εR

∂εR

∂ωp

] ∣∣∣∣
ω

. (8)

III. RESULTS AND DISCUSSION

In our calculations, we use the following parameters [19]:
length of the cavity L = 6.7 cm, wavelength of the laser
λ = 2πc/ωc = 1064 nm, m = 40 ng, ωm = 2π × 134 kHz,
γ = 0.76 Hz, κ = ωm/10, mechanical quality factor Q =
1.1 × 106, and � = ωm. The real and the imaginary parts of
εT = 2κc+ represent the absorptive and dispersive behaviors,
respectively.

A. Constant pump and probe fields

We show the real and the imaginary parts of εT in
Fig. 2. Under the conditions of electromagnetically induced
transparency in the mechanical system contained in a high-
quality cavity the system gives rise to dispersion, which leads
to ultraslow propagation of the probe field [14].

The phase is determined by Eq. (7) and εT , and the result
is plotted in Fig. 3 as a function of the scaled dimensionless
frequency δ/ωm for input coupling laser power Pc = 1 μW.

In the case of no coupling field, g = 0, the delay time
becomes τ0 = 1.48 μs. The coupling reverses the behavior
of the system, and the group delay becomes positive. We
plot the group delay τ as a function of the pump power in
Figs. 4 and 5, which show the group delay τ as a function
of the pump power Pc. The group delay decreases with
increasing power of the coupling field. The probe pulse delay
can be tuned by calibrating the pump power in the probe
resonance (δ = ωm). The pump power that we have used in
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FIG. 2. (Color online) The real (black solid line) and the
imaginary (red dashed line) parts of εT (δ) as a function of δ for
an input coupling laser power of Pc = 5μ W. The parameters used
are length of the cavity L = 6.7 cm, wavelength of the laser λ =
2πc/ωc = 1064 nm, m = 40 ng, ωm = 2π × 134 kHz, γ = 0.76 Hz,
κ = ωm/10, mechanical quality factor Q = 1.1 × 106, and � = ωm.
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FIG. 3. Phase as a function of frequency δ for input coupling laser
power Pc = 1 μW. The parameters are the same as in Fig. 2.

Figs. 4 and 5 is on the order of 0.1–5 μW. In Fig. 4, the
group delays are negative, which means that the reflected probe
field is a superluminal light. In Fig. 5 the group delays are
positive; as a result the slow light effect can be observed.
This corresponds to a subluminal situation. We find large
positive group delays of order 2 ms in a Fabry-Pérot cavity
under the action of a coupling laser and a probe laser. The
physics of subluminal or superluminal light propagation in a
double-ended cavity optomechanical system is associated with
the interaction of the NNM and the cavity field.

We plot the reflection R(δ) = |2κc+ − 1|2 and transmission
spectrums T (δ) = |2κc+|2 of the probe field in Figs. 6 and 7,
respectively. The width of the transparency window of EIT is
given by [14]

�(Pc) = γm

2
+ α(Pc)

4mωmκ
, (9)

where α(Pc) = h̄g2 | c0 |2. The EIT width changes with the
power in a linear manner, as shown in Fig. 8.

B. Time-dependent probe field

We now consider the time-dependent, pulsed probe field. As
the dynamics of the optomechanical system is associated with
the normal modes of the cavity field and the mirror vibrations,
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FIG. 4. Advance of the reflected probe field as a function of the
pump power in the presence of the coupling field. All parameters are
the same as those in Fig. 2.
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FIG. 5. Group delay of the transmitted probe field as a function of
the pump power in the presence of the coupling field. All parameters
are the same as those in Fig. 2.

it is natural to expect that the oscillation modes of the mirror
can be controlled with temporal profile of the optical fields.
We examine particularly pulses with duration much less than
the characteristic time of mirror oscillations. The effect of such
pulses can be interpreted as if the mirror oscillator is kicked by
the optical pulses in sudden perturbations. We find situations
with both robust excitations of mirror motional modes, where
the mirror is simply displaced without oscillations, and
periodic excitations, where the mirror vibrates.

Now we use the following ansatz in terms of time
dependence in order to obtain resonator-mirror coupled
equations:

q(t) = q0(t) + q+(t)e−iδt + q−(t)eiδt ,

p(t) = p0(t) + p+(t)e−iδt + p−(t)eiδt , (10)

c(t) = c0(t) + c+(t)e−iδt + c−(t)eiδt .

Since the probe field is very weak, the force acting on the
mirror exerted by the time-dependent probe field is negligible,
so we assume ṗ+(t) = 0. Moreover, we assume that the
system is working in the resolved sideband limit (κ < ωm)
and the Stokes field generated by the interaction of the
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FIG. 6. (Color online) The reflection spectrum R(δ) as a function
of normalized frequency. Pc = 0 solid, 5μW (dashed). All parameters
are the same with those of Fig. 2.
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FIG. 7. (Color online) The transmission spectrum T (δ) as a
function of normalized frequency. Pc = 0 solid, 5μW (dashed). All
parameters are the same with those of Fig. 2.

coupling field with the mirror is very small; therefore we
assume ċ∗

−(t) = 0. Substituting Eq. (10) into Eq. (2), we obtain

dq+
dt

= 1

s
{d − ih̄g2|c0|2}q+ −

[
h̄g

m(γm − iδ)
c∗

0

]
c+,

(11)
dc+
dt

= −[2κ + i(� − δ)]c+ − igc0q+ + εp(t),

where s = m(γm − iδ)[2κ − i(� + δ)], d = m[2κ − i(� +
δ)](iδγm − δ2 − ω2

m), and � = ω0 − ωc + g q0 is the effective
detuning. The zeroth-order solutions are c0 = εc/(2κ + i�)
and q0 = −h̄g|c0|2/mω2

m. Equation (11) describes the
coupled, normal-mode excitations of mirror and optical mode
propagation of the probe field in a nanomechanical system.
One can solve Eq. (11) by introducing the matrix notation

−→
V =

(
q+
c+

)
, (12)

M̃ =
(

A B

C D

)
, (13)

−→
F =

(
0

εp(t)

)
, (14)
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FIG. 8. EIT width �(Pc) as afunction of power Pc � is normalized
by 1 × 104 1/s. All parameters are the same with those of Fig. 2.
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FIG. 9. q+(t) as a function of time with � = ωm. All parameters
are the same as those in Fig. 2.

where A = (−d + ih̄g2|c0|2)/s, B = h̄gc∗
0/m(γm − iδ), C =

igc0, and D = 2κ + i(� − δ). Equation (11) becomes

d

dt

−→
V = −M̃ · −→

V + −→
F (t), (15)

whose solution can be expressed as [29]

−→
V (t) = e−M̃(t−t0)−→V (t0) +

∫ t

t0

e−M̃(t−t ′)−→F (t ′)dt ′. (16)

If we take t0 → −∞, the solution becomes

−→
V (t) =

∫ t

−∞
e−M̃(t−t ′)−→F (t ′)dt ′. (17)

If
−→
F (t ′) is constant, the steady-state solution

−→
V = M̃−1−→F

and
−̇→
V = 0.

We take the pump field as constant, whereas the probe field
depends on time. After solving Eq. (11) analytically, we find
c+(t) and q+(t) in terms of hypergeometric functions, and the
final result is plotted in Fig. 9 under the EIT condition of
� = ωm. We plot mirror vibrations q+(t) as a function of time
in Fig. 9 for εp(t) = sech(t). The total displacement of the
robust excitations of NMM is

q(t) = q0 + 2q+(t) cos δt. (18)
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FIG. 10. Time dependence of q(t) for � = ωm and δ = ωm. All
parameters are the same as those in Fig. 2.
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We find situations with both robust excitations of NMM
motional modes, where the mirror is simply displaced thanks to
optical intensity. This behavior is displayed in Fig. 10. During
the final stages of this work, similar time-dependent control
procedures were considered for optomechanical quantum
memory applications [15].

IV. CONCLUSION

We have examined the question of the delay and advance
of the probe field under the conditions of electromagnetically
induced transparency in an optomechanical system contained
in a high-quality double-ended cavity. We have shown that it
is possible to control the propagation of the probe pulse in
a double-ended cavity with a NNM. We have computed the
transmission and reflection spectrums of the probe field. The
tunable group delay and the advance of the optical pulse by
adjusting the pump power were found. As the pump power
increases, the group delay becomes smaller, while it saturates

beyond a critical value of the pump power. The magnitude of
the group delay is found to be ∼1 ms, and the advance is about
−2 s at a low pump power of ∼0.2 μW for the parameters
chosen as in Ref. [19]. The system under consideration is
easier to implement and offers longer group delays compared
to other optomechanical proposals [23]. Moreover, we have
investigated the interaction of the optomechanical cavity with a
time-dependent probe field for controlled excitations of mirror
vibrations, and therefore we have showed that thanks to optical
intensity, mechanical-mode excitations can be caused by a
time-dependent probe field.
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