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We examine the dependence of the Gaussian-Lévy transition in random lasers on the disorder strength,
through experimental and theoretical studies. Experiments are performed on samples whose disorder strength
varied over almost an order of magnitude. It is found that the Lévy regime is easily accessed under low excitation
when the disorder is weak, compared to the energetically expensive transition in strong disorder. Besides, under
conditions of weak disorder, the transition energy is mildly dependent on the disorder strength. The Gaussian-Lévy
transition also progresses rapidly in weakly scattering samples. In the theoretical investigation, we employ an
analytical-numerical method to estimate the parameters of intensity statistics in random lasers. A Monte Carlo
simulation is implemented to accurately calculate the excitation region of the random laser, yielding the �g and
the geometric features of this region. The aspect ratio of this pumped region allows us to further analytically
calculate the scale parameter 〈L〉 of a photon diffusing out of the amplifying region, thereby providing the
power-law exponent μ, which allows us to trace the Gaussian-Lévy transition. We find an excellent agreement
between the experimental and the theoretical results on the Gaussian-Lévy transition with regard to the location
and the rate of transition as a function of the disorder strength.
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I. INTRODUCTION

Random lasers are a class of open, disordered, mesoscopic
systems with gain [1,2]. These systems, on a generic note,
consist of multiple sites of disorder randomly arranged in
an amplifying medium that realize an interplay of multiple
scattering and amplification [3,4]. The resulting emission
exhibits interesting characteristics that mimic a conventional
laser output in certain aspects such as intensity divergence
and bandwidth collapse above threshold and, also, coherent
emission under certain conditions [5–7]. The fact that these
systems are easy to fabricate has been responsible for numer-
ous experimental studies [8–16], motivating several theoretical
and numerical investigations [17–23].

One feature where this system differs from a conventional
laser is the statistical behavior. The inherent disordered nature
of the system implies that the output parameters of this system
are probabilistically distributed. In recent years, therefore,
a lot of attention has been devoted to studies relevant to
statistics of photon number, mode number, frequency spacing,
spatial mode extent, etc. [24–29]. A particularly exciting
class of statistical phenomena constitutes those that exhibit
non-Gaussian statistics. Even in the absence of optical gain,
non-Gaussian statistics has been observed from disordered
optical systems. For instance, Lévy flights of photons have
been reported in specially engineered disordered systems [30].
Non-Gaussian long-tailed behavior of photon dwell times in
strongly scattering systems has been demonstrated [31]. In
the context of amplifying disordered systems, the power-law
behavior manifests in the relative fluctuations of mode number
[27] and in intensity fluctuations [32–35,37]. To be specific,
Lévy statistics in emission intensity have been predicted using
theoretical and numerical considerations [32]. Such behavior
has also been experimentally demonstrated in coherent random
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lasers [33,34]. Low correlations between pump and emission
fluctuations—a consequence of Lévy statistics—have been
demonstrated in static disorder [35]. An alternative theoretical
approach based on the Langevin equation for the energy
density field has been proposed to explain the Lévy fluctuations
of intensity [36]. Recently, we experimentally investigated and
identified the Gaussian-Lévy-Gaussian transition in intensity
statistics in coherent random lasers [37]. These experimental
observations were in excellent agreement with the theoretical
predictions in [32]. Interestingly, the first transition, i.e., the
Gaussian-Lévy transition (GLT) appeared to be insensitive
to the disorder strength, a feature which deserves closer
examination and is treated in this article.

Intensity fluctuations in random lasers follow an asymptotic
power-law behavior due to the underlying distributions in
the complex system [32,38]. The amplification incurred by a
photon is exponentially proportional to the path length it covers
before exiting the boundaries, called the first-passage length.
These lengths follow an exponentially decaying distribution.
The asymptotic decay of the intensity distribution then follows
a power-law with a non-negative exponent, 1 + μ, such that
μ = �g

〈L〉 , where �g (the gain length) is the length over which
one photon amplifies to two, and 〈L〉 is the scale parameter
of the first-passage length distribution. The behavior is Lévy
for 0 < μ < 2 and Gaussian otherwise. Thus, the parameter
μ is a vital quantity that determines the statistical behavior
of the random laser system, and it is desirable to develop
theoretical techniques to estimate the same. In a complex
system such as the random laser, seemingly independent
parameters such as �g and �s are actually interdependent
because the gain realized in a system depends upon the
incoupled excitation, which is determined by the disorder
strength. Naturally, an intricate dependence of the transition
on the disorder strength can be expected to be built in the
system. In this paper, we address the disorder dependence of
the GLT via experimental and theoretical means. First, we
describe experimental data obtained over a large range of
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disorder, where a clear dependence of the GLT on the degree
of disorder was observed. Next, we examine the underlying
physics of this dependence using theoretical and numerical
techniques to estimate the GLT. An analytical method that
computes first-passage lengths of photons is complemented
with a numerical Monte Carlo (MC) technique that invokes
realistic disorder and amplification conditions. Lévy exponents
μ are thus generated for a large range of gain and disorder,
which elucidates the disorder dependence of the transition.
The study shows that low pump energies are sufficient to
take the weakly scattering samples into the Lévy regime.
The dependence of the GLT and the rate of the transition
on disorder strength are reproduced by the analysis. We find
an excellent agreement between the experimental observations
and the theoretical conclusions.

This paper is arranged as follows. Section II discusses
the results of experimental investigations carried out over a
wide range of disorder. Section III describes the calculation
of the first-passage times (FPTs) of photons in a cylindrical
volume. The required geometrical parameters of the cylinder
are obtained in Sec. IV using an MC simulation that calculates
the excitation volume of a random laser system. Finally, Sec. V
presents the results of the analysis and a comparison with
experimental data.

II. EXPERIMENTAL STUDIES

In our earlier experimental studies on statistical regimes
[37], attention was focused on confirming Lévy statistics and
identifying the statistical transitions. The strength of disorder
(quantified by the scattering mean free path �s , which is the
mean separation between two scattering centers) was varied
from �s = 1.3 mm up to �s = 2.4 mm, a range over which
the experimental data indicated an apparent insensitivity to
the disorder. To re-examine this behavior, we carried out
experiments over a larger range of disorder, namely, from 250
to 1475 μm, i.e., almost an order-of-magnitude variation.

The experimental samples consisted of a suspension of
dielectric nanoparticles (ZnO; average size, ∼10 nm) in
a solution of rhodamine 6G in methanol (concentration,
2.5 mM). Various samples were made, with the mean free path
varying over an order of magnitude. Excitation was provided
by a pulsed Nd:YAG laser (λ = 532.8 nm; pulse width, 25 ps)
with a focal spot of ∼60 μm. The emission from the front face
was imaged onto the input slit of a spectrometer (f = 50 cm).
At each excitation energy, 2000 spectra were grabbed. Two
representative spectra, at disorder strengths of �s = 1475 μm
and �s = 350 μm, are shown in Fig. 1. As is now known,
the weakly scattering samples exhibit strong coherent modes
in the spectra, compared to the stronger samples, where the
modes are suppressed. Samples stronger than �s = 250 μm
barely provided discernible peaks and were not analyzed.
The intensity at λ = 557 nm, which roughly corresponded
to the wavelength of peak intensity, was recorded for analysis.
The statistical distribution of this intensity set was performed
using a Lévy-stable fit [39]. An existing algorithm was utilized
to perform the fit, which yielded the tail parameter α [40].
The advantage of this procedure is that it fits the actual
data, and not a histogram, which suffers from subjectivity
in binning. The magnitude of α defined the regime of intensity

(a) (b)

FIG. 1. (Color online) Spectral line shape from a random laser
with (a) weak disorder, �s = 1475 μm, and (b) strong disorder, �s =
350 μm. Strong coherent modes are visible in the weak sample and
are subdued in the strongly disordered sample.

statistics, as α < 2 indicates Lévy statistics, while α = 2
denotes Gaussian statistics. Thus, the GLT is indicated when
the α drops to a value below 2, and the excitation energy at
which it occurs is the transition energy. Figure 2 shows the
transition energy for samples with varying disorder strengths.
The inset shows the variation of α with Ep for three samples.
For �s = 1475 μm [(green) triangles], α drops below 2 at
an excitation Ep < 0.6 μJ. The same occurs at 0.8 μJ and
�s = 620 μm [(blue) circles] and at 1.6 μJ and �s = 350 μm
[(magenta) squares]. These excitation energies are plotted as
filled (red) circles in Fig. 2. An interesting variation is observed
in the transition energies. Up to a disorder strength weaker
than �s = 620 μm, the GLT energy varies very gradually,
and the variation is almost linear. Despite �s varying over
a range of 800 μm, the excitation energy required for the GLT
changes minimally. This weak variation makes the GLT appear

FIG. 2. (Color online) Excitation energy Ep [filled (red) circles]
at which the tail exponent α of a Lévy stable fit enters the Lévy
domain (α < 2), indicating the Gaussian-Lévy transition. (See text
for explanation.) Inset: Experimentally observed variation of α with
Ep for �s = 1475 [(green) triangles], ls = 620 [open (blue) circles],
and ls = 350 μm [(magenta) squares].
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to be independent of the disorder strength, as reported in our
earlier observation. Upon increasing the disorder, beyond the
inflection point at �s = 450 μm, a strong variation is observed
wherein larger increments in excitation energy are required for
the GLT. Thus, two scales of variation are seen in the overall
plot. A second observation can be made related to the rate
of the GLT. The rate, here, describes the propensity of the
statistics to transit from the Gaussian to a strong Lévy domain.
Qualitatively, the slope of the curve indicates the rate of the
transition. The inset in Fig. 2 shows that the weak samples
exhibit a rapid transition into the Lévy domain, while the
stronger samples exhibit a gradual transition.

Thus, a clear disorder dependence is observed in the GLT.
A change in the scale of the dependence suggests that the
dynamics of the random lasing system are different in the
weak and the strong scattering limits. In order to understand
this behavior, we proceeded to theoretically estimate the GLT
by calculating the power-law exponent μ in a realistic random
laser system, as described in the following sections.

III. FIRST-PASSAGE TIME CALCULATIONS

We apply here the method outlined in [41], wherein the
FPTs of diffusing particles through a cylindrical volume were
calculated. The technique considers the Green’s function form
of the diffusion equation

(
∂

∂τ
− D∇2

)
G(�r,τ | �r ′) = δ(τ )δ(�r − �r ′), (1)

where τ = t − t ′ is the difference between the observation
time t and the source time t ′ and D is the diffusion coefficient.

After rescaling all lengths by L and all times by L2/D, the
Laplace transformation with respect to τ is

(s − ∇2)Ĝ(�r,s| �r ′) = δ(�r − �r ′). (2)

In the random laser scenario, the motivation to use a cylindrical
geometry [�r = (ρ,z,φ)] stems from the geometry of the exci-
tation region, as discussed later. In the rescaled coordinates,
the ends of the cylinder are located at z = 0 and z = 1
and the cylinder wall is at ρ = 1/β, where β = L/a is the
aspect ratio of a cylinder of length L and radius a. The
solution to the equation in the Laplace domain provides the
particle currents ĵ0 and ĵ1 through the front and the back
face, respectively. The “particles” here are the spontaneously
emitted photons, released by the de-excitation of the molecules
of the amplifying medium. The Laplace transform of the
current [ĵi(s| �r ′)] yields the splitting probability π0 and π1,
which are the conditional probabilities that the photon exits
the front face and the back face, respectively. Since the
spontaneously emitted photon is equiprobable to travel in any
direction, the πi values are not biased.

Finally, the splitting probabilities and the mean- FPT work
out to be [41]

π0(�r ′) = 2
∞∑

n=1

csch(x0nβ)

x0nJ1(x0n)
J0(x0nβρ ′) sinh[x0nβ(1 − z′)], (3)

π1(�r ′) = 2
∞∑

n=1

csch(x0nβ)

x0nJ1(x0n)
J0(x0nβρ ′) sinh(x0nβz′), (4)

〈τ0(�r ′)〉 = 1

π0(�r ′)β

∞∑
n=1

csch(x0nβ)

x2
0nJ1(x0n)

J0(x0nβρ ′)

×{coth(x0nβ) sinh(x0nβz′) − (1 − z′)
× cosh[x0nβ(1 − z′)]}, (5)

where x0n is the nth 0 of the zeroth-order Bessel function of
the first kind, J0.

This expression computes the 〈τ (�r ′)〉 as a function of the
starting position �r ′ of the photon. In the scenario of the random
laser, the photons are released at a position determined by the
distribution of the excited population. Thus, the first-passage
lengths can be estimated by obtaining the geometrical details
of the pumped volume and the distribution of the excited
population. The 〈L〉 can then be obtained as v〈τ0〉.

To obtain an estimate of these parameters for an experimen-
tally realistic system, we employ the MC method of photon
transport to simulate the excitation process of the random laser.
The MC technique simulates an instantaneous inversion of the
system, which is equivalent to the experimental implemen-
tation of picosecond pumping since the conventionally used
amplifying media decay over nanosecond time scales. This
situation can be accurately modeled by the MC simulation.
This also facilitates comparison of results from experiments
obtained under picosecond pumping, as discussed in this paper.

IV. MONTE CARLO SIMULATIONS

The simulation computes the propagation of light in terms
of multiply scattered photon paths, coupled with concurrent
absorption. Here, we describe the essentials of the simulation,
and the reader is directed to further technical details in [7]
and [19]. The MC simulation assumes the random laser system
to be in a virtual box; for this study, it was of dimensions
1 × 1 × 3 mm. Disorder is simulated by assuming an ensemble
of spherical scatterers randomly distributed in the box. The
number density and size parameter of the scatterers yield
the mean free path �s of light. An amplifying medium is
assumed to occupy the interscatterer region; in this case, it
is a 2.5 mM solution of rhodamine 6G in methanol. It is
characterized by the absorption cross section of rhodamine
6G. The excitation of the sample is simulated as follows. An
ensemble of pump photons (λ = 532 nm) is launched from the
front face of the box, with initial angular coordinates (θ0,φ0) =
(0,0), thus creating a trajectory perpendicular to the face. The
spatial distribution of the photons is assumed to be a Gaussian
with a 60-μm width, simulating a laser-beam spot of the said
diameter. Each photon carries a weight w at the time of launch.
Subsequent to entering the front face, each photon undergoes
a three-dimensional random walk throughout the volume. The
discrete walk is essentially a set of connected rectilinear paths,
with lengths � picked up from an exponential distribution with
mean �s . At the end of the ith path, the photon is propelled
into another direction (θi,φi), uniformly distributed over 4π .
The excitation of the sample happens via the attenuation of the
photon weight, which is determined by the absorption length
of the rhodamine molecules and their ground-state population
�abs = [N0σabs(λ)]−1. Concurrent with the attenuation of w,
a proportional number of ground-state molecules are locally
raised to the excited state. Finally, the walk terminates when
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either the photon is completely absorbed (w < 1) or it exits the
box. The desired magnitude of excitation energy determines
the total number of photons to be simulated. The excitation
leads to local population inversion, which is recorded in a
three-dimensional grid, with resolution 2 × 2 × 2 μm. The
recorded inversion provides the requisite geometric details of
the excitation subvolume.

V. RESULTS

Figure 3 describes the properties of the excited region
as calculated from the simulation. The transverse snapshots
of the excitation region at an excitation energy of 4.5 μJ
for three scattering strengths—namely, �s = 100 μm, �s =
300 μm, and �s = 1500 μm—are depicted in Fig. 1(a). The
color bar is in logarithmic scale. The longitudinal extent of
the excitation region decreases with increasing scattering,
while the transverse dimension increases. The streaky features
seen particularly in the weaker sample are a consequence
of the discreteness of the MC simulations. The excitation
remains axially symmetric and can be best approximated by a
cylindrical shape, providing the motivation to study the system
in a cylindrical coordinate system. Accordingly, a cylindrical
region is chosen for analysis, as represented by the white line in
the middle image. The sharp conical termination of the excited
region remains excluded in this procedure. Nonetheless, it can

FIG. 3. (Color online) (a) Snapshots of pump distributions for
systems with �s = 100, 300, and 1500 μm at a pump energy of
4.5 μJ. The color bar indicates the logarithm of the upper-state
population. The white rectangle represents the cylindrical region
chosen for analysis. (b) Computed aspect ratio (β) of cylindrical
excited regions for various �s and pump energies. (c) Schematic
showing representative photon paths exiting the front face, back face,
and wall of the cylinder. Only the front-face photons are detected; the
others are absorbed.

(a) (b)

FIG. 4. (Color online) (a) Splitting probability π0 (exit from front
face) as a function of the starting position of photons, for three aspect
ratios: β = 2.4, 5.12, and 13.72. The distribution shows a strong
nearest-face bias for large β. (b) Variation of 〈τ0〉 for the three cases
as a function of the starting position.

be expected that the excluded region contributes negligibly to
the emission due to the largely unexcited, and hence absorbing,
dye. It can be clearly seen that the aspect ratio, the ratio
of the longitudinal to the transverse extent, of the excited
subvolume varies with �s . Figure 3(b) illustrates a map the
calculated aspect ratios β, which vary from a little under
4 to ∼13, for the various values of �s and pump energies
treated in this analysis. The strongest variation is observed
under weak scattering and strong pump, evidently because
of better incoupling of the excitation energy into the sample.
Figure 3(c) shows a schematic of the procedure. Representative
photon paths exiting from the front face, the back face, and
the cylinder wall are shown. The analysis assumes absorbing
boundaries at each wall, out of which the absorbed fraction
in the front face would be the photons that are detected in the
experiment. The procedure first computes the probability of
photons exiting from the front face as a function of the starting
position and then calculates the corresponding mean FPTs, as
described in Sec. II.

Figure 4(a) shows the splitting probability π0 as a function
of the starting position on the axis of the cylinder. The
situations for three aspect ratios, β = 2.4, 5.1, and 13.7,

are discussed. The three correspond to (�s = 100 μm, Ep =
0.5 μJ), (�s = 300 μm, Ep = 4.5 μJ), and (�s = 1500 μm,
Ep = 4.5 μJ), respectively. Clearly, for large β, the photons
exhibit a large bias to exit to the nearest face. For smaller β,
the deeper-generated photons do have a propensity to reach
the front face. Figure 4(b) shows the distribution of the FPTs
τ0 that exit from the front face as a function of the starting
positions of the photons for the same three systems. This
variation remains linear up to a significant depth inside the
cylinder. The τ0 values are of the order of a2/D. Higher
aspect ratios enable longer paths in the excitation region,
leading to larger τ0 values. Interestingly. these first-passage
properties have a direct influence on the spectral line shape.
In the case of large β, the deeper-born photons with a larger
τ0 gain more in intensity, but very few of them exit from
the front face due to the vanishing π0. These rare photons
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create the discrete intense peaks in the spectrum, as shown in
Fig. 1(b), which shows the spectrum for a weakly scattering
sample. If the β is small, the first-passage properties indicate
that many deeper-born photons can reach the detector, but the
gain gathered by these photons will only be moderate, due to
the small τ0. Thus, these photons lead to a large number of
low-intensity peaks that effectively average out the spectral
line shape. This is shown in Fig. 1(a), which shows the
spectrum of a strongly scattering sample. Furthermore, the
above first-passage properties also shed light on the disorder
dependence of the fluctuations. A system with a large β will
output photons with a larger range of intensity fluctuations,
owing to the large range of 〈τ0〉. On the other hand, this
range is smaller for systems with a smaller β. To generate
sufficiently fluctuating intensities, the gain needs to be larger,
necessitating stronger pumping. Indeed, experiments show that
weaker-scattering systems exhibit larger intensity fluctuations
than stronger systems at a given excitation energy. These strong
fluctuations lead to Lévy statistics. We explicitly calculate
�g , 〈L〉, and μ to put this qualitative description on a more
quantitative footing in the later part of this paper.

At this stage, two issues need to be considered in order
to apply this analysis to realistic experimental systems.
The first is the modification of starting positions of the
photons under anisotropic excitation, and the other is the
applicability of diffusion-based analysis to very small system
sizes, particularly since Fig. 3 indicates a system size of the
order of the �s , or even smaller. To address these issues,
we explicitly simulated the system via MC simulation. MC
simulation can also be used for relaxation of the inverted
system, and each emitted photon can be tracked for the length
distribution [7]. Hence, in principle, the same studies can
be implemented purely via the MC simulations. However,
these simulations are computationally expensive, and the
requirement of the simulation of a huge number of photons
can be avoided by techniques such as the one utilized here.
For purposes of comparison, we simulate a strong- and a
weak-disordered scattering system at Ep = 4.5 μJ. The results
are depicted in Fig. 5. Black symbols (circles, �s = 300 μm;
squares, �s = 1500 μm) depict the MC results, while solid
(red) curves are the calculated data using the above technique.
In both situations, the calculated curves accurately reproduce
the behavior of the tail, which signifies the long-path photons
that comprise the multiply scattered light. This shows that
the small but definitive diffusive component in the system is
captured by the analysis. This is precisely the component that
gathers maximal gain and realizes power-law statistics due to
its exponential distribution, as discussed earlier. The early-time
component in the MC simulations represents the ballistic light
which realizes only modest gain and manifests in deviations
from the power-law statistics. Thus, although diffusion theory
cannot account for the complete transport in such a system,
this analysis does accurately elucidate the parameters of the
diffusive fraction. The figure also illustrates the effect of the
anisotropic pump distribution. The dashed (blue) curves show
the FPT distribution when the starting positions of the photons
are uniformly distributed over the entire cylinder. The scale
parameters 〈L〉 in this case are 312 and 278 μm for �s = 300
and 1500 μm, respectively. In the experimental scenario, the
photon random walks commence at positions of spontaneous

FIG. 5. (Color online) Comparison between the Monte Carlo
analysis of random lasing photons (black symbols: circles, �s =
300 μm; squares, �s = 1500 μm) and the analytical calculation (red
solid and blue dashed lines). Dashed (blue) lines show the analytically
calculated variation when the starting positions of all photons are
uniformly distributed over the cylindrical region. The solid (red) line
shows the variation when the starting positions are corrected using
the actual pump distribution. The initial early-time output deviates
from the tail and is comprised of ballistic light that does not manifest
power-law statistics.

emission which obey the distribution of the gain. Indeed,
the solid (red) curves, which are corrected for the starting
position, accurately reproduce the MC results, wherein the
modified scale parameters are 244 and 190 μm, respectively.
Evidently, the weaker samples incur larger corrections in the
〈L〉 compared to the stronger samples.

The �g are calculated in a mean-field approach by in-
voking the upper- and ground-state populations (N1 and N2,
respectively) as recorded by the MC simulations and the
known emission and absorption cross sections for a certain
emission wavelength λ = 557 nm. Thus, �g = [N1σemm(λ) −
N0σabs(λ)]−1. Figure 6 exhibits the scale parameters 〈L〉 of the

FIG. 6. (Color online) Computed mean first-passage lengths 〈L〉
[solid (black) curves] and �g [dashed (blue) curves; right % axis] as a
function of pump energy Ep for strong (�s = 100 μm; squares) and
weak (�s = 750 μm; circles) scattering.
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first-passage length distributions and the �g for two scattering
strengths. Note that, when the complete range of abscissas is
spanned by the distribution (0 < L < ∞), the scale parameter
equals the inverse mean of the distribution. In the present
context, the range of L is strictly limited by the sample size.
Black symbols show the 〈L〉 varying with pump energy, for
�s = 100 and 750 μm. For the weaker sample, 〈L〉 increases
linearly with Ep, while the stronger sample shows a sublinear
rise. Importantly, the magnitude of 〈L〉 remains smaller than
that of �s over the entire range of Ep for the weaker sample.
This is a consequence of the low exit probability through the
front face of photons released deeper in the sample, which
contribute to the observed data in the experiments. In contrast,
〈L〉 > �s for the stronger-scattering sample. The two curves
can be approximately deduced from the β map shown in
Fig. 3(b), which underlines the significance of the size of
the system. We found that when the β values are comparable,
the 〈L〉 are proportional to D−1. Thus, the disorder strength
determines the size of the pumped subvolume, which, in turn,
determines the first-passage properties. The distribution of
the excitation energy is also dependent on the �s , due to
which the �g [shown by dashed (blue) lines] also shows a
marked difference between the two samples. For the weaker
sample, the �g is seen to gradually increase with Ep, and it
remains small over the entire range of Ep. In the strongly
disordered sample, the �g decreases with pumping and is
larger in magnitude compared to �s over the studied range
of Ep.

This behavior has an important bearing on the Lévy
character of the statistics. The system is in the Lévy regime
when �g/〈L〉 < 2. At a given excitation, the weak-scattering
system allows stronger inversion, which reduces �g . The 〈L〉
is large enough to take the system into a Lévy regime. With
increasing excitation, the �g does not change appreciably,
but the volume increases, leading to a rise in the 〈L〉. A
strongly disordered environment obstructs the incoupling of
the excitation pulse and redistributes it in the sample. This
increases the excitation volume while limiting the inversion
within, leading to larger �g compared to the weak sample.
With increasing Ep, the increase in volume is slower, so
the excitation leads to stronger inversion, lowering the �g .
Although the 〈L〉 increases with Ep, the increase is rather slow.
Therefore, at an appropriately strong excitation, the system
enters the Lévy regime.

The subsequently calculated Lévy exponents μ are illus-
trated in Fig. 7, where the consequences of the above trends
are elucidated. The plot depicts μ as a function of the pump
energy for eight strengths of disorder �s , ranging from 100
to 1500 μm. The horizontal dashed (red) line demarcates
the lower Lévy region from the upper Gaussian. Evidently,
for samples with larger �s , the exponents are small at weak
pumping, indicating the Lévy domain, in contrast to strongly
scattering samples. The pump energy required to cross the
Gaussian-Lévy domain increases with the disorder strength.
The analysis thus shows that the transition from the Gaussian
domain into the Lévy domain is easier to attain for samples
with weaker scattering, the energy cost for the same being
lower than that in the strongly scattering samples. It can be
seen that all curves follow the same qualitative behavior.
There is an apparent likeness to a power-law function, but

FIG. 7. (Color online) Computed Lévy exponents μ for varying
pump energies and �s . The dashed (red) line separates the Lévy region
(μ < 2) from the Gaussian. For stronger scattering, a higher pump
energy is required to transit into the Lévy regime. At strong excitation
(>2 μJ), all systems are Lévy.

analysis shows a systematic deviation from a power-law
behavior.

Figure 8 illustrates a comparison between the theoretically
calculated results and the experimental observations. The plot
describes the combination of the excitation energy and mean
free path at which the random lasing system transgresses from
the Gaussian regime to the Lévy regime. In the calculations
presented here, this happens when the calculated μ curve for

FIG. 8. (Color online) Comparison between the computed trend
(squares) for the GLT threshold energy and the experimental
observations for various disorder strengths. The same experimental
data (circles) as used in Fig. 2, repeated here for easy comparison.
Inset: Comparison of the transition rates, where �Ep represents the
energy range over which α drops from 2 to 1 in the experimental case
and μ drops from 2 to 1 in the theoretical case.
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the various �s crosses the μ = 2 line [dashed (red) line] in
Fig. 7. These combinations are shown by (black) squares
in the plot. It can, indeed, be seen that at weak scattering
strengths, the required Ep is small and varies only mildly
up to a disorder strength corresponding to �s = 500 μm. The
weak variation of Ep with �s creates an apparent insensitivity
of the GLT towards the disorder strength, as seen in the earlier
experiments. For stronger scattering (�s < 500 μm), however,
Ep considerably increases with �s to achieve the GLT, and a
different scale of variation can be attributed to this regime
of strong scattering. The excellent agreement between the
theoretical and the experimental observations is obvious from
the plot. The inset in Fig. 8 shows the estimated rate of the GLT.
This was calculated as follows. The range of excitation energy
�Ep over which the exponent (α for experiments and μ for the
calculations) falls from 2 to 1 is taken as a quantifiable estimate
of the GLT rate. The black curve (squares) shows the calculated
increments, which increase with the disorder strengths. This is
in qualitative agreement with the experimental observations,
depicted by the red curve (circles). In the experiments, the α

values did not reach 1 in strong samples, hence the limited
points in the curve.

VI. DISCUSSION

In summary, we have addressed the disorder dependence of
the GLT in random lasers, using experiments and theoretical
studies. We find that weakly scattering systems exhibit Lévy
statistics at a lower excitation energy compared to strongly
disordered systems. We have presented a theoretical technique
to estimate the Lévy exponents in a realistic random laser
system. We compute the shape parameters of the excited region
of a random laser using a MC technique and further deduce
the scale parameter of the first-passage length of a diffusing
photon in this region using an analytical technique. The
theoretical analysis accurately reproduces the experimental
behavior, in terms of the energy of the GLT and its rate.
Indeed, the magnitude of excitation energy for the GLT is
quantitatively well predicted by the theory, while the transition
rates qualitatively agree. Further improvement in the analysis
can be attained by improvising the boundary conditions.
Random laser systems are open systems, and the effective
boundaries are set by the gain. These boundaries are not
perfectly absorbing boundaries as treated in this paper but

are, rather, soft boundaries wherein transgressing photons may
re-enter the active region and participate in the dynamics.
The inclusion of such effects may bring the results related
to transition rates quantitatively closer to the experimental
situation.

The parameters used in this analysis, such as Ep and
�s , were motivated by routine experimental parameters. The
observations indicate that samples with large �s exhibit a Lévy
character under low pump. While this trend can theoretically be
extrapolated further, such an experimental observation can be
challenging. The analysis elucidates that the existing diffusive
photons in the weakly disordered samples, although small
in number, will exhibit Lévy fluctuating intensities. As the
�s increases, the probability of occurrence of the multiply
scattered photons falls, as does the exit probability of these
photons. In that situation, an excitation pulse may not even
realize random lasing. This situation is actually common in
experimental studies of coherent random lasing. At energies
close to the threshold, it is known that not every pulse realizes
ultranarrow modes. Such an effect has actually been used to
identify the threshold, by measuring the probability of random
lasing [11].

Recent theoretical studies have revealed a rich statistical
behavior, wherein the Levy regime of statistics crosses over
into a Gaussian regime at a higher excitation energy [32].
This has also been experimentally observed [37]. The trends in
Fig. 7 show that μ monotonically decreases with Ep , indicating
a transit into the Lévy domain. This trend also continued for
higher values of Ep not reported here. Hence, this analysis
seems only applicable to a one-way transition, i.e., the statistics
can only transit from the Gaussian regime into the Lévy regime
with increasing excitation energy. It appears that the physics of
the second transition is different from that responsible for the
GLT. To explain the second transition, more principles need
to be invoked than the mere variation of the two parameters
�g and 〈L〉. This, however, is outside the scope of this
article.

In conclusion, we note that these studies shed light on the
interesting statistical GLT in random lasers. We hope that this
study will encourage more analysis of non-Gaussian behavior
of disordered optical systems. Since diffusion-equation-based
analysis is not as computationally expensive as an MC
technique, this work can stimulate further theoretical research
in these exciting physical systems.
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