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Coherent controllers for optical-feedback cooling of quantum oscillators
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We study the cooling performance of optical-feedback controllers for open optical and mechanical resonators in
the linear quadratic Gaussian setting of stochastic control theory. We utilize analysis and numerical optimization
of closed-loop models based on quantum stochastic differential equations to show that coherent control schemes,
where we embed the resonator in an interferometer to achieve all-optical feedback, can outperform optimal
measurement-based feedback control schemes in the quantum regime of low steady-state excitation number. These
performance gains are attributed to the coherent controller’s ability to simultaneously process both quadratures
of an optical probe field without measurement or loss of fidelity, and may guide the design of coherent feedback
schemes for more general problems of robust nonlinear and robust control.
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I. INTRODUCTION

As present-day engineering relies broadly and implicitly on
real-time feedback control methodology [1], it is difficult to
imagine our nascent explorations of quantum engineering ad-
vancing to technological relevance without rigorous extensions
of core control theory to incorporate novel features of quantum
dynamics, stochastics, and measurement. While significant
progress has been made recently in terms of analyzing quantum
feedback systems [2–7] and in experimental demonstrations
of quantum feedback control [8–17], we still have a relatively
limited understanding of systematic approaches to quantum
control design and of the qualitative role of quantum coherence
and entanglement between the plant and controller in a
feedback loop.

Within the elementary context of linear open quantum
systems, James, Nurdin, and Petersen [18,19] have utilized
interconnection-models-based quantum stochastic differential
equations (QSDEs) [20–23] to develop quantum generaliza-
tions of the traditional paradigms of H∞ and linear quadratic
Gaussian (LQG) optimal control. While some of the most
exciting potential applications of quantum feedback con-
trol involve nonlinear dynamics and/or non-Gaussian noises
[24–27], the linear setting is an essential starting point for
rigorous study and presents crucial advantages in terms of
analytic and computational tractability.

Here we focus on a theoretical investigation of steady-
state cooling of open quantum oscillators such as optical
and optomechanical resonators subject to stationary heating,
damping, and optical probing and feedback. We work within an
LQG framework as in the recent paper of Nurdin, James, and
Petersen [19] and utilize numerical optimization together with
fundamental analytic results [1] bounding the best possible
LQG performance of measurement-based feedback control
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schemes to establish and to interpret quantitative advantages
of coherent feedback for cooling-type performance metrics in
certain parameter regimes.

Following recent convention, as in Refs. [14,18,19], we
will here refer to measurement-based controllers as “classical”
controllers and to coherent feedback controllers as “quantum”
controllers. This terminology reflects the general distinction
that the signal processing required to determine LQG-optimal
control actions from a real-time measurement signal can be
implemented by a classical electric circuit, while all of the
hardware in a coherent feedback loop must be physically
describable using quantum mechanics (typically with weak
damping).

II. LINEAR SYSTEMS

Quantum harmonic oscillators can be modeled as cascad-
able open quantum systems using the SLH framework [28,29]
and the associated QSDEs. In the SLH framework, any open
quantum system may be described as a triple:

G = (S,L,H ) (1)

where S is a scattering matrix, L is a coupling vector, and H

is the Hamiltonian operator for the system’s internal degrees
of freedom. For a linear system with an internal state x, Sij

is independent of the internal state, Li = �ix + λi is at most
linear, and H = 1

2xTRx + rTx is at most quadratic.
Armed with an SLH representation, the most efficient way

to simulate a linear quantum system is to solve the QSDEs,
which represent coupled Heisenberg equations of motion
for system operators and input-output quantum stochastic
processes. Following the work of James, Nurdin, and Petersen
[18] we write the QSDEs for a linear system in the state-space
form,

dx(t) = [Ax(t) + a] dt + Bda(t),
(2)

dã(t) = [Cx(t) + c] dt + Dda(t).

Here x(t) gives the plant’s internal variables; this is a
Hermitian, operator-valued vector. A, B, C, and D are real
matrices; a and c are real vectors. The processes da(t)
and dã(t) are quantum stochastic processes for the inputs
and outputs, respectively. For convenience, we make them
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Hermitian as well; for a given port, one has dai = (dAi + dA
†
i ,

(dAi − dA
†
i )/i), where dA(t) is the quantum Wiener process

[30,31] following the Itô rule dAi dA
†
j = δij dt .

Defining �ij = [xi,xj ]/2i as the commutator matrix, the
ABCD parameters of Eq. (2) can be related to the SLH
parameters as follows:

A = 2�
(
R + 1

4 �̃TJ �̃
)
, B = ��̃TJ S̃,

C = �̃, D = S̃, (3)

a = 2�
(
r + 1

4 �̃TJ λ̃
)
, c = λ̃.

(Here S̃, �̃, and λ̃ are real matrices that can be easily
constructed from S, �, and λ, which are in general complex.
J is a canonical antisymmetric matrix of the appropriate size.
See Appendix A.)

To measure the performance of a given controller we
need to define a cost function. For example, to minimize
the plant’s response to a noisy input one could minimize the
steady-state expectation value of the excitation number 〈a†a〉.
With (classical) state feedback and in the absence of exogenous
noise, such a quadratic cost function would result in a linear
quadratic regulator (LQR) optimal control problem [1], but
in our optical feedback scenario with Gaussian input fields
(vacuum or thermal noise) this becomes a quantum LQG
problem [1,19].

It is straightforward to concatenate and cascade linear
systems once we have the ABCD models. We have written
software in MATHEMATICA to compute the ABCD matrices
for an arbitrary linear quantum system.1 This borrows many
elements from the MODELICA quantum circuit toolkit of Sarma
et al. [32], and is similar to the Quantum Hardware Description
Language (QHDL) framework of Tezak et al. [33]. The code
computes the LQR cost function as a function of the plant and
controller properties, and it would not be difficult to extend it
to more general cost functions. Thanks to the linearity of our
system, simulation is very fast: the complexity is polynomial
in the size of the circuit, not exponential as is usually the case
for quantum simulations, and for a simple system, it computes
the LQR in well under 50 ms.

Given a particular plant, the code is fast enough to
perform a multivariate Newton-Raphson optimization scheme
to find the (locally) optimal controller parameters. This is
possible regardless of whether the controller has any particular
structure—if the controller’s structure is left arbitrary, the code
can simply optimize with respect to the controller’s ABCD
matrices, subject to the physical realizability conditions

A� + �AT + BJBT = 0,

�CT + BJDT = 0, (4)

DJDT = J

that arise from the fact that time evolution should preserve
the commutation relations between system and input and
output fields [18,19]. Optimizing with respect to an “arbitrary”
controller takes longer because there are more free parameters,
but the code is fast enough for each Newton step to take no
more than 1.5 ms on a standard laptop.

1Please contact the authors for distribution of the code.

We note that the classical steady-state LQG problem is
a convex problem, and the optimal steady-state controller
parameters can be derived via solution of algebraic Riccati
equations [1]. In the quantum case, no such closed-form
solutions are known and the realizability constraints (4) make
the landscape for numerical optimization nonconvex [19].
Hence, while we can be sure about the classical optimality
of measurement-based controllers for the oscillator cooling
scenarios we consider, the coherent controllers we find via
numerical optimization are merely local minima and can only
be considered as candidates for quantum optimality.

III. CONTROL OF AN OPTICAL CAVITY

As a simple example of a quantum “plant” system, consider
an optical cavity with a noisy input, Fig. 1. In the controller’s
absence, the cavity is driven by two vacuum inputs (mirrors k1

and k2) and one thermal input (mirror k3). Any noise process
that is much broader spectrally than the cavity linewidth can be
approximated as a “white noise” thermal input. Without such
noise, the cavity’s internal mode decays quickly to the ground
state. The objective in this control problem is to minimize
the effect of the noise on the cavity’s internal state—in other
words, to minimize the photon number 〈a†a〉 of the cavity.
We accomplish this by sending output 1 through a control
circuit and feeding the result back into input 2. This is an LQG
feedback control problem.

Five possible controllers are shown in Fig. 1. The classical
controllers work by measuring a quadrature from the cavity’s
output (or in the heterodyne case, splitting the beam and
measuring two different quadratures), and applying a feedback
signal based on this measurement and the controller’s internal
state. The “trivial controller” works by feeding the output
directly back into mirror 2 of the plant, perhaps with a phase
shift. If the light reflecting off mirror 2 is in phase with the light
leaking out of the mirror, the light lost through both mirrors
interferes constructively, reducing the control objective 〈a†a〉
(see also [26]).

The remaining two controllers shown in the figure are
coherent controllers with memory. Unlike the trivial controller,
the control signal is a function not only of the input field, but
also of the input’s history. But unlike the classical controllers,

FIG. 1. (Color online) Optical cavity plant system with five
possible classical and coherent feedback controllers.
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FIG. 2. (Color online) Experimental realization of an OPO with
a cavity and a nonlinear crystal.

the input field is not measured; instead, it is coherently
processed and the result is fed back into the plant cavity. These
designs use an optical parametric oscillator (OPO, as in Fig. 2)
to squeeze the optical field.

The OPO will have the following SLH model:

S = 12×2, L = [
√

κ1a,
√

κ2a],
(5)

H = 1

4
xT

[
� − Im(ε) Re(ε)

Re(ε) � + Im(ε)

]
x.

Here, κ1 is related to the cavity mirror reflectance, and κ2 to
other losses, � is the cavity detuning, and ε is a complex
number, whose amplitude encodes the strength of the pump
field and the nonlinear medium’s χ (2), and whose phase
encodes the pump field’s phase [34].

The plant system, an optical cavity with a noisy input, can
be modeled as an open quantum system with three couplings,
one for each mirror. The SLH model for this system is

S = 13×3, L = [
√

k1a,
√

k2a,
√

k3a], H = �a†a. (6)

We also need to find the covariance matrix Fij for the noisy
inputs dai , defined by 1

2 〈daidaj + dajdai〉 = Fijdt . Recall
that, for vacuum inputs, the fields dA and dA† satisfy the
Itô relations dAdA = dA†dA† = dA†dA = 0, dAdA† = dt

[20,31], leading to the Itô tables in Tables I and II.
For a non-vacuum, thermal input (in this case, the input to

mirror k3), the field dA has additional (unsqueezed) noise, so
dA†dA = kndt for some noise strength kn > 0, and the rest
of the relations are adjusted accordingly, leading to the Itô
tables in Tables I and II: In the present system, inputs 1 and 2
are vacuum, and 3 is thermal noise. This gives the following
covariance matrix:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 + 2kn 0

0 0 0 0 0 1 + 2kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

TABLE I. Left: Itô table for the second-order increments dX dY

(with dX in the left margin and dY in the top margin, given in terms
of dA, dA†), for vacuum noise. Right: Itô table for the increments
dx dy, with dx and dy given in the left and top margins, in terms of
dax = dA + dA†, dap = (dA − dA†)i.

dX/dY dA dA† dx/dy dax dap

dA 0 dt ↔ dax dt i dt

dA† 0 0 dap −i dt dt

TABLE II. Itô tables for the second-order increments for thermal
noise characterized by noise strength kn.

dX/dY dA dA† dx/dy dax dap

dA 0 (1 + kn)dt ↔ dax (1 + 2kn)dt i dt

dA† kndt 0 dap −i dt (1 + 2kn)dt

The plant system is easy to set up in our MATHEMATICA

package; a sample output is shown in Fig. 3. The package,
based on the circuit modeling and analysis framework of
Sarma et al. [32], allows one to arbitrarily concatenate and
link smaller elements to form larger quantum circuits, as long
as all of the components are linear. The feedback control circuit
is one example system the package can be used to simulate.

Once the combined plant plus controller system is set
up, with its associated A, B, C, and D matrices, the
covariance matrix σij = 1

2 〈xixj + xjxi〉 can be computed with
the Lyapunov equation

Aσ + σAT + BFBT = 0. (8)

For a model system with the parameters

k1 = k2 = k3 = 0.01, � = 0.1, (9)

we plot the cost function 〈a†a〉 as a function of noise kn

for the various controller types in Fig. 4. The orange line
gives the performance of the plant without a controller. As
expected, the photon number rises linearly with the noise
power. It is not hard to show that this matches the analytic
result

〈a†a〉nc = k3

k1 + k2 + k3
kn (10)

that one can derive from the QSDEs.
The trivial controller is simple enough that it also has an

analytic solution. The two mirrors, rather than leaking photons
separately, do so constructively so that the leakage amplitudes
(rather than their powers) add up. This requires the replacement
k1 + k2 → (

√
k1 + √

k2)2 in Eq. (10), leading to the following
result:

〈a†a〉tr = k3

k1 + k2 + k3 + 2
√

k1k2
kn, (11)

which agrees with the numerical data plotted in Fig. 4.

Linear SLH Model. nsys 2, nport 3

S

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, L

k1 0

0 k1

k2 0

0 k2

k3 0

0 k3

x, H
1

2
x 2

0

0
2

x

Inputs: da1 da2 da3

Outputs: db1 db2 db3

T

FIG. 3. Output from our MATHEMATICA package, describing the
plant system.
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FIG. 4. (Color online) (b) Plant cavity photon number, as a
function of noise strength kN . The uncontrolled case is shown, as
well as the photon number for various control schemes. (a) Photon
number relative to the no-control case. Smaller is better.

A. Classical controllers

More sophisticated are the classical measurement con-
trollers. The first simply makes a homodyne measurement
of the dã1x field. This signal is fed through a classical
circuit which generates an output. The heterodyne controller is
slightly more complicated, and can be modeled as a two-input
homodyne measurement controller in the following circuit
(using the notation of Refs. [29,33]; see Appendix A):

(Hom)2 in�(I1 � eiπ/2)�B(α). (12)

In addition to the homodyne controller’s parameters, we can
also vary the beam-splitter transmittance. (Setting the beam-
splitter transmission coefficient α → 1 would send all the light
entering controller input 1 into the x-quadrature homodyne
detector, so the classical homodyne controller is really a special
case of the classical heterodyne controller.)

This example, in particular, illustrates the power of the
Gough-James circuit algebra in treating control problems
when the controller has a more complex, “circuitlike” struc-
ture. Having written code to output the ABCD model for
a general n-input homodyne controller, it would have been
straightforward, albeit tedious, to write additional code for
the n-input heterodyne controller. But using the Gough-James
circuit algebra allows us to write the n-input heterodyne system
in terms of a 2n-input homodyne system, plus some beam
splitters and phase shifters, so we get the heterodyne controller
for free. By breaking the system into smaller components, we
can reduce the total amount of work we need to do in quantum
control and simulation problems.

There also exist “analytic” formulas for LQG optimal
classical controllers in the classical case. It is not difficult

to rewrite Eq. (2) in the standard form for an LQG problem:

dx = Apxdt + Bpdu + dw,

dy = Cpxdt + dv. (13)

Here dy is the measurement signal, du is the controller output,
and dw and dv are the plant and controller noises, dw ∼
N (0,Fwdt), dv ∼ N (0,Fvdt). Unfortunately, in this system
the noises are correlated; the vacuum noise da1 acts on both
the plant and, after reflection off mirror k1, the controller. One
can define a covariance matrix Mik = 〈dwidvk〉 to account for
this correlation.

A common trick is to remove the noise correlations by
performing a change of variables [35]. Since dy − Cpxdt −
dv = 0, we can subtract this quantity from the first line of
Eq. (13) to find an equivalent equation of motion:

dx = Apxdt + Bpdu + dw + MF−1
v (dy − Cpxdt − dv)

= (Ap − MFvCp)x + Bp

(
du + B−1

p MF−1
v dy

)
+ (

dw − MF−1
v dy

)
= Ãx + Bpdũ + dw̃. (14)

Here, the noises dv and dw̃ are uncorrelated. The controller
for this plant will consist of a Kalman filter and a feedback:

dx̂ = (Ã − BpL − KCp)x̂ + Kdy, dũ = −Lx̂dt. (15)

The Kalman gain and feedback matrices can be obtained by
solving the Riccati equations:

K = σCTF−1
v

(
Aσ + σAT − σCTF−1

v Cσ = 0
)
,

(16)
L = R−1BTλ (ATλ + λA + Q − λBR−1Bλ = 0).

(Here Q and R are LQR optimization weights for the plant
and controller states; we assume Q 	 R.) For this particular
case we optimized the classical controllers numerically, but the
results agree with the analytical expression. When optimizing
the measurement controllers, we found that the best controllers
always had dynamics that were much faster than the plant
time scales. When this happens, the controller’s internal
dynamics can be adiabatically eliminated and the controller
can be replaced by a simplified “limit model” of the original
component [36–38]. When a linear component is adiabatically
eliminated, its internal variables are removed and its ABCD
model is replaced by the input-output relations

dã = (D − CA−1B)da. (17)

The homodyne controller, adiabatically eliminated, becomes

dãx = ξ1dax + dak1,x , dãp = ξ2dax + dak1,p. (18)

In this device, the signal dax is measured, amplified by factors
c1 and c2, and imprinted onto the output field. The downside of
this measurement is the additional noise dak1 that the output
accrues.

The optimal heterodyne controller uses a 50:50 beam
splitter so we set α = 1/

√
2 in Eq. (12). It too has very fast

013815-4



COHERENT CONTROLLERS FOR OPTICAL-FEEDBACK . . . PHYSICAL REVIEW A 87, 013815 (2013)

FIG. 5. (Color online) (a) Optimal heterodyne amplification η,
for a classical controller, as a function of plant noise. (b) LQR as a
function of controller amplification, for five different noise values.

dynamics that can be adiabatically eliminated to give

dãx = ξ (dax + dak1,x) + dak2,p,
(19)

dãp = ξ (dap − dak1,p) + dak2,p,

or equivalently

dÃ = ξ (dA + dA
†
k1) + dAk2. (20)

The heterodyne controller amplifies both quadratures, but
there is an additional noise due to splitting the beam before
measurement, dAk1, as well as the measurement noise itself.
The LQR can be computed analytically, and the analytic result
agrees with the numerical optimizer. Setting ξ = sinh(η), we
have

〈a†a〉cl = k2 sinh2 η + k3kn

k1 + k2 + k3 + 2
√

k1k2 sinh η
. (21)

This is plotted in Fig. 5. As the plant noise increases, so does
the controller’s optimal amplification. It does not do well to
increase the amplification indefinitely, however, since this also
adds noise into the system. From Fig. 4, one can also see that
measurement control does well at reducing the photon number
for large kn, but in the quantum regime, kn � 1, it has hardly
any effect at all.

B. Coherent control

The three coherent controllers of interest are the cavity
controller and the two OPO setups, as shown in Fig. 1. The
optimizer consistently showed that the best cavity controller
is in fact the trivial controller (which is the special case of a
cavity with mirror transmittivity set to zero). Because of this,
we do not consider empty cavity controllers in this section.
The OPO controllers, on the other hand, have more interesting
behavior.

As in the classical case, it was discovered that the best
coherent controllers always had dynamics that were much
faster than the plant time scales and could be adiabatically
eliminated. A single OPO will adiabatically eliminate to a
squeezer with the following input-output relations:

dãx = eηdax, dãp = e−ηdap (22)

(up to input and output phase shifts). An OPO system with
squeezed inputs and outputs, which can in principle replicate
any two-port linear quantum system with a single internal

FIG. 6. (Color online) Optical parametric oscillators adiabatically
eliminate into ideal squeezers.

degree of freedom [34], will adiabatically eliminate to arbitrary
two-mode squeezer (Fig. 6). As far as this control problem is
concerned, the best two-mode squeezer is the linear amplifier,
given by the input-output relations

dã1 = cosh(η)da1 + sinh(η)da2,
(23)

dã2 = sinh(η)da2 + cosh(η)da2.

Analytic formulas can be derived straightforwardly from
the quantum stochastic differential equations. For the squeezer,

〈a†a〉sq = Re
[
(k2 sinh2 η + 2kn) − 2 k2

√
k1k2 cosh η sinh2 η

G+2i�
eiφ

]
Re[G − 4k1k2 sinh2 η/(G + 2i�)]

,

(24)

where

G ≡ k1 + k2 + k3 + 2
√

k1k2 cosh(η)eiφ.

For the linear amplifier,

〈a†a〉2 sq = k2 sinh2 η + k3kn

k1 + k2 + k3 + 2
√

k1k2 cosh η
. (25)

Qualitatively, the results for the heterodyne controller, Eq. (21)
and the linear amplifier, Eq. (25) look very similar. Both
the heterodyne controller and the linear amplifier reduce the
cavity’s photon number by amplifying the feedback signal,
but also add noise to the system. For equivalent levels of
amplification [compare (21), substituting sinh η → cosh η,
to Eq. (25)] the classical controller adds extra noise into
the system from the measurement process. When kn and η

are large, this extra noise is negligible, but in the quantum
regime where kn and η are �1, this noise can play a major
role in making the linear amplifier outperform the heterodyne
controller.

As far as optimization is concerned, Eqs. (24) and (25)
are simple enough to apply. Finding the best controller just
involves minimizing these functions with respect to η. But
remember that it was not at all obvious that the best quantum
controller should be an adiabatically eliminated squeezer.
This had to be demonstrated by optimizing the general OPO
controller, which has many more parameters, and comparing
the result to that of the squeezer. This required a MATHEMATICA
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FIG. 7. (Color online) (a) Optimal squeezing for the squeezer
(solid) and two-mode squeezer (dotted) controllers. (b) Performance
as a function of squeezing for multiple noise levels.

package to quickly convert circuit diagrams to ABCD models,
and an efficient optimizer to find the best controller parameters.

Notice that, for large kn, the performance of the two
quantum controllers follows the classical performance. In
the classical limit, the OPO, which reduces to a squeezer,
is amplifying a single quadrature and feeding this back into
the plant (with the proper phase shift). Likewise, the classical
controller measures a single quadrature, amplfies that signal,
and sends this back into the plant. Thus, the OPO is a
“homodynelike” controller in the classical limit. By contrast,
the linear amplifier amplifies both modes equally and feeds
back the result, making it a “heterodynelike” controller which
tracks the performance of the heterodyne controller in the
classical limit.

However, in the quantum regime, this distinction is lost and
both of the quantum controllers track the performance of the
trivial controller. Below a threshold value of

kn,min = k1(k1 + k2 + k3 + 2
√

k1k2)√
k1k2k3

(26)

(for this system, kn,min = 5), any squeezing will increase the
noise in the cavity, so the optimal value of η is zero—in other
words, for kn � 5, the best controller is the trivial controller.

As Fig. 7 illustrates, when kn > 5, the best controller
has a nonzero amount of squeezing. We plot the controller
performance as a function of squeezing for five different noise
levels on the right panel of the figure. Intuitively, this is a
battle between the noise introduced by squeezing and the noise
removed by constructive interference with the light leaking out
of mirror 2. When η is low, the latter dominates. By increasing
the squeezing, we effectively increase the amplitude of the
field impinging upon mirror 2. Recall that the trivial controller
worked by constructive interference between this field and
the light leaking out of mirror 2. By increasing this field’s
amplitude, we magnify the effect of this interference; this
reduces the overall cavity photon number. This explains the
cosh η term in the denominator of Eq. (25). But a squeezed
vacuum carries photons of its own, and some of these photons
leak back into the cavity. If the squeezing is too high, this winds
up increasing the photon number, giving rise to the sinh2 η term
in Eq. (25). Above the threshold temperature kn,min, the ideal
η lies somewhere between these extremes.

Below the threshold temperature, the cavity photon number
is so low that the interference effect never wins out—squeezing
the control field always introduces more photons in the cavity,

and the best controller involves looping the output from
mirror 1 into mirror 2 without squeezing—the trivial controller.

IV. OPTICAL FEEDBACK CONTROL
OF A MECHANICAL OSCILLATOR

Optomechanical oscillators—mechanical springs that cou-
ple to an optical field via a cavity—have been a topic of
tremendous recent interest in the physics community [39]. A
central goal has been to find ways to exploit optomechanical
coupling to cool the mechanical oscillator from ambient
temperature to its ground state, using optical feedback.

In this section we analyze the optomechanical oscillator as a
coherent control system, with the spring comprising the plant,
and with optical probing and feedback. We optimally cool the
oscillator by solving the LQG control problem for the cost
function 〈b†b〉, where b is the spring’s annihilation operator.
While the control setups we consider may appear impractical
from an experimental perspective, we will discuss how they
can be related to systems that are more realistic to implement.

At the heart of this control problem is the “adiabatically
eliminated cavity,” depicted in Fig. 8. If we go into the rotating
frame for the light, this has the SLH model

S = 12×2, L = [
√

κa,
√

�/Qb], H = h̄�b†b + ηa†axm,

(27)

where � is the natural spring frequency, Q is the Q factor, κ

is the cavity decay parameter, and m is the mirror mass. See
Table III.

System (27) is nonlinear by virtue of the interaction term
ηa†aX. This term is due to the photon pressure of the field in a
cavity, which exerts a physical force on the mirror. In the limit
that the light mode a evolves much faster than the mechanical
mode b, we can adiabatically eliminate the former to give an
SLH system of the form

S =
[
eiφ(xm−xm0;η/κ) 0

0 1

]
, L = [0,

√
�/Qb], H = �b†b,

(28)

where

φ(z; η/κ) = 2 tan−1(2ηz/κ) (29)

is the phase shift of the cavity reflected light, as a function
of the mirror position (we have absorbed a factor −1 in S for
convenience). This is still a highly nonlinear system. A real
optomechanical oscillator is usually driven by a coherent field,
and the output that is measured is generally interfered with an
equal and opposite field, so as to discern the phase fluctuations

FIG. 8. (Color online) Single cavity with modes a,a†, coupled to
a mechanical oscillator with modes b,b†.
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TABLE III. Parameters for the optical cavity-controller problem. See, e.g., [39].

Quantity Value Quantity Description Typical values

Ki = 4ηri/κi Pi Laser power in coherent displacement ri , i = 1,2 1 μW–1 mW
ri = √

Pi/h̄ω ti Power transmittance for cavity mirror i. Inversely proportional to finesse. 10−6–10−3

κi = tic/2li li Length of cavity i 10−6–10−1 m
η = (ω/li)

√
h̄/2m� m Mass of spring-mounted mirror 10−15–10−10 kg

kn = (1 − e−h̄�/kT )−1 � Spring oscillation frequency kHz–GHz
km = �/Q Q Spring quality factor 103–107

ω Laser frequency (2–4) × 1015/s

on a homodyne detector. Thus, the real plant system we are
interested in is the adiabatically eliminated cavity sandwiched
between two coherent displacements. For a cavity subject to a
coherent input of amplitude r1, we write this as

(Cav1) = L(−r)�(Cav)�L(r). (30)

This has the simple, linear SLH model

S1 = 12×2, L1 = [K1xm,
√

�/Qb], H1 = �b†b (31)

with K1 = 4ηr1/κ1 the effective coupling between the spring
and the field, which need not be positive or even real. The xm

coupling to the field da1 gives rise to the following input-output
relations:

(dxm)1 = 0, (dpm)1 = −2K1da1p,
(32)

dã1x = da1x + 2K1xmdt, dã1p = da1p.

The state variable xm is imprinted on the output dã1x , so
by measuring the x quadrature of the output field, we can
deduce the value of xm; this allows us to use the mirror as a
“measurement” device, learning information from the output
field. Note that this works only for dã1x ; no information is
imprinted onto the p quadrature of the output. Conversely, by
sending in a particular input da1p, we can alter the state of
the system; this allows us to use the mirror as a “feedback”
device. Note likewise that feedback is not possible via the da1x

channel, which does not affect the system.

A. Plant system

The plant-controller setup is shown in Fig. 9. The plant
system consists of two (adiabatically eliminated) cavities
coupled to the same mirror. The output from the first cavity,
dÃ1, goes into the controller, and the controller output is fed
back into the second cavity input dA2. Not shown are the two
coherent displacements (lasers) putting fields dA1 and dAk

into nonvacuum coherent states. These coherent fields allow
us to replace the cavity with model (28) with the linearized
model (D5). Since the system is now linear, this becomes an
LQG control problem. The combined plant-controller system
can be viewed as a feedback loop from output dÃ1 to input
dA2, or conversely, we can write it as a series product

(Sys) = [(Cav2 � I1)�K�(Cav1 � I1)] � (Spr), (33)

where (Sys) is the combined system, Cavi is the ith cavity,
with the SLH model (1,

√
kixm, ), (Spr) gives the spring and

phonon couplings, with the SLH model (1,
√

kmxm,�b†b), and
K is the controller. See Fig. 10.

The controllers we consider here are not unlike those for
the simple cavity. It is not difficult to show using Eq. (33) that
the trivial controller amounts to no control at all at best, and
additional noise at worst. The classical controller measures
the output from mirror cavity 1 and sends an input in to cavity
2, as a function of the controller’s internal state. (Note that
we need to consider only a classical controller that measures
the x quadrature dã1x ; dã1p contains no information about the
plant’s state.) The simple cavity and OPO cavity coherently
process the signal rather than destroying it in a measurement.
Finally, we considered the most general coherent controller,
an open quantum system specified by arbitrary A,B,C,D

matrices satisfying the realizability relations. For the LQG
problem of minimizing 〈b†b〉, we found optimal controllers in
each class for the following plant system:

� = 100 (arbitrary units), km = 0.01,
(34)

Q = 10 000, kn = 10−9–109.

In the optimization, we are allowed to vary both the controller
parameters and the couplings K1, K2 to the cavities in Eq. (D5).
This is because the couplings depend on the input laser powers
Pi (in addition to the mirror transmittances ti), which are

FIG. 9. (Color online) Control-system setup for the mechanical-
oscillator cooling problem. Four potential controller designs.
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FIG. 10. (Color online) Equivalent view of the plant-controller
setup shown in Fig. 9. See Eq. (33).

external quantities (see Table III) rather than fixed properties
of the plant itself. Here we will operate primarily under the
assumption K1 = −K2 ≡ K; this is a reasonable assumption
that avoids classical solutions with divergent controller gain,
but we also show that the coherent controllers discussed
here outperform the best classical controllers even when this
assumption is relaxed.

Figure 11 plots the performance of the measurement,
simple cavity, and OPO controllers. For very low ambient
temperatures where the noise is weak, the plant is nearly in
its ground state to begin with, and none of the controllers can
reduce its value. This differs from the optical cavity. In the
cavity, we used a “trivial controller” to cause the light leaking
out of mirror 1 to interfere constructively with the light leaking
out of mirror 2, increasing the net dissipation from k1 + k2 to
(
√

k1 + √
k2)2. No such scheme exists in the oscillator because

phonons do not “leak out” of the system in the same way that
photons leak out of an optical cavity.

At high temperatures, the best classical controller and the
OPO controller do equally well, each reducing the phonon
number by a factor of exactly Q = 10 000. The cavity
controller does reasonably well, reducing the phonon number
by a factor of about 0.354Q = 3540. These results are not very
surprising. The high-temperature limit takes our oscillator into
the classical regime, where vacuum noise is negligible and no

FIG. 11. (Color online) (b) Plot of the average phonon number
〈N〉 = 〈b†b〉 of the mechanical oscillator for three different control
schemes. (a) Phonon-number reduction, relative to the no-control
case. The general coherent-controller result is not shown, since it
overlaps the OPO line, the optimal coherent controller being an OPO
cavity.

coherent controller can hope to outperform the best classical
controller.

The interesting region lies between these two limits. Here,
there is a sharp cutoff, near kn ≈ 0.2, below which the classical
measurement controller becomes useless. As explained below,
the classical controller must add noise to the system to make
a measurement; below a certain threshold, the gains from
control are offset by the noise from measurement. In this
region, the cavity and OPO controllers do significantly better
than the classical controller, in some places by a factor of
100–200.

B. The classical controller

The classical controller works by measuring the plant
output field (dA in Fig. 12) and inferring the plant’s state
from this measurement. From the inferred plant state, the
controller applies a feedback signal, which is added to an
auxiliary vacuum input dAk and sent back to the plant.

The plant output contains two quadratures, but only one
of them contains information about the system. Thus, in our
classical controller we choose to measure the x quadrature
of the output, and necessarily discard the dAp. This is the
optimal control strategy in the classical case because dAp does
not contain any information about the system. Like any LQG
optimal controller, the classical controller consists of a Kalman
filter, which estimates the plant state, plus a feedback element.

The classical controller adds two sources of noise to the
plant. First, by sending a laser through the measurement cavity
(Cav1), it adds measurement noise, with an amplitude that
scales as O(K). Second, the feedback field dÃ (with a vacuum
noise component due to the auxiliary field dAk) is sent through
the controller, adding a feedback noise of equal magnitude,
also O(K). Both of these factors increase the cavity phonon
number by O(K2), independent of the noise kn. The control
loop will decrease the cavity phonon number by an amount
proportional to the present phonon number, which increases
with kn. In the high-kn limit, the “control” term dominates and
the coupling K is large. By contrast, in the low-kn limit, the
“noise” term is dominant, and the optimal value of K is small
or zero—no measurement controller can effectively reduce the
phonon number, since the noise incurred will more than offset
any gains from control.

An important thing to note is the role the p-quadrature
field dap plays in this noise budget. It is true that dap

does not contain any information about the plant state. But
this quadrature still plays an important part, since dap gives
rise to the noise in the measurement cavity, and dãp gives
rise to the noise in the feedback cavity. Because dap and

FIG. 12. (Color online) Flow of x- and p-quadrature signals (blue
and red, respectively) in the classical and coherent controllers.
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dãp are independent (the former being destroyed in the dax

measurement), their noises add up. The beauty of coherent
control is that we can process the x field without destroying
dap and the measurement and feedback noises become
correlated. If this is done right, they cancel each other out.

If we are free to relax the K1 = −K2 assumption, then
the classical controller does somewhat better (dashed line
in Fig. 11), but still underperforms the coherent schemes
discussed below. When K1 �= K2, the optimal classical con-
troller tends to have K2 
 K1, which greatly suppresses the
measurement noise. To compensate for this disparity, the
controller must have a large classical gain.

It might be thought that a heterodyne-based control scheme
like that in Fig. 13 could perform better than the best homodyne
controller. After all, the homodyne controller is just a special
case of the heterodyne controller, where the beam splitter has
a transmissivity of 100%. Moreover, one might imagine using
a heterodyne scheme to cycle part of the dãp quadrature back
into the plant, canceling out part of the measurement noise
with the feedback noise. However, we find numerically that
the most general heterodyne controller does not perform any
better—either with K1 = K2 or not. The extra noise added
from splitting the beam outweighs any of the benefits of the
control scheme.

C. Simple cavity controller

An empty optical cavity with two input and output ports
has the following SLH model:

S = 12×2, L = [
√

κ1a,
√

κ2a], H = �a†a. (35)

Here the κ’s are mirror decay parameters and � is the
detuning of the cavity. The QSDEs for the cavity are easy to
derive:

da = (−i� − κ/2)a dt + √
κ1dÃ1 + √

κ2dÃ2,
(36)

dÃi = dAi + √
κ1a dt.

Remember that, in addition to the controller parameters, we
can vary the input coherent fields, which allows us to vary the
plant’s xm coupling K . The laser field impinging on cavity 1
adds shot noise to the mirror; in this setup, since K1 = −K2 ≡
K , the shot noise from cavity 1 will exactly cancel the shot
noise from cavity 2 (if we let K1 and K2 vary freely, we find

FIG. 13. (Color online) Heterodyne-based measurement con-
trollers, which measure both quadratures of the beam by split-
ting it, do not outperform the best homodyne controller for this
system.
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FIG. 14. Parameters of the optimal simple cavity controller, as a
function of noise strength.

that the optimal controller has K1 = −K2). As a consequence,
the cavity controller has neither measurement nor feedback
noise.

The optimal detuning and couplings are plotted in Fig. 14.
Not surprisingly, as the noise on the mirror is increased,
the couplings K1,2 and κ1,2 increase as well. The detuning
�, which shows no dependence on the noise power, always
remaining at a constant value � ≈ � = 100 for this system,
making the cavity-controller setup analogous to two coupled
harmonic oscillators, one mechanical and the other optical
[40]. Absent the couplings, the quadratures x = a + a†,
p = (a − a†)/i would evolve just like the mirror variables
xm,pm.

This can also be interpreted as a form of sideband cooling.
The detuning � ≈ � indicates that our control system is being
driven by laser light at a frequency ωcav − �, where ωcav is
the cavity resonance frequency. The plant-controller coupling
serves to convert photons of frequency ωcav − � to photons of
frequency ωcav, cooling the oscillator. At high temperatures,
we need a large cooling rate to counter the noise; this is
achieved by using a cavity with a broad bandwidth κ , so
that both ωcav − � and ωcav photons interact effectively with
the cavity. Conversely, at low temperatures, we need to work
in the resolved sideband limit κ 
 � to suppress quantum
fluctuations of the radiation-pressure force [41–43].

The effects of this cooling are made manifest on the output
power spectrum of the photon channel P̃1(ω) = Ã1(ω)†Ã1(ω),
where Ã1(ω) is the Fourier transform of the stochastic process
dÃ1(t). In the frequency domain, the relevant QSDEs for the
combined plant-cavity system are

−iωa = {[−i� − (κ1 + κ2)/2]a + √
κ1K(b + b†)}

+ iω
√

κ1A1 + iω
√

κ2A2,

−iωb = [(−i� − �/2Q) b − √
κ1K(a − a†)] (37)

+ iω
√

�/QA3,

−iωÃ1 = −iωA1 + √
κ1a.

This power spectrum is plotted in Fig. 15. As the exiting light
is blue detuned, it reduces the phonon number in the oscillator,
driving it towards the ground state. For small kn, when the plant
and controller are weakly coupled, there is a single sideband
corresponding to the plant’s oscillation frequency �. When kn

is large, the plant and controller become strongly coupled and
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FIG. 15. (Color online) Calculated output spectrum of light
exiting the optimal simple cavity controller. Six values of kn are
plotted, 105 (darkest), 103, 101, 10−1, 10−3, and 10−5 (lightest).

the combined system resonates at two different frequencies,
one larger than � and one smaller. This is the origin of the
sideband splitting in the figure.

The system can also be understood as a form of coherent
Kalman filtering. Recall that the optimal classical controller
works as a Kalman filter, reproducing the state of the plant
by measuring one of its outputs. The cost we paid for the
Kalman filtering was additional noise added to the system.
The cavity controller can also be thought of as a Kalman
filter, but one that preserves the coherence of the input signal
dA. From a quantum mechanical standpoint, in the classical
controller, the p quadrature dap is essentially discarded after
the measurement. In the cavity controller, the field retains its
coherent properties and the dap coming out is the same as
dap going in. This makes the noises in the measurement and
feedback cavities correlated. In the present setup, they exactly
cancel out. This cancellation of the measurement noise is what
gives the coherent cavity controller its superior performance,
particularly in the low-phonon-number regime.

Measurement sensing experiments [44], particularly in
the context of the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [45], show similar improvements, but
for a different performance metric. This suggests that LQG
control is far from the only problem to benefit from this
noise cancellation and coherent feedback; similar gains should
be expected in all types of control problems when the plant
operates in the quantum regime.

D. OPO cavity controller

Recall from Eq. (5) that the OPO has the following SLH
model:

S = 12×2, L = [
√

κ1a,
√

κ2a],

H = 1

4
xT

[
� − Im(ε) Re(ε)

Re(ε) � + Im(ε)

]
x (38)

= �a†a + ε∗a2 − ε(a†)2

2i
.

For fullest generality, the OPO controller is placed be-
tween two phase shifters, so the actual controller is
eiφ1�(OPO)�eiφ2 . Between the controller, the phase shifters,

K1, K2 1 1

2 dotted

10 9 10 6 0.001 1 1000 106 109
kn

1

100

104

106

FIG. 16. (Color online) Parameters of the optimal OPO cavity
controller, as a function of noise strength.

and the couplings K1,2, there are nine free parameters in this
LQG problem. The best OPO controller parameters, found
using the optimization code, are plotted in Fig. 16. As with the
cavity controller, the best OPO controller has K1 = −K2.

For kn � 1800, the OPO behaves much like the simple
cavity. Its detuning is close to �, the coupling K1 = −K2

increases with kn, and the mirror losses κ1,κ2, while small,
increase with increasing noise (κ2 is too small to be seen on
this plot). For the most part, ε 
 � and the OPO squeezing is
only a perturbation on the dynamics of an empty cavity.

At kn ≈ 1800, this changes suddenly. This happens because
the OPO controller has two local minima. Below kn ≈ 1800,
the empty-cavity-like local minimum is smaller, but above
this threshold, a new minimum dominates. In this regime, the
coupling K is much stronger than before and the mirrors κ1,κ2

are much more lossy.
The OPO controller appears to be the best coherent

controller one can make for this system. We ran the optimizer
for a general coherent controller, subject to no constraints
other than the realizability conditions (4). At no point did we
find a coherent controller that outperformed the OPO for this
system. With this in mind, the discontinuity at kn can be better
understood. As the best realizable controller, the OPO must
do at least as well as both the simple cavity and the classical
controller. For weak noise, the simple cavity outperforms the
classical controller, so we expect the OPO to look more like
a simple cavity. For strong noise, the classical controller does
better, so we expect the OPO to look more like a classical
controller, inasmuch as this is possible. There is no reason to
assume that the transition between the two must be smooth.
It may be marked with bifurcation points, as in Fig. 7 for the
cavity control problem, or it may occur with a discontinuity
in the parameters. What happens for a general plant plus
controller system will depend on the landscape of the cost
function, and in particular, the behavior of local minima.

E. More realistic control systems

The control systems discussed above can be implemented
in principle, but they require two separate mirrors and two
separate cavities to be coupled to the same mechanical
oscillator, which may prove difficult to build in a laboratory.
Fortunately, one can show that for the cavity controller and
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FIG. 17. (Color online) Model for a non-adiabatically-eliminated
cavity.

the OPO controller, equivalent systems can be realized using a
non-adiabatically-eliminated cavity with one of its mirrors on
a spring.

First, the simple cavity controller. Recall from Eq. (33) that
the cavity-controller system can be modeled as

[(Cav2 � I1)�(Cav)�(Cav1 � I1)] � (Spr) (39)

which has the SLH model

S = 12×2, L = [
√

κ1a,
√

κ2a,
√

κmb],
(40)

H = ωca
†a + �b†b + √

κ1K1xmpc.

Now consider a system, depicted in Fig. 17, consisting of
a non-adiabatically-eliminated cavity with one of its mirrors
attached to a spring. This has the SLH model

S = 13×3, L = [
√

κ1a,
√

κ2a,
√

kmb],
(41)

H = �0a
†a + �b†b + ηa†axm.

A laser L(α) sends a coherent input into mirror 1, giving the
system Cav�[L(α) � I2]. Of course, the internal dynamics
do not depend on anything downstream of the system, so we
can just as well use [L(α′) � I2]�Cav�[L(α) � I2], for any
α′. Making substitutions a → a − a0,b → b − b0 to center
around the equilibrium point, the SLH model becomes

S = 13×3, L = [
√

κ1a,
√

κ2a,
√

kmb],
(42)

H = �a†a + �b†b + η|α|√κ1

�2 + (κ/2)2
xmxc + ηa†axm.

Ignoring the nonlinear term, this is almost identical to Eq. (40).
One can convert the xmxc term to an xmpc term with a canonical
transformation, and the coefficients can be matched by varying
α. Thus the systems in Eqs. (40) and (42) are equivalent, and
the “simple cavity controller” can be realized in the laboratory
using a single cavity with a mirror attached to a spring. Cooling
an oscillator in this setup has been realized experimentally,
though it was not interpreted as a control system [11–13].

The OPO controller is just like the cavity controller, but
the Hamiltonian has an additional squeezing term; see (5).
The same procedure can be applied to show that the OPO
plant-controller system is equivalent to a (non-adiabatically-
eliminated) OPO cavity with a spring mirror, as shown in
Fig. 18.

FIG. 18. (Color online) Model for a non-adiabatically-eliminated
OPO cavity with a spring mirror.

F. Quantum refrigerator analogy

One thing we notice from the optimal controller per-
formance is that, in the strong-noise limit, the optimal
controllers—classical, OPO, cavity—all reduce the spring
phonon number by a factor of about Q = �/km. The classical
and OPO controllers reduce it by exactly Q, while the cavity
controller only reduces it by a factor Q/2.83. This factor-of-Q
reduction can be understood by viewing the plant and the
controller as thermodynamic systems.

Figure 19 illustrates our point. Starting with a cavity with
a spring mirror, we separate the system into the cavity,
which oscillates at a frequency ωc, and the spring, which
oscillates at a frequency �. Each system has its own coupling
to the environment. The cavity couples to a vacuum-state
environment (T = 0) with coupling strengths κ1,κ2, the spring
couples to a heat bath with Th > 0 with strength km, and a
spring-cavity coupling K1 = −K2 couples the two modes.

If the spring and cavity oscillate at about the same frequency
and the spring-cavity coupling is strong compared to the other
two, then the “temperature” of the spring will be roughly equal
to the “temperature” of the cavity. We denote this temperature
Tsys. One expects the combined system to be in thermal steady
state with both the heat bath and vacuum inputs and outputs;
this gives us the energy balance equation

kmTh = kmTsys + κTsys, (43)

FIG. 19. (Color online) Coherent control problem represented as
two coupled thermodynamic systems.
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where κ = κ1 + κ2 ∼ ωc ∼ �, and km = �/Q. Solving for
the system’s steady-state temperature,

Tsys = kmTh

κ + km

∼ Th

Q
. (44)

From general arguments, we can therefore expect that most
good controllers will reduce the spring phonon number by a
factor of about Q, but that no controller will do significantly
better. Note that, since this argument is based on thermody-
namic assumptions that are only approximately valid here,
the factor-of-Q reduction is only approximate, and only holds
in the classical limit. These classical results, unsurprisingly,
break down in the quantum regime because, among other
things, the effects of vacuum noise inputs become important.

V. CONCLUSIONS

In this paper, we have studied the coherent-feedback cool-
ing of linear quantum systems from an LQG control perspec-
tive. The systems were modeled using the SLH framework and
the Gough-James circuit algebra, which allow arbitrarily large
circuits to be constructed in a straightforward and systematic
manner. The evolution of the system was studied using QSDEs,
the open-system analog to the Heisenberg equations. We wrote
MATHEMATICA scripts based on the QHDL framework to model
quantum LQG control systems, and designed algorithms to
optimize a controller’s parameters for a given setup.

For any LQG control problem, there is always a quantum
controller that does at least as well as the optimal classical
controller. In the quantum regime, when the excitation number
in the plant is of order unity, we have shown that the best
quantum controller can do better—in some cases, significantly
so. Two systems—the optical cavity and the optomechanical
oscillator—were studied in detail. For the former, modest gains
were found using coherent control in the low-photon-number
regime. For the latter, the gains were much larger.

One could imagine extending these results to look at
nonquadratic cost functions in linear control systems. Indeed,
some work has already been done on this matter, focusing
on using coherent feedback to maximize the squeezing in a
cavity mode [17]. Taking a control theory perspective may also
provide insight into minimizing the noise in optomechanical
sensors. In addition, the understanding of the superior perfor-
mance of coherent feedback in linear systems may provide
important clues for the design of quantum controllers for
nonlinear systems such as optical switches or error-correcting
codes.
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APPENDIX A: SLH, QSDE, AND ABCD MODELS

An open quantum system with n bosonic, Markovian input-
output channels, can be represented as a triple [28,29]:

(S,L,H ) (A1)

where S is a unitary n × n operator-valued matrix, L is an
n-component operator-valued vector, and H is Hermitian. A
quantum circuit is built up by connecting together components
of this form. Any such circuit can be written in terms of a circuit
algebra of concatenation, series and feedback products, shown
in Fig. 20.

The concatenation product joins two systems without con-
necting any of the input and output ports. If G1 = (S1,L1,H1)
and G2 = (S2,L2,H2) then the concatenation is given by

G1 � G2 =
([

S1 0

0 S2

]
,

[
L1

L2

]
, H1 + H2

)
. (A2)

The series product feeds the outputs of one system into the
inputs of the other, and has the following SLH model:

G2�G1 = (S2S1, L2 + S2L1, H1 + H2 + Im(L†
2S2L1)).

(A3)

The feedback product [G]i→j corresponds to taking output i of
G and feeding it back into input j . This can also be represented
with an SLH model. See Ref. [33].

The quantum stochastic differential equations (QSDEs) are
Heisenberg-picture equations of motion for open quantum
systems. They relate the evolution of the internal state variables
(denoted X) and the output fields dÃi and gauge processes
d�̃ij to the inputs dAi , d�ij , where the inputs are vacuum
quantum Wiener processes. For a given SLH model, the
equations are [29]

dX = [−i[X,H ] + 1
2 (L†

i [X,Li] + [L†
i ,X]Li)

]
dt

+ dA
†
i S

†
ij [X,Lj ] + [L†

j ,X]SjidAi

+ (S†
ikXSkj − Xδij )d�ij , (A4)

dÃi = Sij dAj + Lidt, (A5)

d�̃ij = S∗
ikd�klS

T
lj + S∗

ikdA
†
kLj + L

†
i dAkS

T
kj + L

†
i Lj . (A6)

Likewise, the master equation is the Schrödinger-picture
equation of motion for an open quantum system. It gives the
evolution of the system’s density operator:

dρ

dt
= i[ρ,H ] +

(
LiρL

†
i − 1

2
L
†
i Liρ − 1

2
ρL

†
i Li

)
. (A7)

FIG. 20. (Color online) The concatenation, series, and feedback
products are the three basic operations of the Gough-James circuit
algebra.
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A linear system has a quadratic Hamiltonian and linear
environment couplings. It takes the following SLH model:

Sij = Sij , Li = �ix + λi, H = 1
2xTRx + rTx. (A8)

From these, the ABCD matrices take the forms

A = 2�

(
R + 1

4
�̃TJ �̃

)
, B = ��̃TJ S̃,

C = �̃, D = S̃,

a = 2�

(
r + 1

4
�̃TJ λ̃

)
, c = λ̃,

�ij = 1

2i
[xi,xj ]. (A9)

We form matrices S̃ and �̃ and vector λ̃ by stacking S, �, and
λ:

S̃ab = 2M†
[
Sab 0

0 S∗
ab

]
M, �̃a = 2M†

[
�a

�∗
a

]
,

λ̃a = 2M†
[

λa

λ∗
a

]
, (A10)

where J2n×2n is the canonical antisymmetric matrix of dimen-
sion 2n (written above as J , where the dimension is inferred),
and M2n×2n is used to convert between standard dAi,dA

†
i and

Hermitian dax,dap input-output fields:

J2n×2n = In ⊗
[

0 1

−1 0

]
, M2n×2n = In ⊗ 1

2

[
1 i

1 −i

]
.

(A11)

The matrix S̃ is made from the blocks S̃ab above, and likewise
for �̃ and λ̃.

These match the formulas used in Ref. [18], the difference
being that we have defined the ABCD matrices in terms of the
real stacked matrices S̃ and �̃, rather than in terms of S, L,
and H directly.

APPENDIX B: CIRCUIT ALGEBRA FOR LINEAR
MODELS, SLH FORM

To form the concatenated system G1 � G2, we define a new
state variable x = [x1 x2] that includes both the state of G1

and the state of G2. Applying the concatenation equation (A2),

S =
[
S1 0

0 S2

]
, � =

[
�1 0

0 �2

]
, R =

[
R1

R2

]
,

(B1)

λ =
[
λ1

λ2

]
, r =

[
r1

r2

]
.

Likewise, applying the series product equation (A3), one finds
the parameters for the system G2�G1:

S = S2S1, � = [�1 �2],

R =
[

R1 Im(�†
2S2�1)

Im(�†
2S2�1) R2

]
, (B2)

λ = λ1 + λ2, r =
[
r1 + Im(λ†

2S2�1)T

r2 − Im(λ†
2S2�1)T

]
.

Similarly, applying the feedback equations can give us the
parameters for the system G′ = [G]i→j :

S ′ = [S + S∗j (1 − Sij )−1Si∗]!i,!j ,

�′ = [� + S∗j (1 − Sij )−1�i∗]!i,∗,

R′ = R + Im[�†S∗j (1 − Sij )−1� − H.c.], (B3)

λ′ = [λ + S∗j (1 − Sij )−1λi∗]!i,∗,

r ′ = r + Im
[
�†S∗j (1 − Sij )−1λ + �T(1 − Sij )−1ST

j∗λ
∗] ,

where the notation ∗ means “take all rows (columns) of the
given matrix,” while !j means “take all rows (columns) except
j .” For example, S∗,j would be the j th column of S, while
M!i,!j would be obtained by removing row i and column j

from the matrix M .

APPENDIX C: CIRCUIT ALGEBRA FOR LINEAR
MODELS, ABCD FORM

Linear quantum systems can also be modeled in terms of
their A, B, C, D, a, and c matrices. Concatenating two models
in ABCD form to create G1 � G2 is straightforward:

A =
[
A1 0

0 A2

]
, B =

[
B1 0

0 B2

]
,

C =
[
C1 0

0 C2

]
, D =

[
D1 0

0 D2

]
, (C1)

a =
[

a1

a2

]
, c =

[
c1

c2

]
.

One can arrive at the series product in ABCD form by first
taking the series product in SLH form and then converting to
the ABCD matrices. The series product G = G2�G1 is

A =
[
A1 B2C1

0 A2

]
, B =

[
B1

B2D1

]
,

C = [D2C1 C2], D = D2D1, (C2)

a =
[

a1

a2 + B2c1

]
, c = c2 + D2c1.

Likewise, the internal feedback G′ = [G]i→j is given by

A′ = A + B∗j (1 − Dij )−1Ci∗,

B ′ = [B + B∗j (1 − Dij )−1Di∗]∗,!j ,

C ′ = [C + D∗j (1 − Dij )−1Ci∗]!i,∗,
(C3)

D′ = [D + D∗j (1 − Dij )−1Di∗]!i,!j ,

a′ = a + B∗j (1 − Dij )−1ci,

c′ = [c + D∗j (1 − Dij )−1ci]!i,∗.

Alternatively, one can model quantum oscillators using the
ABCD models by deriving these relations from a simple
inspection of the linear equations of motion, skipping the SLH
formalism altogether. This approach is unfavorable because
(1) not every ABCD model is a physical system, since the
ABCD matrices for a real quantum system must satisfy
realizability conditions [19], (2) the ABCD matrices often do
not clearly reflect the underlying physics of a device, whereas
the Hamiltonian and coupling terms do, and (3) the ABCD
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matrices exist only for linear systems; for future work in the
context of nonlinear systems, the SLH formalism will become
essential.

APPENDIX D: SLH AND ABCD MODELS
FOR SYSTEMS IN THIS PAPER

As an example, consider three components mentioned in
the paper—the empty cavity, the optomechanical oscillator,
and the OPO cavity. Start with the empty cavity. This has the
SLH model

S = I, L = [
√

k1a,
√

k2a,
√

k3a], H = �a†a. (D1)

Let x = a + a†,p = (a − a†)/i be the Hermitian state vari-
ables for this system. Then we can write out (S,L,H ) in the
form of Eq. (A8) with the linear system parameters

S = I3×3, � = 1

2

⎡
⎢⎣

√
k1 i

√
k1√

k2 i
√

k2√
k3 i

√
k3

⎤
⎥⎦ , R = 1

2
�I2×2,

r = λ = 0, � = J2×2. (D2)

Using Eqs. (A9), the ABCD model is

A =
[
− k1+k2+k3

2 �

−� − k1+k2+k3
2

]
,

B =
[
−√

k1 0 −√
k2 0 −√

k2 0

0 −√
k1 0 −√

k2 0 −√
k2

]
,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
k1 0

0
√

k1√
k2 0

0
√

k2√
k3 0

0
√

k3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

a = c = 0. (D3)

By inspection, one can see that this is equivalent to the well-
known input-output equations for an empty cavity:

da =
(

−i� − 1

2

∑
i

ki

)
a dt −

∑
i

√
kidAi,

(D4)
dÃi =

√
kia dt + dAi.

In the paper, we also study the control of an optomechanical
oscillator. Here, we posited an oscillator with one degree of
freedom (the mechanical degree of freedom)

S = 12×2, L = [Kxm,
√

�/Qb], H = �b†b, (D5)

where (xm,pm) are the Hermitian state variables and b = (xm +
ipm)/2 is the phonon annihilation operator. Again referring to
Eq. (A8), the linear system parameters are

S = I2×2, � =
[

K 0
1
2

√
�/Q i

2

√
�/Q

]
, R = �

2
I2×2,

r = λ = 0, � = J2×2. (D6)

Again, following the standard procedure, we derive ABCD
matrices for the model:

A = �

[−1/2Q 1

−1 −1/2Q

]
,

B =
[

0 0 −√
�/Q 0

0 −2K 0 −√
�/Q

]
, (D7)

C =

⎡
⎢⎢⎣

2K 0

0 0√
�/Q 0
0

√
�/Q

⎤
⎥⎥⎦ , D =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ .

This model is consistent with the equations of motion

dxm = �pm − �/2Qxm −
√

�/Qda2x,

dpm = −�xm − �/2Qpm − 2Kda1p −
√

�/Qda2p,
(D8)

dã1x = da1x + 2Kxmdt, dã1p = da1p,

dã2x = da2x +
√

�/Qxmdt, dã2p = da2p +
√

�/Qpmdt,

which were stated without proof in the paper. (For clarity, the
phonon mode da2x,da2p was omitted in the paper.)

Finally, we consider the OPO cavity. Although not studied
as a plant, the OPO has interesting properties as a controller for
the mechanical oscillator system. The OPO has the following
SLH model:

S = 12×2, L = [
√

κ1a,
√

κ2a],
(D9)

H = �a†a + ε∗a2 − ε(a†)2

2i
.

Once more referring to Eq. (A8) and turning the crank, the
linear system parameters are

S = 12×2, � = 1

2

[√
κ1 i

√
κ1√

κ2 i
√

κ2

]
,

R = 1

2

[
� − Im(ε) Re(ε)

Re(ε) � + Im(ε)

]
, (D10)

r = λ = 0, � = J2×2,

and the ABCD matrices are

A =
[

Re(ε) − κ1+κ2
2 � + Im(ε)

−� + Im(ε) −Re(ε) − κ1+κ2
2

]
,

B =
[−√

κ1 0 −√
κ2 0

0 −√
κ1 0 −√

κ2

]
, (D11)

C =

⎡
⎢⎢⎢⎣

√
κ1 0

0
√

κ1√
κ2 0

0
√

κ2

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ .
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