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Dynamics of the modulation instability spectrum in optical fibers with oscillating dispersion
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A simple analytical model is developed to analyze and explain the complex dynamics of the multipeak
modulation instability spectrum observed in dispersion oscillating optical fibers [M. Droques et al., Opt. Lett.
37, 4832 (2012)]. We provide a simple expression for the local parametric gain, which shows that each of the
multiple spectral components grows thanks to a quasi-phase-matching mechanism due to the periodicity of the
waveguide parameters, in good agreement with numerical simulations and experiments. This simplified model is
also successfully used to tailor the multipeak modulation instability spectrum shape. These theoretical predictions
are confirmed by experiments.
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I. INTRODUCTION

Modulation instability (MI) is a nonlinear process in
which a weak perturbation is exponentially amplified by an
intense field. MI has been investigated in many sub-fields of
physics, especially in optics, for which experiments in both
homogeneous and periodic media are relatively simple [1].
The additional degree of freedom brought by the periodicity
has caught the attention of many research groups and has led to
many theoretical and experimental works in spatial [2,3] and
temporal Kerr media such as optical fibers [4–7]. This physical
flexibility is of particular interest since the modulation period
can be varied from the meter range up to tens of kilometers,
leading to a broad range of investigation. In the 1990s the
rise of optical telecommunication networks led to the deploy-
ment of “natural” periodic optical fiber systems due to the al-
ternation of all-optical regeneration devices and/or dispersion
managed lines [8,9]. In addition to the fundamental interest
brought by these systems, it was then necessary to understand
in depth the origin of the characteristic spurious MI sidebands
[8,9], which are highly detrimental to telecommunications
since they are generated in the gigahertz range [6,7] due to
their period in the range of kilometers. Many theoretical studies
have therefore been initiated in this context [6,8–15].

Very recently, dispersion management was pushed one
step further with the experimental demonstration of MI
in continuously modulated waveguides [16,17]. From these
results, the spurious consequence of the MI sidebands due to
the periodicity can be turned into a benefit since these works
show the possibility to obtain multiple parametric gain bands
in the terahertz range. It should then provide another degree
of freedom for designing optical systems requiring broad
bandwidths such as in all-optical signal processing systems
where there is a growing demand.

While a deep theoretical study of MI in periodically tapered
fibers has been reported very recently [18], we propose in the
present work a simplified analytical treatment allowing an
accurate description of the MI dynamics and the tailoring of
the overall shape of its multi-peak spectrum. Besides providing
insight into the underlying physics, our analytical treatment
allows us to derive an expression for the local linear parametric
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gain. Finally, in order to illustrate the practical interest of this
simple analysis, we report experiments in which the multi-peak
MI spectrum has been tailored to suppress one MI sideband
or to favor a single strong one, in good agreement with our
analytical predictions.

II. CONTEXT

We recently reported the experimental demonstration of MI
in a dispersion oscillating fiber (DOF) [17]. Although details
can be found in Ref. [17], the aim of this section is to briefly
summarize our previous results in order to facilitate the reading
of the present paper. Figure 1 shows a measurement of the
evolution of the fiber diameter along its length. The outer
diameter follows a sine shape with a modulation amplitude of
±7% and a period Z of 10 m, which results in a dispersion
modulation over the fiber length z with a quasi-sinusoidal
shape over the wavelength range of interest here, written as

β2(z) = β2 + βA
2 sin

(
2πz

Z

)
, (1)

where β2 = 1.2 × 10−27 s2/m is the average second-order
dispersion and βA

2 = 1.5 × 10−27 s2/m is the amplitude
modulation at our pump wavelength of 1072 nm.

Solid circles in Fig. 1(b) correspond to the spontaneous
MI spectrum obtained by pumping a 120-m-long sample of
this DOF (which we call DOF1) with 2-ns pulses with a peak
power Pp of 20 W at λp = 1072 nm. The solid line represents
the spectrum resulting from the numerical integration of the
generalized nonlinear Schrödinger equation (GNLSE) seeded
by noise to accurately reproduce experimental random initial
conditions (all details and parameters are given in Ref. [17]).
Both spectra are in good agreement (except for the higher
experimental noise floor) and show the generation of multiple
MI sidebands pairs [19] spanning over more than 10 THz.
The frequency of these parametric sidebands can be roughly
estimated from a quasi-phase-matching relation developed in
the case of an infinitely long grating [6,8,9]

β2�
2
k + 2γPp = 2πk/Z, (2)

where k is an integer, �k is the pulsation detuning from the
pump, and γ is the average nonlinear coefficient of the DOF.
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FIG. 1. (Color online) (a) Outer diameter of the DOF versus
length measured during fiber drawing. (b) Experimental (circles) and
simulated (solid line) spectra obtained for a pump power of 20 W and
a fiber length of 120 m. (c) Evolution of the power of the first sideband
(k = 1) versus fiber length obtained from experiments (circles) and
numerical simulations (solid line). Results are from Ref. [17].

The dynamics of the MI process with fiber length was
investigated by cutting back the DOF and recording output
spectra. As an illustration, Fig. 1(c) shows the evolution of
the power of the first sideband (k = 1) versus fiber length
obtained from experiments (circles) and numerical simulations
(solid line). The dynamics observed in both experiments
and simulations exhibits periodic regions of deamplification,
which makes the side lobe power oscillate along the fiber
around the exponential growth (expected for a perfectly
phase-matched process). Such a dynamics is expected from
quasi-phase-matched processes, but it differs from the one
observed in second-order nonlinear crystals in which there
are no regions of deamplification. This particular and unusual
feature will now be studied in detail with the help of a simple
and intuitive analytical model in order to provide further
insight into the underlying physics.

III. ANALYTICAL MODEL

A. Parametric gain calculation

It is well established that the MI process can be interpreted
in the spectral domain as a four-wave mixing (FWM) process
[24,25]. In this frame, the parametric FWM gain spectrum
can be obtained by studying the stability of the steady state

solution against weak perturbations through a so-called linear
stability analysis. In dispersion managed optical systems, this
tool has allowed the analytical prediction of the complex
multi-peak gain spectrum [9,11], but such an analysis does
not provide any clear insight into the dynamics of the process
nor any details about the fine evolution of the field over a
single modulation period of the fiber. To this aim, we propose
here a more intuitive explanation of the results from Ref. [17]
by revisiting a simplified truncated three-wave model usually
aimed at describing Fermi-Pasta-Ulam recurrence and fiber-
optic parametric amplification [26–28]. This model allows one
to account for the relative phase variations between pump,
signal, and idler waves during propagation. In our work, it will
be induced by the longitudinal variations of dispersion rather
than pump depletion. Our starting point is the four coupled
differential equations given by Eqs. (3) in Ref. [27]. We neglect
fiber loss and assume that the pump remains undepleted and
that signal and idler powers Ps and Pi are much less than the
pump power Pp over the whole DOF length. It is then easy to
show that this system reduces to the equations

dPs(�,z)

dz
= 2γPp

√
Ps(�,z)Pi(�,z) sin θ (�,z), (3a)

dPi(�,z)

dz
= 2γPp

√
Pi(�,z)Ps(�,z) sin θ (�,z), (3b)

dθ (�,z)

dz
= �2

[
β2 + βA

2 sin

(
2πz

Z

)]

+ 2γPp{1 + cos[θ (�,z)]}, (3c)

where � is the shift of the signal and idler pulsations from
the pump and θ (�,z) describes the longitudinal evolution of
the relative phase difference between all these waves [27]. The
discrepancy between solutions of Eq. (2) and experimental
or numerical values mentioned in Ref. [17] can now be
understood from Eq. (3c). Indeed, Eq. (2) assumes that the
nonlinear phase mismatch can be approximated by 2γPp

[6,8,9], while Eq. (3c) shows that it is in fact equal to
2γPp{1 + cos[θ (�,z)]}. This does not impact the validity of
the present results since this additional term remains low for the
pump powers involved in the present study. In order to obtain
a simple analytic solution of the set of equations (3), we thus
neglect the last term cos[θ (�,z)] in Eq. (3c). This physically
means that we assume that the longitudinal evolution of the
nonlinear phase mismatch term is weak compared to the linear
and uniform nonlinear phase mismatch terms, which is valid
for low pump powers. By integrating the set of equations (3),
we find that the total accumulated gain of the signal in power
is written as

G(�,z) = Ps(�,z)

Ps(�,0)
= 1

4
[1 − ρ]

+ 1

4
[1 + ρ + 2

√
ρ]exp

[∫ z

0
g(�,z′)dz′

]
, (4)

with ρ = Pi(�,0)/Ps(�,0). In the following, we set ρ = 1 for
the sake of simplicity. In Eq. (4), g(�,z) = 2γPp sin[θ (�,z)]
is the local linear gain. Its calculation requires integrating
Eq. (3c) in order to evaluate θ (�,z), which gives (under our
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assumptions)

θ (�,z) = [β2�
2 + 2γPp]z

+ βA
2 �2

2π/Z
[1 − cos(2πz/Z)] + θ (�,0). (5)

Finally, by using a Fourier series expansion to calculate the
sin[θ (�,z)] term, we find that the local linear gain is written
as

g(�,z) = 2γPp

q=+∞∑
q=−∞

Jq

(
βA

2 �2

2π/Z

)

× sin

[(
β2�

2 + 2γPp − q2π

Z

)
z + Kq

]
, (6)

with Kq = βA
2 �2

2π/Z
− q π

2 + θ (�,0). Thus Eq. (6) indicates that
the linear gain g(�,z) at a fixed pulsation detuning � can
be interpreted as the sum of sine functions in z. These sine
functions all have a zero average value except when their
argument becomes independent of z. It only occurs at specific
spectral components � [equal to the pulsation �k in Eq. (2)]
corresponding to solutions of the quasi-phase-matching re-
lation (2). For these specific pulsation detunings �k , each
term of the sum in Eq. (6) leads to periodic amplification and
deamplification phases along the DOF except for the uniform
contribution corresponding to q = k. This last term therefore
prevails over the other ones on the gain G(�,z) for long enough
propagation distances. Thus the linear gain of the kth spectral
component mainly depends on this uniform term as long as
the fiber exceeds a few modulation periods. It is then equal

to 2γPp|Jk( βA
2 �2

k

2π/Z
)| by choosing Kk = π

2 as initial condition.
Note that this is analogous to the choice of maximizing the gain
in MI in uniform fibers by setting the initial phase mismatch
value to π/2 [27,28].

B. Physical interpretation

To illustrate this process, we first focus on the first spectral
component (k = 1). The solid black line in Fig. 2(a) shows the
evolution of the maximum gain (at � = �simu

max ) obtained from
numerical integration of the complete set of original equations
(3). Note that an excellent agreement is achieved with the
numerical integration of the GNLSE (not shown here for the
sake of clarity). The blue solid line in Fig. 2(a) corresponds
to the term of uniform gain (Bessel function J1), the blue
dotted and dashed lines correspond to the highest amplitude
oscillating terms (Bessel functions J0 and J−1, respectively, in
this case), and the red solid line corresponds to their sum. We
limit our investigations to J0 and J−1 because all other Bessel
functions have much lower contributions in this example.
A good agreement is obtained between the red solid curve
from the analytical model and the black one from numerical
simulations, which confirms the validity of our assumptions
and the accuracy of our method. In each modulation period, the
amplification phase is characterized by 0 < θ (�,z) < π and
the deamplification one has −π < θ (�,z) < 0, as represented
in Fig. 2(b), the total phase shift being equal to 2π per period.

The dynamics of the second spectral component (k = 2)
is shown in Fig. 3. The same reasoning as for the first one
(k = 1) can be applied. The J2 term provides the average

FIG. 2. (Color online) (a) Evolution of the gain of the first
amplified frequency (k = 1) from Eq. (4), with the contri-
bution of J1 + J0 + J−1 (average gain plus oscillating terms)
(solid red line), for J1 only (blue solid line), for J0 only
(blue dotted line), and for J−1 only (blue dashed line) with
�theo

max = 2π × 2.63 × 1012 rad/s [Eq. (2)]. The solid black line
is calculated from the numerical integration of the original set
of equations [Eqs. (3)] with �simu

max = 2π × 2.93 × 1012 rad/s.
(b) Evolution of θ (z) from our analytical study (solid red line) and
from numerical simulations with Eqs. (3) (solid black line). The green
area corresponds to amplification and the red one to deamplification
over one period.

exponential gain (blue solid line) and additional oscillating
terms provide the oscillating behavior of the overall gain.
By taking the five terms with highest amplitude into account
(from k = −2 to 2), good agreement between Eq. (4) and
numerical simulations from Eqs. (3) is achieved. Note that
adding other higher-order terms does not significantly change
the analytical results (displayed as red curves). For the sake
of clarity, only the two highest amplitude terms (J−1 and
J1) are represented in Fig. 3(a) (as dashed and dotted lines,
respectively). In this case, there are two amplification and
deamplification phases per period. The evolution of the phase
represented in Fig. 3(b) also shows a more complex evolution
than for the first (k = 1) sideband and the total phase shift is
now equal to 4π per period. The agreement between numerical
simulations from Eqs. (3) (black lines) and our analytical result
(red lines) is excellent for the evolution of both the gain and the
phase.

Figures 2 and 3 emphasize that the dispersion modulation
enables one to control the evolution of the relative phase of the
waves so that the whole process can be seen as quasi-phase-
matched, the variation of the relative phase over one period
being equal to 2kπ for the kth spectral component. Indeed,
this relative phase θ (�,z) would grow linearly in the absence
of the modulation term (βA

2 = 0) in Eq. (3c) [29]. This linear
growth would lead to amplification and deamplification phases
of the same length and consequently the total accumulated gain
would be negligible.
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FIG. 3. (Color online) (a) Evolution of the gain of the second
amplified frequency (k = 2) from Eq. (4), with the contribution of
J−2 + J−1 + J0 + J1 + J2 (average gain plus oscillating terms) (red
solid line), for J2 only (blue solid line), for J1 only (blue dotted
line), and for J−1 only (blue dashed line) with �theo

max = 2π × 4.49 ×
1012 rad/s [Eq. (2)]. The solid black line is calculated from the
numerical integration of the original set of equations [Eqs. (3)]
with �simu

max = 2π × 4.61 × 1012 rad/s. (b) Evolution of θ (z) from our
analytical study (solid red line) and from numerical simulations with
Eqs. (3) (solid black line). Green areas correspond to amplification
and the red ones to deamplification over one period.

From a more practical point of view, the frequency of the
spectral component �k can be widely modified simply by
changing the periodicity of the grating (as in a diffraction
grating for the position of its different orders), while the gain
(analogous to the diffraction efficiency in a specific order) can
be modulated independently through the ratio βA

2 /β2. Note,
however, that the deamplification phases of the signal along
the fiber cannot be totally avoided, only reduced. This can
be understood either by considering that they are due to the
contribution of all oscillating terms of Eq. (6), which cannot
all be suppressed simultaneously, or by considering that the
dispersion grating enables the evolution of θ (�,z) to deviate
from a linear growth but not to limit its evolution in the [0; π ]
range required for a positive gain [see Eq. (3a)].

IV. EVOLUTION OF THE MI SPECTRUM
WITH AVERAGE DISPERSION

In order to further emphasize the accuracy of our simplified
analytical model, we studied the evolution of the MI spectrum
as a function of the average dispersion value at the pump
frequency in both normal and anomalous dispersion regimes.
We chose the DOF parameters so that they would match
the ones of the fiber used hereafter. We took into account
longitudinal variations of β2 according to Eq. (1) and average
values of γ , β3, and β4 instead of their longitudinal evolution.
We checked numerically that this would have negligible
impact in our conditions. The DOF parameters are βA

2 of
10−27 s2/m, β3 = 6.8 × 10−41 s3/m, β4 = 1.7 × 10−55 s4/m,

FIG. 4. (Color online) Top view of the gain spectrum (on a
logarithmic scale) obtained from (a) and (c) GNLSE simulations and
(b) and (d) our analytical model [Eq. (4)] as a function of the average
second-order dispersion. (a) and (b) correspond to average normal
dispersion pumping and (c) and (d) to anomalous average dispersion
pumping. The zero frequency corresponds to the pump.

and γ = 7 W−1 km−1 at 1064 nm. The DOF is 120 m long
and the modulation period is Z = 10 m. Fiber attenuation and
stimulated Raman scattering are neglected.

We first performed numerical simulations using Eq. (4)
by varying values of β2 from −1.5 to 1.5×10−27 s2/m. The
maps displayed in Figs. 4(a) and 4(c) represent calculated
numerical gain spectra (on a logarithmic scale) for varying
β2 values in normal and anomalous dispersion regions,
respectively. For the sake of clarity, only one half of the
overall spectrum is displayed, the other half being perfectly
symmetric with respect to the pump frequency. In parallel,
we have plotted in Figs. 4(b) and 4(d) the same maps using
the analytical gain expression given by Eq. (4) with the same
parameters as for the numerical simulations. There is a good
qualitative agreement between both graphs, although quan-
titative agreement is not reached due to our approximations
explained above. However, our model allows us to repro-
duce the specific dynamical features observed in numerical
simulations.

First, the detuning of each MI sideband from the pump
decreases as β2 increases, as expected from Eq. (2).

Second, the gain strongly depends on β2, which differs
from classical MI spectrum observed in uniform fibers in
the anomalous dispersion regime, in which the maximal
parametric gain does not depend on β2. Additionally, the
maximal gain does not correspond to the same β2 value for
each MI sideband.

Third, we can identify specific β2 values for which one
or several initially well-defined MI sideband are canceled,
i.e., their parametric gain vanishes. The frequency of canceled
sidebands increases with increasing β2 values for each value
of k. This a priori unexpected cancellation of parametric gain
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is in fact due to vanishing Jk functions in Eq. (6) and will be
detailed in Sec. V A.

V. TAILORING THE MI GAIN SPECTRUM

The simple analytical approach presented in Sec. III and
further confirmed in Sec. IV allows a better understanding
of the complex dynamics of the process and has allowed us
to design experiments in which the multi-peak gain spectrum
is tailored. To illustrate this, we focus our attention here on
two striking examples. We chose either to completely cancel a
given spectral component (as previously mentioned in Sec. IV)
or to maximize the gain of a sideband pair with regard to the
others. To reach these goals, let us recall that, as detailed in
the analytical model above, the linear gain of the kth spectral
component can be approximated by

g(�k,z) = 2γPp

∣∣∣∣Jk

(
βA

2 �2
k

2π/Z

)∣∣∣∣
= 2γPp

∣∣∣∣Jk

[
βA

2

β2

(
k − γPpZ

π

)]∣∣∣∣ . (7)

Equation (7) indicates that the gain of the kth spectral
component can be totally canceled by simply finding the
argument

η = βA
2 �2

k

2π/Z
= βA

2

β2

(
k − γPpZ

π

)

for which the Bessel function Jk vanishes. Here η can be
adjusted by controlling the modulation amplitude of dispersion
βA

2 or the fiber period Z, which both require manufacturing
new DOF samples. However, it can also be adjusted by
controlling the average dispersion at the pump wavelength
β2, which can be done experimentally by simply tuning the
pump wavelength.

A. Cancellation of the spectral component

To illustrate this, we fabricated a new DOF sample, referred
to as DOF2 hereafter. The DOF2 sample is 120 m long and
has an average dispersion β2 of 10−27 s2/m and a modulation
amplitude βA

2 of 10−27 s2/m at 1064 nm; its zero-dispersion
wavelength oscillates between 1064 and 1080 nm. The average
third-order dispersion term is β3 = 6.8 × 10−41 s3/m, the
average nonlinear coefficient is γ = 7 W−1 km−1, and
the attenuation is α = 7.5 dB/km at 1064 nm. To illustrate
the cancellation of parametric gain at specific frequencies, we
choose to cancel, for example, the k = 6 sideband pair. In this
case, we find that J6 vanishes for a β2 of 5.8 × 10−28 s2/m
with the parameters of DOF2 given above and a pump power
of 13 W. Circles in Fig. 5(a) show the gain calculated with
the above model [Eq. (7)] for each spectral component and
for a fiber length of 120 m, while the solid line represents the
output spectrum obtained from a numerical integration of the
GNLSE with a pump power of 13 W. We average 50 output
spectra seeded by random initial conditions to account for the
averaging performed during the experimental recording of a
spectrum. These results confirm the ability of our simplified
model to correctly predict the maximal gain of each sideband
and also show that the k = 6 spectral component is indeed

FIG. 5. (Color online) Illustration of the cancellation of the
k = 6 spectral component. (a) Maximal gain obtained from Eq. (7)
(circles, right axis) and output spectrum simulated with the GNLSE
(solid line, left axis), for β2 = 5.8 × 10−28 s2/m and Pp = 13 W.
(b) Corresponding experiments performed in DOF2 for a pump
wavelength of 1067.5 nm and pump power of 24 W.

canceled. Experiments performed in DOF2 by tuning the
pump wavelength to 1067.5 nm (which is close to the required
β2 value of 5.8 × 10−28 s2/m) are displayed in Fig. 5(b).

The overall shape of the experimental spectrum nicely
matches the one obtained from theory and this measurement
also confirms the cancellation of the sixth peak. In all
experiments presented in this section, the pump power was
the only adjustable parameter. It had to be increased up to
24 W to observe the expected behaviors, which is higher than
the power of 13 W used in simulations and in the model. This
discrepancy in pump power is reasonable given the uncertainty
in the evaluation of fiber properties (attenuation, dispersion,
and nonlinearity) and in the pump laser parameters (repetition
rate, pulse duration, and measurement of average power).

B. Maximization of a single spectral component

In order to further illustrate the possibility of tailoring the
multi-peak MI spectrum, we use Eq. (7) to find a configuration
in which the k = 1 sideband is maximized, i.e., it experiences
a much higher gain than any other sideband. In this case,
we simply need to find a β2 value (and thus a value of
the η parameter), experimentally a pump wavelength, that
maximizes the J1 Bessel function. Figure 6(a) shows the
gain calculated from Eq. (7) as circles, as well as the output
spectrum obtained from numerical integration of the GNLSE
for a β2 value of 3.87 × 10−28 s2/m. These results are again
in excellent agreement and indeed show that the first sidelobe
is favored since it has a 25-dB gain higher than all others.
Experiments were performed by accordingly tuning the pump
wavelength to 1071.5 nm. The output spectrum plotted in
Fig. 6(b) shows that the power of the first sidelobe is 22 dB
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FIG. 6. (Color online) Illustration of the maximization of the
k = 1 spectral component. (a) Maximal gain obtained from Eq. (7)
(circles, right axis) and simulated output spectrum (solid line, left
axis), for β2 = 3.87 × 10−28 s2/m and Pp = 13 W. (b) Corresponding
experiments performed in DOF2 for a pump wavelength of 1071.5 nm
and pump power of 24 W.

higher than other spectral components, in good agreement with
theoretical predictions.

It is also worth noting that in this case, the argument of
the J1 Bessel function has been chosen so that the gain value
of the first sideband calculated from our model corresponds to
exactly the maximum value of 0.582 for J1. This means that the
gain brought by the periodicity for this sideband approximately
equals 0.582 × 2γPp according to Eq. (7). It is less than a
factor of 2 lower than the maximal gain expected from a
classical MI process in the anomalous dispersion region in
uniform fibers (which would be approximately equal to 2γPp).
This observation is all the more important given that no gain is

expected in the normal dispersion region in uniform fibers
(neglecting higher-order dispersion terms and higher-order
fiber modes).

Although the control of the overall MI spectrum shape
requires a change of quasi-phase-matched frequencies, these
examples demonstrate the possibility of harnessing the MI
spectrum thanks to the periodic dispersion landscape. A
simultaneous control of both the spectral shape and sideband
frequencies would still be possible by simultaneously adjusting
β2 and βA

2 , which would, however, require manufacturing new
fibers.

VI. CONCLUSION

Following our experimental demonstration of MI in dis-
persion oscillating fibers [17], here we have investigated this
process theoretically. Starting from the well-known truncated
three-wave model, we have derived an approximate analytical
expression to predict the local parametric gain. This simplified
model gives good agreement with numerical simulations and
experiments. It has also allowed us to interpret the MI process
in terms of a quasi-phase-matching mechanism due to the
periodic nature of the fiber dispersion landscape. We have also
used this model to emphasize the possibility of tailoring the
MI spectrum, which has been confirmed experimentally by the
cancellation or maximization of chosen spectral components.

Dispersion oscillating photonic crystal fibers such as the
ones reported here and in Ref. [17] pave the way for a range
of linear and nonlinear guided wave optical processes due
to the longitudinal periodic modulation of their waveguiding
properties. They should find applications in, for example,
wavelength conversion, parametric amplification, generation
of ultrashort pulse trains, and soliton management.
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