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Quantum storage based on control-field angular scanning
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Continuous change of the propagation direction of a classical control field in the process of its off-resonant
Raman interaction with a weak signal field in a three-level atomic medium is suggested for quantum storage
of a single-photon wave packet. It is shown that due to the phase-matching condition such an angular control
allows one to reversibly map the single-photon wave packet to the Raman spatial coherence grating. Thus,
quantum storage and retrieval can be realized without using inhomogeneous broadening of the atomic transitions
or manipulating the amplitude of the control field. Under some conditions the proposed scheme proves to
be mathematically analogous to the quantum storage scheme based on controlled reversible inhomogeneous
broadening of the atomic states.
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I. INTRODUCTION

Manipulating single-photon states of the electromagnetic
field is an important part of the implementation of various
quantum information protocols. In particular, storage and
retrieval of single-photon wave packets is of great importance.
Optical quantum memory [1–3] is at the heart of linear
optical quantum computing [4] and long-distance quantum
cryptography with quantum repeaters [5]. It also may be useful
for making heralded single-photon sources deterministic [6].
An efficient storage and retrieval of single photons has
been demonstrated recently in gases [7] and rare-earth-ion
doped solids [8] using controlled reversible inhomogeneous
broadening (CRIB) of resonant atomic transitions. Significant
progress has also been achieved in the demonstration of
quantum storage using an atomic frequency comb [9–14],
electromagnetically induced transparency [15–18], and off-
resonance Raman interaction [19,20].

It is usually assumed that to store and recall optical pulses
one needs an inhomogeneous broadened atomic transition
(tailored or controlled) or a modulated control field amplitude
which matches an input pulse (see reviews [1–3] and the
recent experiments mentioned above). In the present work, we
develop another approach which requires neither inhomoge-
neous broadening nor temporal modulation of the control field
amplitude, but resorts to continuous phase-matching control
in an extended resonant medium. We consider off-resonant
Raman interaction of a single-photon wave packet and a
classical control field in a three-level atomic medium. Under
such conditions the phase-matching control can be achieved by
modulating the refractive index of the resonant medium [21]
or by modulating the direction of propagation of the control
field, which is studied in the present work. Another possibility
is to use a frequency chirp of the control field, which requires
synchronous modulation of the atomic transition frequency
in order to keep zero two-photon detuning [22]. In any
case, a continuous change of the wave vector of the control
field during the interaction leads to the mapping of a single
photon state to a superposition of atomic collective excitations
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(spin waves) with different wave vectors and vice versa. In
comparison with [21], where the cavity model of quantum
memory was considered, here we discuss a free-space model.
We show that under some conditions the proposed scheme
proves to be mathematically analogous to the longitudinal
CRIB-based quantum storage, just as a two-level scheme with
refractive index control does [23]. The angular control scheme,
contrary to CRIB, allows one to use materials which cannot be
controlled by external dc electric or magnetic fields. Generally
speaking, the angular control scheme is also much easier
for implementation than the refractive index modulation. The
problem for the latter is that it needs to be achieved without
modulation of atomic levels. It may be done in some specific
materials like Tm:LiNbO3 [23]. But in the general case such
a scenario is rather difficult to implement as it was discussed
in [24].

The paper is organized as follows. In Sec. II, the model
of the quantum memory is presented. In Sec. III, we analyze
the storage and retrieval of single-photon wave packets with
transverse propagation of the control field. In Sec. IV, a more
general situation is considered in the limit of a large Fresnel
number of an interaction volume. In Sec. V, we consider some
implementation issues. Section VI concludes the paper with
final remarks.

II. THE MODEL AND BASIC EQUATIONS

We consider a system of identical three-level atoms inter-
acting with a weak quantum field (single-photon wave packet)
to be stored and with a strong classical control field. The atoms
have a �-type level structure, and the fields are Raman resonant
to the lowest (spin) transition; see Fig. 1(a). We assume that the
atoms are stationarylike impurities embedded into a solid-state
material or cold atoms in an optical lattice. The sample is
approximated by a parallelepiped with cross section Lx × Ly

and length L. The coordinate system is originated at the center
of the medium. The single-photon wave packet is x polarized
and propagates in z direction. It is assumed that the transverse
spatial profile of this quantum field completely goes into the
sample cross section. The control field is supposed to be
polarized along axis y and propagated in any direction in (x,z)
plane. The duration of storage and retrieval processes is equal
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FIG. 1. (Color online) (a) Energy diagram of the Raman interaction in a three-level � system. (b) During storage, the temporal profile of
the signal field is mapped into the spin wave distributed over different spin wave vectors. (c) During forward retrieval, the spin wave profile is
mapped back into the output signal field.

to T . During the storage, t ∈ (−T ,0), the propagation direction
of the control field changes so that at different moments,
the signal field interacts with the control field of different
directions, thus creating coherence between |1〉 and |3〉 (spin
wave) with different spin wave vectors; see Fig. 1(b). During
retrieval, t ∈ (0,T ), the interaction between the spin wave and
the control field reconstructs the signal field, as illustrated in
Fig. 1(c). The storage time between the end of the storage and
the beginning of the retrieval is subjected to a free decay of
the spin wave, which will be neglected throughout this paper.

The signal field corresponding to the single-photon wave
packet of average frequency ωs and wave vector ks is
considered in the paraxial approximation and written as

Es(r,t) = i

n

√
h̄ωs

2ε0c
a(r,t) ei(ksz−ωs t) + H.c., (1)

where n and c are the refractive index and phase velocity of
the quantum field inside the medium, respectively, and a(r,t)

is the slowly varying annihilation operator. Expression (1) is
written in the approximation of the equal phase and group
speeds of light in the medium (see, e.g., [25]) which is made
for simplicity.

The classical control field is supposed to be a monochro-
matic plane wave subjected to a phase modulation due to the
rotation of its wave vector on a small angle. Since most of
the atoms remain in the ground state during the interaction,
we neglect the control field absorption so that the field can be
written as

Ec(r,t) = E0 ei[k̄cr−ωct+φ(r,t)] + c.c. , (2)

where E0 is a constant amplitude of the plane wave, k̄c is an
average wave vector of kc(t) during rotation, and φ(r,t) is a
phase shift due to the rotation, which is specified later in this
section.
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The collective atomic operators are defined as the mean
values of the single-atom operators

σmn(r,t) = 1

N

∑
j

|mj 〉〈nj | δ(3)(r − rj ) , (3)

where N is the atomic number density, which is supposed
to be constant in space, and |nj 〉 is the nth state (n = 1,2,3)
of j th atom with the energy h̄ωn (ω1 = 0 < ω3 < ω2). The
slowly varying amplitude describing coherence on the Raman
transition, s(r,t), is then introduced as

σ13(r,t) = s(r,t) ei(ks−k̄c)r−i(ωs−ωc)t . (4)

Off-resonant Raman interaction is described by the follow-
ing equations:(

∂

∂z
+ 1

c

∂

∂t

)
a(r,t) = i

2ks

	⊥a(r,t) + g∗Ns(r,t) eiφ(r,t) ,

(5)
∂

∂t
s(r,t) = (−γ + iδ) s(r,t) − ga(r,t) e−iφ(r,t) , (6)

where 	⊥ = ∂2

∂x2 + ∂2

∂y2 , g = 1
n

√
ωs

2ε0h̄c
d21�
	

is the coupling

constant between the atoms and the weak quantized field,
� = d32E0/h̄ is the Rabi frequency of the classical control
field, dij is the dipole moment of the transition between |i〉
and |j 〉, 	 = ω2 − ωs is one-photon detuning, γ is the rate
of dephasing of the spin coherence, which in the general case
includes both homogeneous and inhomogeneous broadening
of the Raman transition, and δ is two-photon detuning.
When writing Eqs. (5) and (6), it is assumed that (1) the
time of propagation of photons through the system L/c is
negligibly short compared to the evolution time of the slowly
time-varying envelopes; (2) all the atoms are initially in the
ground state |1〉 and most of them remain in the ground state
so that Langevin noise atomic operators are not included; (3)
the frequency shift |�|2/	 of the Raman transition induced
by the coupling field is taken into account by redefining
field frequency ωc; and (4) the refractive index change of
the medium due to the atoms is incorporated into the value
of n.

It is convenient to expand the slowly varying atomic and
field operators on the transverse mode basis

a(r,t) =
∑
mn

u∗
mn(x,y)amn(z,t) , (7)

s(r,t) =
∑
mn

u∗
mn(x,y)smn(z,t) , (8)

where the transverse mode functions umn(x,y) satisfy the
conditions of completeness and orthogonality:∑

mn

u∗
mn(x,y) umn(x ′,y ′) = δ(x − x ′) δ(y − y ′) , (9)∫∫
dx dy u∗

mn(x,y) um′n′ (x,y) = δmm′ δnn′ . (10)

In what follows, we use the set of paraxial plane waves

umn = 1√
LxLy

e−iqmnρ, (11)

where ρ = (x,y), qmn = (2πm/Lx,2πn/Ly), m,n ∈ Z, and
Lx,Ly are transverse linear sizes of the sample of a rectangular

cross section. This definition corresponds to periodic boundary
conditions in the x,y plane.

In order to write down the equations in the transverse
reciprocal space, the function φ(r,t) needs to be specified.
Let us suppose that the wave vector of the control field is
rotated around some average direction on a small angle so that
the induced phase shift may be considered as a linear function
of the rotation angle. In such a linear regime, we can write

φ(r,t) = βx(x − x0)t + βy(y − y0)t + βz(z − z0)t + φ0(r),

(12)

where βi is the rate of change of the component kc along
ith axis, and the coordinates x0, y0, z0 correspond to a
phase stationary point where the phase φ(t) of the control
field remains constant during the rotation. φ0(r) is a time-
independent phase factor which can be incorporated into s(r,t).

In addition, we extract factors describing the phase due to
transverse momentum by introducing new variables

Amn(z,t) = amn(z,t)wmn(z) , (13)

Smn(z,t) = smn(z,t)wmn(z) , (14)

where wmn(z) = exp[i q2
mn

2ks
(z − zw)], and zw corresponds to the

position of the beam waist. Then the set of Eqs. (5) and (6) in
the reciprocal space take the form(

∂

∂z
+ 1

c

∂

∂t

)
Amn(z,t) = g∗N

∑
m′n′

Sm′n′ (z,t) B+
m′n′,mn(z,t) ,

(15)
∂

∂t
Smn(z,t) = (−γ + iδ)Smn(z,t)

− g
∑
m′n′

Am′n′(z,t) B−
m′n′,mn(z,t) , (16)

where

B±
m′n′,mn(z,t) = sinc

[
(±βxt + qm′n′,x − qmn,x)Lx

2

]

× sinc

[
(±βyt + qm′n′,y − qmn,y)Ly

2

]
×w∗

m′n′ (z) wmn(z) e±i(βzz−βzz0−βxx0−βyy0)t .

(17)

Without rotating the control field the factors B±
m′n′,mn(z,t)

become identity matrices, and each transverse mode can
be considered independently in the framework of a one-
dimensional model. However, even in the case of a rotating
control field, the decoupling is also possible if βxt and βyt

remain small with respect to the interval between the modes
2π/Lx and 2π/Ly , respectively, while βzt being larger than
2π/L. In such a case, different Fourier transverse modes evolve
independently of each other. The quantum storage can then
be considered in a single-mode approximation, which is the
subject of Sec. III. Another simplification is possible in the
limit of a large Fresnel number F of the excitation volume.
In this situation, diffraction spreading may be neglected, and
Eqs. (5) and (6) allow one to consider each point (x,y)
independently. Such a geometrical optics approximation is
considered in Sec. IV. Regarding the excitation geometry, it
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should be noted that βxx0 + βyy0 + βzz0 becomes zero when
average control wave vector k̄c is directed from the stationary
phase point (x0,y0,z0) to the center of the sample. We will see
in Sec. IV that this is the most convenient excitation geometry,
which needs a zero two-photon detuning δ and requires no
manipulation with δ during storage and retrieval.

The main figures of merit that should be calculated for the
quantum storage are total efficiency η and fidelity F . Since the
input and output faces of the sample are located at the points
z = −L/2 and z = L/2, respectively, the input and output
single-photon wave packets are described by the operators
Amn,in(t) = Amn(−L/2,t) and Amn,out(t) = Amn(L/2,t). The
total efficiency is defined as

η = Nout

Nin
, (18)

where

Nin =
∑
mn

∫ 0

−∞
dt〈A†

mn,in(t)Amn,in(t)〉 , (19)

Nout =
∑
mn

∫ ∞

0
dt〈A†

mn,out(t)Amn,out(t)〉 , (20)

since we assume that the storage process terminates at the
moment t = 0, while retrieval process begins at this moment
of time.

For the time-reversed output pulse the fidelity is usually
defined as

F = ηF ′ , (21)

where

F ′ =
∣∣ ∑

mn

∫ ∞
0 dt〈A†

mn,out(t)Amn,in(t̄ − t)〉∣∣2

NinNout
(22)

is a measure of pulse preservation independent of the
total efficiency, and t̄ is the delay that maximizes F ′.
In what follows, it is the latter quantity F ′ that is used
for characterizing quantum storage together with the effi-
ciency. The definitions of η and F ′ can also be done in
a similar way in terms of the spatial variables ain(r,t) and
aout(r,t). In real space Nin = ∫

d2ρ
∫ 0
−∞ dt 〈a†

in(ρ,t)ain(ρ,t)〉,
and Nout = ∫ ∞

0 dt
∫

d2ρ 〈a†
out(ρ,t)aout(ρ,t)〉, while F ′ =

1
NinNout

| ∫ ∞
0 dt

∫
d2ρ 〈a†

in(t̄ − t)aout(ρ,t)〉|2.

III. SINGLE-MODE APPROXIMATION

For simplicity, we assume in what follows that the wave
vector of the control field is rotated in (x,z) plane around
an average polar angle θ0, as shown in Fig. 2, so that
k̄c = kc sin θ0x + kc cos θ0z, where kc = ωc

c
. This also ensures

that the control field polarization is unchanged during the
interaction. In this case, we have βx = β cos θ0, βy = 0,
and βz = −β sin θ0. The total angle of rotation 2	θ during
the storage or retrieval process is 2	θ = βT/kc = βT λc/

2π 	 1.
Now we consider the case when the control field propa-

gates perpendicular to the signal field, i.e., θ0 = π/2, which
corresponds to a transverse control field. Retrieval is done in a
forward way. The transverse size of our sample is assumed to
be smaller than the sample length. In this case, as pointed out
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FIG. 2. (Color online) Diagram of the signal wave vector, control
wave vector, and spin wave vector for (a) forward retrieval and
(b) backward retrieval. A writing control wave vector changes
direction from kc(t1) to kc(t2). For t1 = −T , t2 = 0, the control wave
vector sweeps an angle 2	θ around an average polar angle θ0. When
a reading control field is applied at time t ′, the retrieved signal field
spreads over an angle ϕ. In backward retrieval, the spin waves need
to be flipped to their conjugated components in the time interval
between the end of the storage and the beginning of the retrieval.

in Sec. II, it is possible to switch between different longitudinal
modes without switching between transverse modes when
rotating the control field. The angle of rotation 	θ should
satisfy the following condition in order to stay within a single

transverse mode: 	θ <

√
2T
	t

λc

Lx
, where 	t is the duration

of the signal pulse. In such a case, Eqs. (15) and (16) are
decoupled, and wmn gives only a diffraction effect for each of
the transverse modes of the signal field. Thus it is sufficient
to consider the evolution of a single mode. Let us define
S

′
mn = Smne

iβz(z−z0)t and go to comoving frame τ = t − z/c.
Since βx = 0 and βz = −β, from Eqs. (15) and (16) we have

∂

∂z
Amn(z,τ ) = g∗NS

′
mn(z,τ ) , (23)

∂

∂τ
S

′
mn(z,τ ) = [−γ + iδ − iβ(z − z0)]S

′
mn(z,τ ) − gAmn(z,τ ).

(24)

Then one recognizes that in such a regime, equations de-
scribing the system are the same as those for a longitudinal
CRIB scheme (which is also referred to as a gradient echo
memory scheme) [26]. In a longitudinal CRIB scheme, a space
dependent absorption line along the medium is created. While
the signal field propagates through the medium, different
frequency components get absorbed by different absorption

013811-4



QUANTUM STORAGE BASED ON CONTROL-FIELD . . . PHYSICAL REVIEW A 87, 013811 (2013)

lines at different longitudinal positions, resulting in a space
dependent coherence in the sample. During retrieval, such
coherence is mapped back onto the output signal. We can
understand our scheme in exactly the same way: Since the
rotation of the control field yields a factor eiφ(r,t) = eiβzt(z−z0),
thus on the one hand, there is a time dependent wave vector
βt which is responsible for the writing of the spin waves
with different wave vectors and the recording of the temporal
profile of the signal field. On the other hand, this term can
be viewed as a space dependent absorption line at frequency
βz, which absorbs different frequency components of the
signal at different positions of the medium. The medium
opens an absorption window of width βL [Fig. 1(a)] along the
longitudinal direction. The absorption of the central frequency
of the signal field happens at zp = z0 + δ/β. It is necessary
for zp to be inside the medium, and better at the middle of the
sample. This means that if z0 = 0, i.e., the longitudinal position
of the phase stationary point of the control field corresponds
to the center of the sample, then the two-photon detuning δ

should be equal to zero. Otherwise, one can take advantage
of the two-photon detuning to shift the phase stationary point
longitudinally to the medium center. Although the equations
of motion can be reduced to the same as those of a CRIB, the
underlying physics of our scheme is quite different. Instead of
controlling inhomogeneous broadening, we realize quantum
storage by continuously creating spin wave vectors of different
values to record the temporal information of the incoming
single-photon wave packet. In other words, we achieve the
same storage effect as in a CRIB via a specific phase control
of the control field which results in the same effect as the
spatially dependent frequency control of the atomic levels.

In order to have good storage efficiency, the absorption
window width βL should cover the input pulse spectrum
width: βL > 2π/	t . So

2	θ >
T

	t

λc

L
. (25)

This condition is the same as that which resulted from
switching between different longitudinal modes during the
storage of the signal pulse. On the other hand, it is known
that the “optical density” for each spectral component of the
signal field in Fourier space for a longitudinal CRIB [27] is
2π |g|2 N/β. This quantity needs to be larger than unity, so

2	θ < T λc |g|2 N . (26)

Thus one needs to keep a balance between the absorption
window width and the optical density. The bigger β is, the
wider the absorption window opens while the smaller the
optical density becomes, and vice versa. Besides, we choose
the parameters to avoid a significant storage phase factor [27]
throughout the paper. The retrieval of the signal is done by
switching the sign of β (and the sign of δ, if a nonvanishing
δ is used to shift the absorption center), corresponding to a
reversal scan of the control field. The retrieval field experiences
a phase modulation [28], which can strongly decrease the
fidelity defined as (22), and has to be taken into account
beyond conditions (25) and (26). The performance of the
storage and retrieval is then equivalent to that of a longitudinal
CRIB, which has been well studied and understood in many
papers [28–31]. However, it is worth noting that a retrieval

signal can also be generated without switching the scanning
direction of the control field (thus the sign of β), as opposed
to a longitudinal CRIB scheme. Yet in this paper, we always
perform a reversal scan during retrieval.

We note here that Eqs. (23) and (24) with z0 = −L/2 are
also the equations describing a quantum memory scheme via
refractive index control [21] in free space, for which the above
discussions are applicable. In this case, a nonvanishing two-
photon detuning δ = βL/2 is required to shift the position of
the absorption line of the central frequency of the signal field
to the center of the medium.

IV. GEOMETRICAL OPTICS APPROXIMATION

In the previous section, we considered a special case
when the propagation directions of the signal and the control
fields were perpendicular to each other. This allowed us to
decouple equations in the reciprocal space and made use
of a single-mode approximation. However, the transverse
excitation required more power because of the large control
beam cross section. In this section we consider a control field
propagating at an arbitrary angle with respect to the z axis.
But we make use another approximation when the Fresnel
number F of the interaction volume is much bigger than unity.
Then the second order transverse derivative in Eqs. (5) can be
dropped so that each point in the transverse plane (x,y) can
be considered independently. The present case corresponds to
geometrical optics when the signal field is described as a series
of rays propagating along the axis z. The transverse profile of
the signal field is assumed to be smooth enough and treated as
featurelessness within each of the Fresnel zones.

In the reciprocal space, the second order transverse deriva-
tive term i

2ks
	⊥a(r,t) gives −iq2

mn/(2ks)amn(z,t). This term
describes a phase shift due to a transverse momentum, which
can be ignored when q2

mn/ks 	 π . The latter corresponds to
a very directional propagation of the signal field when the
Fresnel number of the interaction volume is large. However,
when the control field is rotated and different spin waves are
created in the medium during the Raman interaction, the signal
beam can be subject to spreading in the transverse direction
due to the scattering of the control field on the spin waves
with different wave vectors. Therefore, in order to neglect
the transverse derivative in the equations, we need not only
a large Fresnel number of the interaction volume, but also
a sufficiently small angle of the control field rotation 	θ .
The upper limit of 	θ can be estimated in the following
way. Consider the interaction between the signal field of
wave vector ks and the control field of wave vector kc(t)
(Fig. 2). While kc changes from kc(t1) (at an angle θ0 − 	θ )
to kc(t2) (at an angle θ0 + 	θ ), it continuously creates a
set of spin wave vectors ks − kc(t) depicted in Fig. 2. As
a result the signal wave vector can spread over an angle ϕ.
For ks ≈ kc, 	θ 	 1, one can estimate ϕ < 2	θ . We need
(	q2

x + 	q2
y )L/(2ks) 	 π . Since 	qx ∼ ks sin ϕ � 2	θks ,

	qy = 0, we arrive eventually at the following limit: 	θ 	
	θmax = 1

2

√
λs

L
≈ 1

2

√
Fθd , where θd is the diffraction angle.

It should be noted that this inequality can be considered as just
a sufficient condition for neglecting second derivatives and a
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geometrical optics approximation, but not necessarily for the
considered quantum storage protocol.

Now, by defining a new variable s ′(r,t) =
s(r,t)ei[βx (x−x0)t+βz(z−z0)t], we have the following equations in
the comoving frame:

∂

∂z
a(r,τ ) = g∗Ns ′(r,τ ) , (27)

∂

∂τ
s ′(r,τ ) = {−γ + iδ + i[β cos θ0(x − x0)

−β sin θ0(z − z0)]}s ′(r,τ ) − ga(r,τ ) . (28)

Taking the same argument as in Sec. III, we arrive at the
following condition for efficient quantum storage:

T

	t

λc

L
< 2	θ sin θ0 < T λc|g|2N. (29)

Beyond this, we need to confine the value of the average polar
angle θ0. The central absorption line appears at the position
zp = δ

β sin θ0
+ z0 + cot θ0 (x − x0). zp should be inside the

medium, so

−L/2 < zp < L/2. (30)

Again, one can engineer the control field to make the location
of the phase stationary point (x0,z0) = (0,0) and set the two-
photon detuning δ = 0. However, this condition can be relaxed
in a way that the frequency shift introduced by z0 is canceled
by the shift introduced by x0 and δ, namely, z0 − x0 cot θ0 +
δ/ (β sin θ0) = 0. So the phase stationary point does not need
to be exactly at the center of the sample, but may be situated
anywhere on the line

x0 = z0 tan θ0 + δ/ (β cos θ0) . (31)

When δ = 0, this is just the bisector of the rotation. If there
exists any difficulty in putting (x0,z0) on the bisector, a non-
vanishing δ can be used to shift the position of the absorption
lines. In the following we will assume this condition is fulfilled.
Then (30) gives −L/2 < x cot θ0 < L/2. Replacing x by the
radius of the excitation volume R, we have |cot θ0| < L

2R
.

Define geometry angle θg = arctan 2R
L

; then the condition of
the average polar angle θ0 can be written as

θ0 > θg = arctan
2R

L
. (32)

If (31) is not fulfilled, the angle θ0 needs to be even bigger.
Since θg ≈ Fθd and 	θmax ≈ 1

2

√
Fθd , for the Fresnel number

F  1, condition (32) automatically ensures that θ0  	θ ,
which is the condition we have been using throughout this
paper.

A. Forward retrieval

Under the condition (31), the Eqs. (27) and (28) become
∂

∂z
a(r,τ ) = g∗Ns ′(r,τ ) , (33)

∂

∂τ
s ′(r,τ ) = [−γ + iβ(x cos θ0 − z sin θ0)]s ′(r,τ ) − ga(r,τ ) .

(34)

The term βx cos θ0s
′(r,t) has no positive contribution to the

storage and retrieval of the signal field. It appears as a side

effect due to the change of kc on the transverse direction. For
forward retrieval, this term could introduce some transverse
profile to the retrieved signal. This transverse profile reveals
itself as a transversal space dependent time shift (ahead or
behind) of the forward retrieved signal, as seen in Fig. 3(d).
The reason for the time delay is as follows: the signal field in
the medium excites a spin wave and evolves in the form of
polariton, which is the combination of the signal field and the
excited spin wave [29]. The polariton, after storage, freezes
inside the medium at the position of central absorption line
zp = x cot θ0. It is now clear that the condition (30) is to place
the polariton just inside the medium. Otherwise if no polariton
is created, the signal field can not be stored. During forward
retrieval, the control field picks up the polariton at zp and
generates a retrieval signal at z = L/2. So the group velocity
of the signal field reduces from c to 0 while z = −L/2 → zp,
and recovers from 0 to c while z = zp → L/2. As a result it
is obvious that if zp is not exactly equal to 0, there must be a
time shift going along with the forward retrieved signal. This
time shift is avoided in the case of θ0 = π/2 because there zp is
independent of x (transversely homogeneous). Even if zp is not
exactly equal to 0, there would be only a time shift as a whole
for the recalled signal. However, for θ0 �= π/2, at x �= 0 this
time shift is unavoidable for forward retrieval, and moreover, it

FIG. 3. (Color online) Forward retrieval fields for (a), (c) θ0 =
π/2 and (b), (d) θ0 = π/9. (e) shows the signal field to be stored.
The vertical axis x/(Lx/2) is the transverse dimension of the sample
normalized by the half transverse size Lx/2; the horizontal axis τ/T

is the local time normalized by the duration of the storage(retrieval)
process T . The color indicates the signal field amplitude. (a),
(b) Retrieval fields for constant 	θ . The field is distorted for small
θ0 because (1) the absolute value of βz = −β sin θ0 becomes smaller
such that it approaches the lower limit of (29); and (2) βx = β cos θ0

becomes large enough to lead a spacial-temporal distortion. (c),
(d) Retrieval fields for constant 	θ sin θ0. There is trans-
verse distortion of the retrieval field due to the nonva-
nishing βx . The figures are generated under the follow-
ing parameters: λs ≈ λc = 1550 nm (fiber-optic communication
band), |g|2N = 8.3 × 1010/(sm), 	t/T = 1/20, T = 1000 ns,
2R/Lx = 1/6, where R is considered to be the transverse spatial half-
width of the input signal, Lx = 0.6 cm, L = 1 cm, 	θ = 8 × 10−3 rad
in (a) and (b), =8 × 10−3/ sin θ0 rad in (c) and (d).
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FIG. 4. (Color online) Forward retrieval efficiency η and fidelity
F ′ vs the average polar angle θ0. (a) Efficiency and (b) fidelity for
forward retrieval with 	θ kept as constant. (c) Efficiency and (d)
fidelity for forward retrieval with 	θ sin θ0 kept as constant. The
parameters are the same as described in Fig. 3.

must introduce a transverse distortion of the signal. For zp not
deviating much from 0 and 4c|g|2N/(β2L2 sin2 θ0)  1, the
group velocity of the signal field near the ends of the medium is
[28] vg(z)||z±L/2|	L/2 ∼ β2(z − zp)2/(|g|2N ). Since the delay
is due to the propagation between z = L/2 + 2zp and z =
L/2, from dz = vg(z)dt , the delay time can be estimated as

td ∼ |g|2N
β2 sin2 θ0

(
1

L/2 + zp

− 1

L/2 − zp

)
. (35)

Taking zp = ±R cot θ0, one estimates the temporal broadening
of the forward retrieved signal with respect to the input signal
as

	tbr ∼ |g|2N
β2 sin2 θ0

4R cot θ0

(L/2)2 − R2 cot2 θ0
, (36)

which is finite and positive considering the condition (32).
Figure 4 shows how the efficiency and fidelity depend on

θ0. Although a smaller θ0 requires less control field power,
it gives less fidelity due to the transversal distortion for a
given 	θ . Alternatively, it is necessary to increase 	θ when
θ0 approaches θg from above, in order to maintain a high
fidelity of quantum storage, as shown in Figs. 4(c) and 4(d).

B. Backward retrieval

In the case of forward retrieval, the above transverse
distortion decreases the fidelity of the quantum storage when
the average polar angle θ0 becomes small. This can be
avoided in backward retrieval, wherein the time shift at each
transverse point is exactly compensated for during backward
propagation. As a result, the fidelity remains high for all
average angles θ0 of interest. However, due to the phase-
matching condition, it is not enough to merely switch the
propagation direction of the control field to the opposite.
In general, it requires phase conjugation of the spin waves.
Under the considered geometrical optics approximation, it is
sufficient to flip the direction of the spin wave vector along

direction K = ks − kc(t = 0) before the retrieval. This can be
done by applying two non-collinearly-propagating π pulses,
one followed by another [32,33], both on resonance with level
|3〉 and another energy level, say, |4〉. The transition frequency
ω34 needs to be bigger than c|K|. The directions of the two
π pulses are arranged in such a way that the wave vectors
difference between them is along −K. Another possibility is
to generate spin wave vectors perpendicular to the signal wave
vector [34]. In this case, kc and ks need to differ from each
other significantly.

In the case of backward retrieval, the input signal enters at
z = −L/2 and creates polariton at z = zp, while the retrieved
signal starts from z = zp and emits at z = −L/2. As a result,
there is no delay of the output field for any value of zp ∈
(−L/2,L/2).

Generally speaking, in either forward or backward retrieval,
the scanning of the control field can be implemented in
different ways. The control of the scanning order and scanning
rates offers the possibility of the manipulation of the retrieval
pulses, for instance, recalling different temporal parts of the
input pulses in different orders. Such a manipulation in the
angular-time domain may be thought of as counterpart of that
in the frequency-spatial domain using a CRIB [35].

V. IMPLEMENTATION ISSUES

Let us discuss possible experimental conditions under
which the storage and retrieval of weak optical pulses via
angular scanning of the control field is possible.

In Figs. 3 and 4 we demonstrate the performance of our
quantum memory scheme with a signal field frequency around
a fiber-optic communication band. Yet experimentally it is
preferable to store and recall the signal field with a small total
angle of rotation 2	θ and a rotation rate 2	θ/T . If we take
λs ≈ λc = 700 nm, according to the numerical simulations, a
single Gaussian pulse of duration 	t = T/20 with T = 500 ns
can be stored and recalled with high efficiency and fidelity
using a transverse control field if the angle of rotation is of the
order of 10λ/L, which gives 	θ/T ∼ 103 rad/s for L = 1 cm.
Such a rate of beam deviation can be achieved by commercial
equipment. Regarding promising storage materials, two points
must be kept in mind in the context of the present scheme: (1)
off-resonant Raman interaction needs systems with relatively
strong optical transitions, especially in the case of a transverse
control field; and (2) exploiting coherent spatial grating
needs atoms to be stationary in space. From this point of
view, a system of cold atoms trapped in an optical lattice
seems to be one of the promising candidates [36,37]. The
influence of regular atomic structure on the efficiency of a
quantum memory in such a system was analyzed recently
in [38]. We note only that the maximum length of the
wave vector of a spin wave created via noncollinear Raman
interaction is limited by the minimum interatomic distance,
which means that a blue detuned optical lattice should be used
for the case of a transverse control field. Another promising
material is an ensemble of defect centers in diamond such
as nitrogen-vacancy centers [39,40]. The existence of �-type
optical transitions in such a system was demonstrated via
electromagnetically induced transparency [41] and coherent
population trapping [42]. The effect of the inhomogeneous
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broadening of the Raman transition may be removed through
the use of a spin-echo pulse sequence, and long dephasing
times are achieved by dynamic decoupling of spin qubits
from their local environment [43–45]. Moreover, the transfer
of quantum states between the electron spins and nuclear
spins is possible [46], which in combination with dissipative
decoupling schemes allows long-lived quantum storage [47].

VI. CONCLUSION

We propose a method to store and retrieve weak pulses such
as single-photon wave packets based on an off-resonant Raman
interaction. By changing the propagation direction of the
strong classical control field, the temporal profile of the signal
field is mapped into the spatial grating of Raman coherence.
If the wave vector of the control field is perpendicular to that
of the signal field, the quantum storage can be described in
a single-mode approximation so that the proposed scheme
proves to be equivalent to a longitudinal CRIB scheme. When

the control field approaches a longitudinal one, in the case
of forward retrieval there may be additional spatial-temporal
distortion of the output field with respect to the input signal
due to the change of the control wave vector on the transverse
direction. Such distortion can be avoided in backward retrieval.
The proposed scheme has the advantage of a longitudinal
CRIB in that high efficiency can be achieved without backward
retrieval. Besides unlike a CRIB, this scheme does not require
a direct control of atomic levels, thus potentially reducing
decoherence in the system. The scheme can be implemented
in resonant media which do not demonstrate linear Stark or
Zeeman effects and allows one to combine Raman-interaction-
based and CRIB-based approaches solely in the framework of
the former.
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