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Trace distance and scaling behavior of a coupled cavity lattice at finite temperature
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We use an alternative approach to study the quantum phase transition in a coupled cavity lattice at finite
temperature. As an illustrative example, we investigate the behaviors of the trace distance and quantum phase
transition in a Jaynes-Cummings lattice at finite temperature. It is found that the trace distance can be used to
describe the critical point of the quantum phase transition at finite low temperatures and the critical points are
sensitive to the atom-field interaction strength and the detuning factor. For nonequilibrium states, we demonstrate
that the time evolution of the trace distance’s maximum value is also a good indicator of the critical points.
Moreover, we show that the scaling behavior of the derivative of the trace distance at the critical points and the
scaling rule are dependent on the external parameters of the Hamiltonian.
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I. INTRODUCTION

Quantum phase transitions (QPTs) have been a hot topic in
condensed-matter physics over the years [1,2]. The existence
of a QPT strongly influences the behavior of many-body
systems near the critical point associated with the divergence
of the correlation length of two-point correlation functions
and the vanishing of the gap in the exciton spectrum. QPTs,
which happen at very low temperature and are driven by
pure quantum fluctuations, are a qualitative change in the
ground-state properties of a quantum many-body system as
some external parameters of the Hamiltonian are varied.

Recently, the Jaynes-Cummings-Hubbard (JCH) lattice [3]
has been shown to display the quantum phase transition
phenomenon [3–8] within the mean-field theory framework
and verified by Monte Carlo simulations [9,10]. For large
numbers of coupled cavity QED systems, it should be possible
to observe many-body effects such as the quantum phase
transition. A strong-coupling theory for the JCH lattice has also
been developed [11]. The QPT of the JCH lattice is analogous
to the insulator-superfluid transition of the Bose-Hubbard
model, which has been theoretically and experimentally
demonstrated to be realizable in cold-atom optical lattices
[12,13]. The advantage of a coupled cavity system is that
each lattice can be easily addressed and the system param-
eters can be readily controlled because of their mesoscopic
size. Experimentally, the JCH lattice is much easier to realize
and more controllable than strongly correlated systems at the
level of each individual element, and is still able to simulate
the behavior of such systems [4], and can be realized using
superconducting circuits [14].

On the other hand, the trace distance [15,16] has been shown
to serve as a measure for the distinguishability of quantum
states as well as the non-Markovianity of quantum processes
[17,18] and the witness for initial system-environment corre-
lations in open-system dynamics [19,20]. Moreover, the trace
distance can be experimentally obtained using technologies
such as quantum-state tomography [15]. The trace distance
between any two states is a direct measure of how far apart
the two states are in the state space. Therefore, the trace
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distance between a state and its factorized state, defined as the
tensor product of the system state and the environment state,
can serve as a measure of inseparability or the correlation
between the environment and system [20]. This approach,
which compares a state and its factorized state, is different from
the fidelity approach, which compares two ground states whose
Hamiltonian parameters are slightly varied. In this paper,
we extend the ground states to Gibbs states and investigate
the behavior of the trace distance and QPT of the JCH lattice
at finite temperatures. The system is defined to be all of the
atoms and the environment is defined to be all of the field
modes in our coupled Jaynes-Cummings lattice. Therefore,
the trace distance between the finite-temperature Gibbs initial
equilibrium state and the factorized state, defined as the tensor
product of the system state and the environment state, is a
measure of the correlation between all of the atoms and all of
the field modes. At the critical points of the quantum phase
transition, the structure of the ground state undergoes a radical
change. Just like the fidelity approach captures this radical
change by calculating the inner product of two ground or
Gibbs states whose Hamiltonian parameters are slightly varied,
we expect the trace-distance measure to be able to pinpoint
the critical points of the quantum phase transition, and our
approach is better suited for interacting atom-field systems.
By making use of the analytical solution to the JCH lattice of
arbitrary size N , we calculate the trace distance between the
Gibbs state and the product of its marginal states. At the critical
points of the quantum phase transition, which are determined
by the ground-state energy-level crossing, the trace distance
shows a sudden jump at finite temperature, which means that
the trace distance can be used to describe the critical points of
the QPT. The critical points are found to be dependent on the
atom-field interaction strength and the detuning factor, from
which we can obtain a phase diagram of the system. Moreover,
nonequilibrium states are also taken into consideration, and
it is found that the time evolution of the trace distance’s
maximum value is also a good indicator of the critical points.
Finally, the scaling behavior of the system is found to exist for
the first derivative of the trace distance at the critical points,
and the scaling rule is shown to be dependent on the system
parameters. This paper is organized as follows. In Sec. II,
we give the energy spectrum and phase diagram of the JCH
lattice. The trace distance and the QPT behavior of the JCH
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FIG. 1. Schematic diagram of the system studied in this paper.
Each cavity is modeled by the Jaynes-Cummings Hamiltonian and
only nearest-neighbor photon hopping is allowed.

lattice are explored in Sec. III. The trace distance of the Gibbs
equilibrium states for nonequilibrium time evolution is also
studied. In Sec. IV, the scaling behavior of the JCH lattice is
investigated. A conclusion of the paper is given in Sec. V.

II. ENERGY SPECTRUM AND PHASE DIAGRAM
OF THE JCH LATTICE

The JCH lattice describes a system of N low-loss cavities
that are coupled together, which allows nearest-neighbor
photon hopping. Each low-loss cavity is modeled by the
Jaynes-Cummings Hamiltonian [21], which sustains a single-
mode field ωf and contains a two-level atom of Bohr frequency
ωa that couples to the field mode at rate g (see Fig. 1). The full
Hamiltonian reads

H =
N∑

j=1

H
j

JC + Hint,

where H
j

JC is the Hamiltonian describing the j th JC cavity of
the form

H
j

JC = ωaσ
+
j σ−

j + ωf b
†
j bj + g(σ+

j bj + σ−
j b

†
j ), (1)

and σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and lowering
operators, respectively, of the atom, b† and b are the creation
and annihilation operators, respectively, of the field mode, and
the interaction Hamiltonian is of the form Hint = −κ(b†j+1bj +
H.c.). The Hamiltonian can be written in a decoupled form
using the Fourier transform. We can express the free-field
Hamiltonian Hfree = ωf b

†
j bj − κ(b†j+1bj + H.c.) in terms of

normal modes as [22–24]

Hfree =
∑

k

ωkα
†
kαk, (2)

where

k = 2πm

N + 1
(m = 1, . . . ,N),

ωk = ωf + 2κ cos
k

2
,

αk =
√

2

N + 1

N∑
i=1

sin

(
k

2
i

)
bi.

Since the atom-photon interaction strengths g, the cavity-mode
frequency ωf and the atomic frequency ωa are uniform through
the cavity lattices, we can rewrite the Hamiltonian in terms of
N decoupled effective JC models as

H (ωk,ωa,g) =
∑

k

[ωkα
†
kαk + ωas

†
ksk + g(α†

ksk + s
†
kαk)],

(3)

FIG. 2. (Color online) Phase diagram of the JCH lattice. At
absolute zero temperature, the ground-state level crossing happens
whenever the condition in Eq. (6) is met, which is defined to be the
critical points of the QPT. In the phase diagram, the critical points lie
on the dashed black line, and each phase has a distinctive ground-state
wave function associated with it.

where sk and s
†
k are the atomic lowering and raising operators,

respectively, after a similar transform. The Hamiltonian now
takes the form of N uncoupled JC cavities with different,
specific field mode frequencies. For the kth effective JC cavity,
the eigenvectors, in the basis {|atom,field〉k}, are given by

|ϕ+
n (k)〉 = an(k)|1,n − 1〉k + bn(k)|0,n〉k,

|ϕ−
n (k)〉 = −bn(k)|1,n − 1〉k + an(k)|0,n〉k,

|ϕ−
0 (k)〉 = |0,0〉k,

with

an(k) =
√

�n(k) + 	k

2�n(k)
, bn(k) =

√
�n(k) − 	k

2�n(k)
, (4)

where �n(k) =
√
	2

k + 4g2n and 	k = ωa − ωk is the detuning
of the kth effective cavity. The corresponding energy levels are
given by

E±
n (k) = nωk + 	k

2
± �n(k)

2
, E−

0 (k) = 0. (5)

Each ground-state level crossing happens when the two
smallest eigenenergies E−

n (k) coincide. In Fig. 2, we display
the phase diagram of the JCH lattice at zero temperature. For
simplicity, we choose the parameters ωf /κ = 3 and 	f /κ ∈
[0,3] and N = 5. The ground-state crossing of three lowest-
lying energy levels happens when

g(1)
c

/
κ =

√
ω2

f

κ2
+ ωf

κ

	f

κ
+ 2

(
	f

κ
+ ωf

κ

)
cos

[
5π

6

]
,

or,

g(2)
c

/
κ =

√
ω2

f

κ2
+ ωf

κ

	f

κ
+ 2

(
	f

κ
+ ωf

κ

)
cos

[
4π

6

]
,

(6)

which are the critical points of the quantum phase transition,
and they divide the parameter space into three parts, which
we plot as the dashed black lines in the phase diagram shown
by Fig. 2. One of the advantages of our approach is that we
do not require prior knowledge of the order parameters or the
pattern of the symmetry breaking to study the quantum phase
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transition phenomenon. The different phases are represented
in terms of different ground states, where each region in the
phase diagram has its own ground-state wave function, and the
quantum phase transition happens when the system parameter
changes from one region to another. Because of this ground-
state crossover, it is expected that the structure of the ground
state undergoes a radical change when the quantum phase
transition takes place. In order to compare our results with the
fidelity approach, we explore the inner product or fidelity [25]
of two ground states with slightly varied parameters and find
that it suffers a sudden drop at the critical points of the QPT.
We also calculate the fidelity at finite temperature. The ground-
state wave function is then replaced by the Gibbs equilibrium-
state density operator, which reduces to the ground state at
absolute zero temperature. The fidelity of any two density
operators ρ, σ is given by F (ρ,σ ) = Tr[

√
σ 1/2ρσ 1/2]. The

Gibbs state of the JCH lattice can be written as a function of
the coupling strength g. Taking

ρ = exp[−βH (ωk,ωa,g)]/Zρ,

where

Zρ = Tr{exp[−βH (ωk,ωa,g)]},
and taking

σ = exp[−βH (ωk,ωa,g + δg)]/Zσ ,

where

Zσ = Tr{exp[−βH (ωk,ωa,g + δg)]},
in which the inverse temperature β = 1/kbT and kb is
the Boltzmann constant, we plot the fidelity, in Fig. 3, at
near zero temperature with β = 100 and δg = 0.01. It can
be readily seen that along the critical points, the fidelity
displays a sudden drop, which agrees exactly with the phase
diagram we obtained. The Gibbs state’s fidelity also has
a strong dependence on temperature. Choosing the inverse
temperatures β = 20, 40, and 60, we plot the fidelity in Fig. 4.
We can see from the figure that the drop of fidelity is less
dramatic for higher temperatures, which is due to thermal
fluctuations at higher temperatures.

As different phases are represented in terms of different
ground states, and each phase has a distinctive ground-state

FIG. 3. (Color online) Fidelity of two Gibbs states near zero
temperature with slightly varied coupling δg = 0.01 as a function
of the coupling strength g and detuning 	. It can be readily seen that
along the critical points, the fidelity displays a sudden drop, which
agrees exactly with the phase diagram.

FIG. 4. (Color online) Fidelity of two Gibbs states at various
temperatures with slightly varied coupling δg = 0.01 as a function
of the coupling strength g. The inverse temperature is taken to be
β = 20 (orange dash-dotted line), β = 40 (blue dashed line), and
β = 60 (red solid line), and the vertical black dashed lines signify the
critical points. We can see from the figure that the drop of fidelity is
less dramatic for higher temperatures.

wave function associated with it, it is expected that the
expectation value of the total excitation number, the derivative
of the ground-state energy, as well as the trace distance should
show a discontinuity behavior along the critical points of
the quantum phase transition, even at finite temperatures.
To verify this, we first plot in Fig. 5 the expectation value

(a)

(b)

FIG. 5. (Color online) (a) Expectation value of total excitation
N at finite low temperature as a function of the atom-field coupling
strength g and the detuning 	 with κβ = 800 and (b) the derivative
of the ground state Eg with critical points interposed. The vertical
blue and gray surfaces indicate the critical points. It can be seen that
at the critical points, both display a sudden change in value.
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of total excitation N = ∑
k〈s+

k s−
k + α

†
kαk〉 as a function of

the atom-field coupling strength g and the detuning 	 near
zero temperature, κβ = 800, and the derivative of the ground
state Eg against the atom-field coupling strength g. It is quite
clear that as a result of the structural change of the ground
state in each phase, the total excitation N and derivative of
the ground-state energy has a different value and shows a
sudden jump along the critical points defined by Eq. (6), which
indicates that there exists a QPT along the critical points.

III. TRACE DISTANCE AND THE QUANTUM
PHASE TRANSITION OF THE JCH LATTICE

In this section, we investigate the trace distance and
how to identify the QPT of the JCH lattice using the trace
distance. The trace distance has recently been shown to be
able to witness initial system-environment correlations in
open-system dynamics and to distinguish quantum states. The
distance of two trace class operators ρ1 and ρ2 is defined to be
half the trace norm of ρ1 − ρ2. For density operators, the trace
distance can be further simplified as

D(ρ1,ρ2) = 1

2

∑
i

|di |, (7)

where di are the eigenvalues of ρ1 − ρ2. The trace distance
ranges from zero to one, where it is zero if and only if the two
states are identical. It is also a metric on the space of physical
states and is subadditive with respect to the tensor product,

D(ρa ⊗ ρ1,ρb ⊗ ρ2) � D(ρa,ρb) + D(ρ1,ρ2).

We define the system to be all of the atoms and the
environment to be all of the field modes in our coupled Jaynes-
Cummings lattice, and consider the total initial thermal-
equilibrium Gibbs state

ρSE = e−βH /Z,

where the inverse temperature β = 1/kbT , kb is the Boltzmann
constant, and Z = Tr(e−βH ) is the partition function. We
calculate the trace distance between the Gibbs state and the
product of its marginal states ρS ⊗ ρE . The reduced density
matrix reads

ρS = TrE[ρSE] =
∑
fi

〈fi |ρSE |fi〉,

ρE = TrS[ρSE] =
∑
ai

〈ai |ρSE |ai〉,

where TrE and TrS means the partial trace and is carried out
by tracing over all field modes |fi〉 to obtain the marginal
for the atoms, and tracing over all possible combinations of
atom states |ai〉 to obtain the marginals for the field modes.
It is noted that ρSE and ρS ⊗ ρE have the same marginals for
the system and environment, TrE(S)[ρSE] = TrE(S)[ρS ⊗ ρE],
so the difference between the two density matrices measured
by the trace distance can capture the system-bath correlation
between the generic thermal Gibbs state of the global atoms
plus fields system and the product of the marginals. With
the full Hamiltonian diagonalized in the previous section, we
can compute the trace distance for any number of excitons
without the mean-field approximation, which requires taking

the thermodynamic limit. For states containing at most N

excitons, we first need to write down all of the basis for the
Hilbert space so that the matrix form of the Gibbs state density
matrix along with the system and environment marginals
can be obtained. Then, using Eq. (7), we can calculate
the corresponding trace distance. For simplicity, we restrict
ourselves to a physically rich space of maximal two excitons.
The basis of the space is chosen to be

I : |0,0〉⊗N
i ,

II : |0,1〉i |0,0〉⊗N−1
j , |1,0〉i |0,0〉⊗N−1

j ,

III : |0,2〉i |0,0〉⊗N−1
j , |1,1〉i |0,0〉⊗N−1

j ,

IV : |0,1〉i |0,1〉j |0,0〉⊗N−2
k , |0,1〉i |1,0〉j |0,0〉⊗N−2

k ,

|1,0〉i |0,1〉j |0,0〉⊗N−2
k , |1,0〉i |1,0〉j |0,0〉⊗N−2

k , i < j,

where, in each subspace spanned by each set of basis, the
Hamiltonian is block diagonal, and the matrix elements of the
Gibbs state in each set of basis is given by

I : 1/Z, II :

[
x

(1)
i z

(1)
i

z
(1)
i y

(1)
i

]
/Z,

III :

[
x

(2)
i z

(2)
i

z
(2)
i y

(2)
i

]
/Z, IV : M (ij )/Z,

where

M (ij ) =
[
x

(1)
i z

(1)
i

z
(1)
i y

(1)
i

]
⊗

[
x

(1)
j z

(1)
j

z
(1)
j y

(1)
j

]
,

x
(n)
i = bn(i)2e−βE+

n (i) + an(i)2e−βE−
n (i),

y
(n)
i = an(i)2e−βE+

n (i) + bn(i)2e−βE−
n (i),

z
(n)
i = an(i)bn(i)[e−βE+

n (i) − e−βE−
n (i)].

The partition function is, therefore,

Z = 1 +
∑

i

(
x

(1)
i + y

(1)
i + x

(2)
i + y

(2)
i

) +
∑
i<j

Tr[M (ij )]. (8)

We plot the trace distance D(ρSE,ρS ⊗ ρE) at finite tempera-
ture as a function of the atom-field coupling strength g and the
inverse temperature β in Fig. 6. We can see from Fig. 6 that the
trace distance shows a sudden jump for increasing coupling
strength g at the critical points at finite temperatures. For
finite low temperatures, as the coupling strength g increases,
the condition in Eq. (6) is met, a quantum phase transition
takes place, and the ground state is dramatically different,
resulting in a sudden change of value in the trace distance,
which means that the trace distance can be used to locate
the critical points of the QPT at finite temperatures. As the
temperature approaches absolute zero, the discontinuity of
the trace distance becomes more pronounced, and at higher
temperatures, this discontinuity is less obvious due to thermal
fluctuations. Taking κβ = 800, we plot the trace distance
D(ρSE,ρS ⊗ ρE) in Fig. 7 with the energy spectrum of the
three lowest-lying energy levels as a function of the atom-field
coupling strength g. The vertical black dashed lines signify
the points where the ground-state level crossing takes place,
and the QPT takes place. As expected, when that happens,
the lowest-lying eigenenergy takes a different form, and there
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FIG. 6. (Color online) Trace distance between the Gibbs state
and the product of its marginals at finite temperature is plotted as
a function of the atom-field coupling strength g and the inverse
temperature β. At higher temperatures, the sudden change of value of
the trace distance at the critical points is less obvious due to thermal
fluctuations.

is a sudden jump of the trace distance. The trace distance
D(ρSE,ρS ⊗ ρE) at near-zero temperature as a function of the
atom-field coupling strength g and the detuning 	 is plotted in
Fig. 8 with the critical points superimposed. It is clear that the
trace distance changes suddenly across different phases, and
is dependent on both the atom-field coupling strength g and
the detuning 	 according to Eq. (6), and as the detuning gets
larger, the QPT only happens for larger atom-field coupling
strengths.

FIG. 7. (Color online) (Top) The three lowest-lying energy levels
of the system as a function of g, with the vertical black dashed
line signifying the ground-state level-crossing points, i.e., the phase
transition points. (Bottom) Trace distance between the Gibbs state
and the product of its marginals near zero temperature is plotted as
a function of g with κβ = 800. All other parameters are taken to be
the same as Fig. 6. At the critical points, the trace distance displays a
sudden change in value.

FIG. 8. (Color online) Trace distance between the Gibbs state
and the product of its marginals at finite temperature is plotted as a
function of the atom-field coupling strength g and the detuning 	

near zero temperature, κβ = 800; we have superimposed the critical
points as the vertical blue and red surfaces. Along the critical points,
the trace distance shows a sudden jump.

We now consider the time evolution of trace distance and
its relationship with the QPT for nonequilibrium states. Since
all trace-preserving positive maps 
 are contractions of the
trace distance [20]

D(
ρ1,
ρ2) � D(ρ1,ρ2),

it should be possible to detect the QPT with the upper bound
of time evolution of the trace distance. Because the Gibbs
state is in thermal equilibrium, the state does not evolve in
time. Therefore, we take the initial state as the product of
its marginals and calculate the trace distance of the reduced
density matrix of the atom part at time 0 and at time t . With
the diagonalized Hamiltonian, the time-evolution problem can
be easily solved. We plot in Fig. 9 the maximum value of trace
distance D[ρS(0),ρS(t)] at finite temperature as a function of
the atom-field coupling strength g and the inverse temperature
β. As depicted, the maximum value of the trace distance also
shows a sudden jump at the critical points, which means the
trace distance can detect the QPT for nonequilibrium cases.
Taking κβ = 300, we also plot in Fig. 10 the trace distance

FIG. 9. (Color online) The maximum value of trace distance
D[ρs(0),ρs(t)] is plotted as a function of the atom-field coupling
strength g and the inverse temperature β, where ρs is the atom part of
the Gibbs state. At higher temperatures, the sudden change of value of
the trace distance at the critical points is less obvious due to thermal
fluctuations.
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FIG. 10. (Color online) The maximum value of trace distance
D[ρs(0),ρs(t)] is plotted as a function of the atom-field coupling
strength g at the inverse temperature κβ = 300. All other parameters
are taken to be the same as Fig. 9 and the vertical dashed line
corresponds to the critical points.

D[ρS(0),ρS(t)], which still agrees with the result obtained
using Gibbs states.

In order to compare our results with that of the mean-
field theory, we now calculate the trace distance for Gibbs
states, where the decoupling approximation b

†
i bj = 〈b†i 〉bj +

〈bj 〉b†i − 〈b†i 〉〈bj 〉. The corresponding trace distance is dis-
played in Fig. 11. It can be seen that the QPT boundary
obtained via the trace distance agrees well with that obtained
using the usual mean-field approach and the one-polarization
approximation [3,6,14].

IV. SCALING BEHAVIOR OF THE JCH LATTICE
AT CRITICAL POINTS

The scaling behavior at critical points is a very important
part of the study of QPTs [2]. Since the trace distance
D(ρSE,ρS ⊗ ρE) can be considered as a form of system-
environment correlation [20], and motivated by the study of
QPT in spin chain systems [1,2], we study the derivative of
the trace distance against the atom-field coupling strength g.
Because we are only interested in the behavior of the trace
distance at the first critical point, we can safely discard the
two-exciton subspace. The Hamiltonian and Gibbs state is still

log
10

(κ/g)

ω
/g

−4 −3 −2 −1 0 1
0

0.5

1

1.5

2

FIG. 11. (Color online) Contour plot of the trace distance between
the Gibbs state and the product of its marginals at zero detuning. It
can be readily seen that the trace distance can indicate the critical
points of the QPT in the mean-field analysis.

block diagonal, and the trace distance is given by

D(ρSE,ρS ⊗ ρE)

= 1

2

∣∣∣∣∣
(
1 + ∑

i x
(1)
i

)(
1 + ∑

i y
(1)
i

)
Z′ − 1

Z

∣∣∣∣∣
+ 1

4

∑
i

(∣∣ρxi + ρyi −
√

(ρxi − ρyi)2 + 4ρz2
i

∣∣
+ ∣∣ρxi + ρyi +

√
(ρxi − ρyi)2 + 4ρz2

i

∣∣), (9)

where

Z = 1 +
∑

i

(
x

(1)
i + y

(1)
i

)
,

Z′ =
(

1 +
∑

i

x
(1)
i

) (
1 +

∑
i

y
(1)
i

)

+
(

1 +
∑

i

x
(1)
i

) ∑
i

x
(1)
i +

(
1 +

∑
i

y
(1)
i

) ∑
i

y
(1)
i ,

and

ρxi =
(
1 + ∑

i x
(1)
i

)
x

(1)
i

Z′ − x
(1)
i

Z
,

ρyi =
(
1 + ∑

i y
(1)
i

)
y

(1)
i

Z′ − y
(1)
i

Z
,

ρzi = −z
(1)
i

Z
,

from which the derivative ∂gD(ρSE,ρS ⊗ ρE) can be readily
calculated. We plot in Fig. 12 the value of ∂gD(ρSE,ρS ⊗ ρE)
at the critical points for a JCH array with size N = 1, . . . ,100
with 	f /κ = 0,3,5. The least-squares fit is used for the
derivative for JCH with size N as f (N ) = Ae−bN + C, and
we find that the derivative has a exponential scaling behavior
as the system size grows. We can see from Fig. 12 that the
fitted curve agrees well with the values obtained from Eq. (9),
and different detuning leads to different scaling behaviors, and
smaller detuning leads to bigger derivatives, meaning the trace
distance changes more rapidly for smaller detunings.

FIG. 12. (Color online) Scaling behavior of the first derivative
of the trace distance between the Gibbs state and the product of its
marginals at the critical points at near-zero temperature, κβ = 300.
The red circles, orange squares, and blue triangles correspond to
	f /κ = 0, 3, and 5, respectively, and are obtained analytically.
The curves are obtained using the least-squares fit of the form
f (N ) = Ae−bN + C.
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V. CONCLUSIONS

We investigated how to use trace distance to detect the
critical points of the QPT in a JCH lattice at finite temperature.
It is found that the trace distance shows a sudden jump at the
phase-transition points at low temperatures, which means that
the trace distance can be used to describe the critical points
of the QPT. The critical points are found to be dependent
on the atom-field interaction strength g and the detuning
factor 	. For nonequilibrium states, we show that the time
evolution of the trace distance’s maximum value is also a
good indicator of the critical points. Our results agree well
with mean-field analysis. Finally, the scaling behavior of

the derivative of the trace distance is found to exist at the
critical points, and the scaling rule is dependent on the system
parameters. Traditional QPT approaches mainly focus on the
identification of the order parameters and the pattern of sym-
metry breaking. The trace-distance approach presented in this
paper allows us to detect QPTs without any prior knowledge
of order parameters and may be extended to other many-body
systems.
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