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Ground-state cooling of a mechanical oscillator and detection of a weak
force using a Bose-Einstein condensate
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We investigate the possibility of cooling a mechanical oscillator to its ground state and using it to detect a
weak coherent force by means of a hybrid optomechanical quantum device formed by a Bose-Einstein condensate
(BEC) confined in a high quality factor optical cavity with an oscillatory end mirror. We show using the stochastic
cooling technique that the atomic two-body interaction can be utilized to cool the mirror and achieve position
squeezing essential for making sensitive measurements of weak forces. We further show that for certain values of
the system parameters and spectral range, the atomic two-body interaction can also increase the signal-to-noise
ratio and decrease the noise of the off-resonant stationary spectral measurements. We show that the minimum
noise is obtained only in the presence of BEC.
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I. INTRODUCTION

Recently, optomechanics has been the subject of extensive
theoretical and experimental investigations. The interaction
between a movable mirror and the radiation field of an optical
cavity provides a sensitive device which is able to detect
weak forces. Significant examples of research in this area
are the gravitational wave detection interferometers [1,2] and
atomic force microscopes [3,4]. Over the past years, the
field of laser cooling [5–7] and gravitational wave detectors
[1,2] have used the interaction of mechanical and optical
degrees of freedom via radiation pressure. In recent years,
the interest has emerged in the application of radiation force to
change the center-of-mass motion of mechanical oscillators,
covering a vast range of scales from macroscopic mirrors
in the Laser Interferometer Gravitational Wave Observatory
(LIGO) project [8] to nanomechanical cantilevers [9–14],
vibrating micro-toroids [15,16], and membranes [17]. Detec-
tion of weak forces using a cantilever is of much interest
in many applications such as magnetometry of nanoscale
magnetic particles [18], femtojoule calorimetry [19], and other
numerous types of force microscopy [20]. A measured force
resolution of 5.6 × 10−18 N/

√
Hz at 4.8 K in vacuum using

cantilever-based technology has been demonstrated [21].
The detection of displacement with high sensitivity is

possible due to the capability of optical interferometry which
has been shown recently in optical interferometry experiments
[22,23] and advances in gravitational wave detectors [24].
Experimentally, highly sensitive optical displacement mea-
surements can be done using a sensor which shows a direct
effect of radiation pressure, back action effect, that every
optical experiment will be sensitive to if quantum noise is
limited [11]. The possibility of gravitational wave detection
using atom field interferometers has been reported recently
[25]. Much new possibility arises in cavity optomechanics
when the experimental and theoretical tools of cavity quantum
electrodynamics (QED) are combined with those of ultracold
gases [26–38]. If a collection of atoms is placed in a high-
finesse optical cavity then the atoms collectively interact with
the light mode thereby increasing the atom-field interaction.

The coupling of the coherent motion of the condensate atoms
trapped in an optical lattice, formed by a high-finesse optical
cavity and the intracavity field, give rise to nonlinear quantum
optics [29]. Even if the average photon number is as small
as 0.05, one can observe strong optical nonlinearities [29].
Earlier experiments have shown important progress in the field
of cavity QED by combining it with ultracold atoms [39–41].

Thermal noise, which arises due to the mechanical motion
of the mirror, is the major hurdle in achieving the sensitive
optical measurements [23,42]. It can be reduced using various
feedback schemes based on the homodyne detection of the
reflected light of the oscillator [43]. A continuous version of
the stochastic cooling feedback technique, used in accelerators
[44], helps in cooling the mirror of the optomechanical system
as the feedback regularly “kicks” the mirror from the back and
the position is regularly monitored using homodyne detection.
In the presence of the feedback, it is important to describe
the whole system quantum mechanically for two reasons.
First it permits developing a condition for optomechanical
systems under which the effects of quantum noise becomes
visible and experimentally detectable. Lastly it establishes the
ultimate limits of the proposed feedback scheme. Stochastic
cooling feedback is one of the effective techniques used to
cool optomechanical devices. It can provide efficient cooling
as shown in recent experiments [12,45,46]. It has several
advantages over other feedback techniques as suggested [43].
This feedback scheme reduces the thermal noise of the device
even for small frequencies, i.e., out of resonance. Also this
technique can beat the standard quantum limit in certain
conditions. Moreover, it can also be used to generate stationary
contractive states [47].

A hybrid optomechanical system consisting of Bose-
Einstein condensate (BEC) in an optical cavity with vibrating
end mirror has been studied [48]. This study revealed that the
hybrid system was useful for accomplishing state engineering
of the vibrational mode of the mechanical oscillator by virtue
of coupling to the BEC, which is less sensitive to noise effects
and more easily controlled. Given the necessity to improve
the signal-to-noise ratio or sensitivity of position measure-
ments especially for gravitational wave detection [1,2] or for
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metrological applications [49] and promising developments
in the field of ultracold atoms and cavity optomechanics, we
propose in this paper a scheme to couple a Bose-Einstein
condensate to an optical cavity with a movable mirror to
detect weak forces using the stochastic cooling scheme. Apart
from the robust nature of the BEC and the many advantages
of stochastic cooling technique as noted above, we propose
to utilize the atomic two-body interaction (tunable using
Feshbach resonance technique) to coherently detect weak
forces. The addition of the BEC acts as an additional sink at
extremely low temperature, which can extract energy from the
moving mirror, thereby making the system more sensitive to
external noise. From the experimental side, coupling between
an oscillating membrane and ultracold atoms mediated by
cavity photons has been demonstrated recently [50].

II. THE BASIC MODEL

The system investigated here consists of a coherently driven
Fabry-Perot cavity with one mirror fixed and the second mirror
movable (Fig. 1). This basic optomechanical setup is the basis
of detecting weak forces in gravitational wave detectors [1,2]
and atomic force microscopy [3,4]. In our model, we have
in addition an elongated cigar-shaped gas of N two-level
ultracold atoms of 87Rb in the |F = 1〉 state having mass
m and transition frequency ωa of the |F = 1〉 → |F ′ = 2〉
transition of the D2 line. The cloud of BEC is interacting with
a single quantized mode of the cavity with frequency ωc. The
cavity mode is also forming an optical lattice potential between
the two mirrors. The sensitivity of the proposed quantum
device to measure weak forces (shown in Fig. 1) is eventually
determined by the quantum fluctuations. In order to minimize
the quantum fluctuations associated with the various modes
of the vibrating mirror, we consider the mirror as a single
quantum-mechanical harmonic oscillator with frequency ωm

and mass Mm. Experimentally this approximation can be
realized [51] if we use a bandpass filter in the detection loop,

FIG. 1. (Color online) Schematic representation of the setup.
Figure shows an optomechanical system with Bose-Einstein con-
densate (BEC) confined in an optical cavity with one mirror fixed and
other moving. Here the cavity mode is driven by the laser, which also
provides the local oscillator for the homodyne measurement using
the beam splitter. The external force (f) to be measured acts on the
movable mirror.

so that the frequencies are limited to a narrow bandwidth
which includes a single mechanical resonance. An external
pump with frequency ωp is also incident from the fixed
mirror, which is a constant source of photons for the cavity.
Intracavity photons exert pressure on the mirrors and this
results in an optomechanical coupling between the cavity field
and the movable mirror. The cavity light field exerts a force on
the movable mirror which depends on the intracavity photons.
The light in turn is phase shifted by an amount 2κlm, where κ is
the wave vector and lm is the displacement of the mirror from
its equilibrium position. In the adiabatic limit i.e., ωm � c/2L

(L is the length of the optical cavity), single-mode approxi-
mation of the cavity field is valid since photon scattering into
other modes can be ignored. This system can be described by
an optomechanical Hamiltonian in rotating wave and dipole
approximation as [26]

H = E0

∑
j

b
†
j bj + J0(h̄U0a

†a + Vcl)
∑

j

b
†
j bj

+ U

2

∑
j

b
†
j b

†
j bj bj − h̄�ca

†a − ih̄η(a − a†)

+ h̄ωma†
mam − h̄εωma†a(am + a†

m), (1)

where

U = 4πash̄
2

m

∫
d3x|w(�r)|4,

E0 =
∫

d3xw(�r − �rj )

{(
−h̄2∇2

2m

)}
w(�r − �rj ), (2)

J0 =
∫

d3xw(�r − �rj ) cos2(kx)w(�r − �rj ).

Here bj , a, and am are the condensate annihilation operators at
the j th site, cavity mode annihilation operator, and mirror
mode (phonon) annihilation operator, respectively. �c =
ωp − ωc is the cavity pump detuning. Here η is the strength of
the external pump. The mirror-photon coupling is G = εωm

and Vcl is the external classical potential. U0 = g2
0/�a is

the optical lattice barrier height per photon where g0 is the
atom-photon coupling and �a = ωp − ωa is the atom-pump
detuning. We shall consider from now on U0 > 0. In this case
the condensate atoms are pulled towards nodes of the cavity
light field and as a result the lowest bound state is localized at
the nodes. This leads to a reduced coupling of the condensate
atoms to the cavity field compared to that for U0 < 0. Also
E0 and J0 are the effective on-site energies of the condensate
defined in terms of the condensate atomic Wannier function
w(�r − �rj ). U is the effective on-site atom-atom interaction
energy, where as is the s-wave scattering length. In deriving the
above Hamiltonian Eq. (1), we have ignored the tunneling of
atoms into neighboring wells. We can experimentally achieve
this by tuning the optical lattice depth so that time scales over
which tunneling takes place is much larger than the times scales
over which the experiment is performed. The cavity mode
formed by the input pump laser couples to the mechanical
oscillator (movable mirror) through radiation pressure and
the condensate atoms through the dipole interaction. The
back-action of the atoms and cantilever modifies the cavity
field. The nonlinearity in Eq. (1) arising from the coupling
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between the intracavity intensity and the position quadrature of
the cantilever plays a significant role in the system dynamics.
The system we are considering is basically an open system
since the cavity field is damped due to the leakage of the
photons through the cavity mirrors. Moreover the cantilever is
connected to a bath at finite temperature (T ). The mechanical
oscillator is expected to undergo a pure Brownian motion
driven by its contact with the thermal environment in the
absence of any radiation pressure due to the cavity light field.
Let us now understand the origin of each of the terms appearing
in the Hamiltonian of Eq. (1). The first term is simply the
on-site kinetic energy of the condensate. The second term
is the coupling of the condensate with the cavity field which
also includes the classical potential Vcl . The third term is the
two-body atom-atom interaction term. The fourth term is the
photon energy, and the fifth term corresponds to the pump.
The sixth term is the energy of the single mode of the
mirror, and the seventh term is the energy associated with
the dispersive nonlinear coupling between the cavity field and
the mirror.

Dissipation enters the system through its interaction with
the external degrees of freedom. The cavity optical field is
damped (decay constant γc) due to the leakage of photons
through the mirrors. The mirrors couple the internal cavity
modes with the external electromagnetic modes. The movable
mirror is damped (decay constant γm) due to its interaction
with the external modes. The condensate is more robust and
there is no significant loss of atoms during the experimental
time. The dynamics of the system can be described by the
following set of coupled quantum Langevin equations (QLE):

ȧ(t) = −iJ0U0a(t)
∑

j

b
†
j (t)bj (t) + i�ca(t)

+ iεωma(t)[am(t) + a†
m(t)]

+ η − γc

2
a(t) + √

γcain(t), (3)

ḃj (t) = −i
E0

h̄
bj (t) − i

J0

h̄
[h̄U0a

†(t)a(t)

+Vcl]bj (t) − i
U

h̄
b
†
j (t)bj (t)bj (t), (4)

ȧm(t) = −iωmam(t) +iεωma†(t)a(t) −γmam(t) + √
γmξm(t),

(5)

where ain(t) and ξm(t) are the input noise operators for the
cavity field and mirror, respectively, with the correlations [52]
defined in Appendix A.

The steady-state cavity field (β) can be derived from
Eqs. (3), (4), and (5) in terms of the steady-state value of
the phonon operator α and the number of atoms N by putting
the time derivative to zero:

β = η

−i�c + γc

2 + iJ0U0N − i2Re(α) ε ωm

, (6)

Re(α) = ε ω2
m|β|2

ω2
m + γ 2

m

. (7)

One can identify from the above equations that the steady
state of the cavity field is influenced by the dynamics of the
mirror and the atoms. The resonance frequency of the cavity
is shifted due to its interaction with the mirror and the atoms

in such a way so as to form a new stationary intensity. After
a transient time, the cavity field changes depending on the
response of the field and the strength of the interaction with
the condensate and the mirror.

We are now interested in the dynamics of fluctuations
around the steady state. To this end, we linearize the QLE
[Eqs. (3), (4), and (5)] around the steady state as a(t) →
β + a(t), am(t) → α + am(t), and bj (t) →

√
N+b(t)√

M
. Here β,

α, and
√

N/M are the steady state of the photon, phonon, and
the atomic fields, respectively. M is the total number of lattice
sites occupied by N atoms. We also replace bj (t) by b(t),
assuming that all the sites of the optical lattice are identical.
Consequently, we get

ȧ(t) =
[
i�d − γc

2

]
a(t) − igc[b(t) + b†(t)]

+ iGβ[am(t) + a†
m(t)] + √

γcain(t), (8)

ḃ(t) = −i[ν + 2Ueff]b(t) − iUeffb
†(t)

− igc[a(t) + a†(t)], (9)

ȧm(t) = −iωmam(t) + iGβ[a(t) + a†(t)]

− γmam(t) + √
γmξm(t), (10)

where �d = −J0U0N + �c + 2Gα, gc = J0U0β
√

N , G =
εωm, ν = E0/h̄ + J0U0β

2 + J0Vcl/h̄, and Ueff = UN/h̄M . In
the following, we will always take �d = 0, relevant to many
experimental situations.

We now introduce the following amplitude and phase
quadratures: X(t) = [a(t) + a†(t)], Y (t) = i[a†(t) − a(t)],
Q(t) = [am(t) + a

†
m(t)], P (t) = i[a†

m(t) − am(t)], Qc(t) =
[b(t) + b†(t)], Pc(t) = i[b†(t) − b(t)], Xin(t) = [ain(t) +
a
†
in(t)], Yin(t) = i[a†

in(t) − ain(t)].

Ẋ(t) = −γc

2
X(t) + √

γcXin(t), (11)

Ẏ (t) = −γc

2
Y (t) − 2gcQc(t) + 2GβQ(t) + √

γcYin(t),

(12)

Q̇c(t) = (ν + Ueff)Pc(t), (13)

Ṗc(t) = −(ν + 3Ueff)Qc(t) − 2gcX(t), (14)

Q̇(t) = ωmP (t), (15)

Ṗ (t) = −ωmQ(t) + 2GβX(t) − γmP (t) + W (t), (16)

where W (t) = i
√

γm[ξ †
m(t) − ξm(t)], which satisfies the corre-

lation given in Appendix A. From the above Eqs. (11)–(16),
we observe that the phase quadrature of the cavity is only
affected by the mirror position fluctuations Q(t) and the
condensate position fluctuations Qc(t). In general, we notice
that it is only the phase quadratures which are affected by the
fluctuations.

III. FEEDBACK IN STOCHASTIC COOLING SCHEME

In most applications the mechanical oscillator (movable
mirror) is used as a quantum meter to detect weak forces
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acting on it [53]. Consequently, the term that describes the
action of the classical external force f (t) on the mirror position
(am + a

†
m) is given as

Hf = −h̄

2
(am + a†

m)f (t). (17)

The force to be measured appears in the phase quadrature of
the mirror only:

Ṗ (t) = −ωmQ(t) + 2GβX(t) + f (t) − γmP (t) + W (t).

(18)

Such a force can be measured by looking at the mirror’s
position quadrature Q(t). In the large cavity bandwidth limit,
i.e., γc 	 Gβ,ωm, the cavity mode dynamics adiabatically
follows that of the movable mirror. Therefore,

X(t) = 2√
γc

Xin(t), (19)

Y (t) = −4gc

γc

Qc(t) + 4Gβ

γc

Q(t) + 2√
γc

Yin(t). (20)

In the large cavity bandwidth limit, the weak force can
be measured by monitoring the dynamics of the mirror
position Q(t), through the homodyne measurement of the
phase quadrature Y (t). Homodyne detection is a method of
detecting frequency-modulated radiation by nonlinear mixing
with radiation of a reference frequency (local oscillator). In
homodyne detection, the reference frequency equals that of
the input signal radiation. The dynamics of the cantilever can
be controlled through a phase sensitive feedback loop which
may be devised using the output of a homodyne measurement.
Interestingly, the phase quadrature Y (t) now also depends on
the position of the condensate Qc(t). It should then be possible
to control Y (t) through condensate parameters ν and Ueff .
The experimentally detected quantity is the output homodyne
photocurrent [43],

Yout = 2η′√γcY (t) −
√

η′Y η′
in (t), (21)

where η′ is the detector efficiency, Y
η′
in (t) is a generalized

phase input noise, and aη′ (t) is the generalized input noise,
which satisfies the correlations given in Appendix A. In
the stochastic cooling scheme, the homodyne measurement
provides a continuous monitoring of the oscillator’s position
and the feedback continuously kicks the mirror to put it back in
its equilibrium position. When photons exert radiation pressure
on the mirror in the cavity, it displaces the mirror from its
equilibrium position. To bring back the mirror to equilibrium
position, a pressure is exerted on the mirror from opposite side
through feedback. This helps in cooling down the mirror. This
technique uses the phase-sensitive noise to cool the mirror.
The feedback loop consists of a transducer which converts the
random optical signal to a stochastic electric signal which in
turn mechanically drives the mirror’s momentum. This results
in an additional term in the QLE for any generic operator A(t)
given by [43],

Ȧf b(t) = i
√

γc

η′ Yout(t − τ )[gscP (t),A(t)], (22)

where τ is the feedback loop delay time and gsc is a
dimensionless feedback gain factor. In the limit of zero delay
time τ → 0, we have the only nonzero dynamics of the
feedback operator,

Q̇f b =
√

γc

η′ gscYout(t). (23)

As a result, the QLE for Q(t) is modified as

Q̇(t) = ωmP (t) − 8gscgcQc(t) + 8GβgscQ(t)

+ 4
√

γcgscYin(t) −
√

γc

η′ gscY
η′
in (t). (24)

The influence of the condensate on the mirror dynamics now
appears due to the feedback loop.

IV. STATIONARY OSCILLATOR ENERGY

We now study the energy of the stationary state of the
movable mirror, which is obtained in the t → ∞ limit. We
will particularly see how the two-body interactions Ueff can
be used to minimize the energy. The solutions of the QLE are
generally obtained by Laplace transform numerically using
MATHEMATICA 8.0. Hence we obtain

Q(t) = C1(t)Q(0) + C2(t)P (0) + C3(t)Qc(0) + C4(t)Pc(0)

+
∫ ∞

0
C5(t ′)Xin(t − t ′)dt ′

+ 4
√

γcgsc

∫ ∞

0
C1(t ′)Yin(t − t ′)dt ′

− gsc

√
γc

η′

∫ ∞

0
C1(t ′)Y η′

in (t − t ′)dt ′

+
∫ ∞

0
[f (t − t ′) + W (t − t ′)]C2(t ′)dt ′. (25)

Similarly,

P (t) = −ωmC6(t)Q(0) + C7(t)P (0) + C8(t)Qc(0)

+C9(t)Pc(0) +
∫ ∞

0
dt ′C10(t ′)Xin(t − t ′)

− 4ωm

√
γcgsc

∫ ∞

0
C6(t ′)Yin(t − t ′)dt ′

+ωm

√
γc

η′ gsc

∫ ∞

0
C6(t ′)Y η′

in (t − t ′)dt ′

+
∫ ∞

0
C7(t ′)[f (t − t ′) + W (t − t ′)]dt ′. (26)

Now using the correlations of noise as given in Appendix A,
we find the stationary values of 〈Q2〉 and 〈P 2〉,

〈Q2〉 = g2
sc

(
8γc + γc

η′

) ∫ ∞

0
[C1(t)]2dt

+ γmkBT

h̄ωm

∫ ∞

0
[C2(t)]2dt +

∫ ∞

0
[C5(t)]2dt, (27)

〈P 2〉 = ω2
mg2

sc

(
8γc + γc

η′

)∫ ∞

0
[C6(t)]2dt

+ γmkBT

h̄ωm

∫ ∞

0
[C7(t)]2dt +

∫ ∞

0
[C10(t)]2dt. (28)
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FIG. 2. (Color online) Plot of steady-state energy (dimensionless with respect to ωm) as a function of mirror-photon coupling G/ωm. The
parameters used are γm/ωm = 10−5, γc/ωm = 1.5, gsc = −0.5, η′ = 0.8, β = 0.05, kBT /h̄ωm = 105, ν/ωm = 2, gc = 1.42ωm. Here left-hand
plot shows the variation of the steady-state energy in the absence of BEC (solid line) and in the presence of BEC (dashed line) with Ueff/ωm = 50.
Also, right-hand plot shows the variation of steady-state energy for two values of atomic two-body interaction Ueff/ωm = 5 (dashed line) and
Ueff/ωm = 50 (solid line).

The various coefficients appearing in Q(t) and P (t) are
given in Appendix B. The second term in the above equations
for 〈Q2〉 and 〈P 2〉 is the contribution of the quantum Brownian
motion. We have used the high-temperature approximation
coth(h̄ω/2kBT ) ≈ 2kBT /h̄ω. The quality factor Qf = ωm/γm

has to be high in order to reduce the affect of the thermal
contribution. We now study the stationary oscillator energy
Ust = h̄ωm

2 [〈Q2〉 + 〈P 2〉] and investigate the influence of the
condensate two-body interaction Ueff and the renormalized
atom-photon coupling constant gc on the cooling of the mirror.
In the figures, we will always plot the dimensionless steady-
state energy ε = 2Ust/h̄ωm. The left plot of Fig. 2 illustrates
the steady-state energy as a function of dimensionless mirror-
photon coupling G in the absence of BEC (solid line) and in
the presence of BEC (dashed line). Clearly we observe that the
oscillator energy is reduced in the presence of BEC for small
values of G. For higher values of G, the two plots merge and
approached the ground state of the mirror. The right plot of
Fig. 2 depicts the steady-state energy as a function of G for
two values of Ueff = 5ωm (dashed line) and Ueff = 50ωm (solid
line). A substantial lowering of oscillator energy is noticed for
higher Ueff . Variation of the steady-state oscillator energy with
Ueff is shown in the left plot of Fig. 3. A rapid initial decline in

the oscillator energy with increasing Ueff , followed by a steady
value near the ground-state value of the energy for higher Ueff ,
is noticed.

Coupling between the condensate atoms, the cavity field
and the mirror mode leads to a resonant energy exchange
between the three systems. Such energy exchange leads to
normal mode splitting [26]. In our earlier work [26], we
had shown that the condensate atoms participate in the
energy exchange only in the presence of a finite two-body
interaction Ueff indicating that the Bogoliubov mode of the
condensate is involved in the three-mode coupling. In a
recent experiment [28], coupling of a cloud of ultracold
atoms to an optical resonator suggest that the Bogoliubov
modes interacting significantly with the cavity field are those
with momentum ±2kc (kc is the cavity wave number).
The observed decrease in the energy of the mirror with
increase in Ueff could be due to resonant transfer of energy from
the mirror mode to the condensate mode via the cavity mode.
The indirect coupling (mediated by the cavity field) to the
collective excitations of the condensate determines the number
of thermal excitations in the mechanical mode and hence its
energy. The BEC can absorb energy taken from the mirror
by the cavity field. Increase in membrane (coupled to a BEC
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FIG. 3. (Color online) Left plot: Plot of steady-state energy as a function of Ueff/ωm. Right plot: Plot of steady-state energy versus
mirror-photon coupling G/ωm for two values of gc. Parameters used are same as in Fig. 2.
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Q
2

FIG. 4. (Color online) Steady-state position variance 〈Q2〉 as
a function of mirror-photon coupling G/ωm for γm/ωm = 10−4,
γc/ωm = 1.5, gsc = −2.0, η′ = 1.0, gc = 14.23ωm, β = 0.5,
kBT /h̄ωm = 104, ν/ωm = 2, U0/ωm = 0.3, J0/ωm = 3, and
Ueff/ωm = 100. The horizontal full (blue line) line denotes the
standard quantum limit (SQL).

via cavity mode) dissipation due to increase in atom number
has been demonstrated experimentally [50]. Note that Ueff is
directly proportional to the atom number N . This experiment
confirms our result that increase in Ueff decreases the mirror
energy.

The influence of the three-mode coupling is also seen in
right plot of Fig. 3 where we have plotted the steady-state
energy of the oscillator as a function of G for two values
of renormalized atom-photon coupling gc. As gc increases,
the energy of the mechanical mode increases, suggesting that
energy is being transferred from the condensate mode to the
mirror mode via the cavity mode due to atomic back action.
This observation is consistent with earlier results [48]. The
above results reveal that on one hand increasing Ueff decreases
the energy of the mirror, on the other hand increasing gc

increases the energy of the mirror. In order to measure any
weak force acting on the mirror an optimal value of mirror
energy can be achieved with the two handles, Ueff and gc. We
found that in the absence of feedback (gsc = 0), the energy
substantially increases and the BEC no longer influences the
mirror motion, which can be seen from Eq. (24). In the absence
of feedback only the Y (t) quadrature of the cavity photons is
influenced by the BEC [Eq. (12)].The influence of the BEC on
the mirror position appears due to the feedback loop.

This stochastic cooling scheme can also be used to achieve
steady-state position squeezing, i.e, to overcome the standard
quantum limit 〈Q2〉st < 1. The possibility to beat the standard
quantum limit for the oscillator position uncertainty is shown
in Fig. 4, where 〈Q2〉st is plotted as a function of G.
The standard quantum limit is seen to be beaten in some
specific parameter regime as found in Fig. 4. Note that
while the uncertainty in the oscillator position decreases,
the corresponding uncertainty in the oscillator momentum
increases and as a result of which the total oscillator stationary
energy Ust = h̄ωm

2 [〈Q2〉 + 〈P 2〉] increases. Consequently, it is
not necessary that steady-state oscillator position squeezing
and oscillator ground-state cooling be achieved in the same
parameter range. Ground-state oscillator energy is approached
for 〈Q2〉 ≈ 〈P 2〉.

V. NOISE POWER SPECTRUM

The oscillator energy studied in the previous section
ultimately has to be measured in the form of the noise power
spectrum of the mirror. Here we investigate the signal-to-
noise ratio (SNR) of the optomechanical device. The signal
corresponding to the spectral measurement in terms of the
directly measured quantity “output homodyne photocurrent”
Yout(t) is defined as [43]

S(ω) =
∣∣∣∣
∫ ∞

−∞
dte−iωt 〈Yout(t)FTm

(t)〉
∣∣∣∣ , (29)

where

〈Yout〉 = −8η′gc√
γc

〈Qc〉 + 8η′Gβ√
γc

〈Q〉. (30)

Here FTm
(t) is a filter function approximately equal to 1 in

the time interval [0,Tm], in which the spectral measurement
is performed and equal to zero otherwise [43]. For stationary
spectral measurements, the measurement time Tm is taken to
be much larger than the oscillator relaxation time 1/γm, i.e.,
Tm 	 1/γm. In this limit, for very large measurement time
Tm, one has FTm

≈ 1. In this case, the oscillator is relaxed to
equilibrium. This yields

S(ω) = 8η′Gβ√
γc

|C2(ω)f (ω)|, (31)

where f (ω) is the Fourier transform of the force while C2(ω)
is the Fourier transform of C2(t). Note that the signal is
independent of the BEC. The noise corresponding to the signal
is given by its variance as [43]

N2(ω) =
∫ ∞

−∞
dtFTm

(t)

×
∫ ∞

−∞
dt ′FTm

(t ′)e−iω(t−t ′)〈Yout(t)|Yout(t
′)〉f =0.

(32)

Making use of the previously derived results, we arrive at
the final form of the noise spectrum,

N2(ω) = 64η′2g2
c

γc

Tm|C11(ω)|2

− 128η′2GβgcTm

γc

|C5(ω)C11(ω)|

+ 64η′2G2β2

γc

Tm

[
g2

sc

(
8γc + γc

η′

)
|C1(ω)|2

+ γmkBT

h̄ωm

|C2(ω)|2 + |C5(ω)|2
]

+ 8η′2Tm + η′Tm

+Gβgsc[128η′2 + 16η′]Tm|C1(ω)|, (33)

where C11(ω) is Fourier transform of C11(t) as given in
Appendix B.

The influence of the presence of BEC appears in the noise
as shown in Fig. 5. As seen in Fig. 5, in the presence of
BEC, the off-resonant noise decreases for ω > ωm. Increasing
Ueff would further decrease the noise significantly. In fact the
minimum noise is obtained only in the presence of the BEC.
At resonance ω = ωm, the noise is practically same in the
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FIG. 5. (Color online) Noise spectrum as a function of ω/ωm

in the case of ideal impulsive force [f (ω) = constant]. The solid
line is the plot in the absence of BEC while the dashed line is
plot in presence of BEC with Ueff/ωm = 50. The parameters used
are γm/ωm = 10−5, γc/ωm = 1.5, gsc = −0.5, η′ = 0.8, β = 0.05,
kBT /h̄ωm = 105, ν/ωm = 2, gc = 1.42ωm, f (ω) = 10−5ωm,
Tm = 106/ωm, and G/ωm = 5.5.

presence of BEC and in the absence of BEC. The top-left
plot of Fig. 6 displays the SNR for two values of the atomic
two-body interaction Ueff and G/ωm = 0.5. No change in the
SNR is seen at resonance. The main effect of the parameter Ueff

on the spectrum is the modification of the susceptibility due to
the increase in the mechanical damping, which is responsible

for the broadening of the spectrum. As seen above, the presence
of the BEC does not influence the signal but only modifies the
noise [Eq. (31)] and as a result there is no improvement in
the SNR at resonance. The top-right plot of Fig. 6 shows the
influence of the BEC on the noise. Interestingly increasing Ueff

suppresses the off-resonant noise but not the resonant noise.
The lower left plot shows the stationary signal-to-noise ratio
for two values of atomic two-body interaction Ueff/ωm = 5
(dashed line) and Ueff/ωm = 50 (solid line) and G/ωm = 5.5
(the point where we obtain near ground state cooling). Near
the ground state of the oscillator, we notice that the magnitude
of the SNR is one order lower than that in the previous case
(G/ωm = 0.5) and at the same time the noise is also enhanced.
Interestingly, we notice that the peak SNR is suppressed
for higher Ueff but overall the SNR is more for higher Ueff

except for a short spectral range. For the same spectral range
where the SNR is better for Ueff/ωm = 50, the corresponding
noise is lower as seen from the lower right plot. On one
hand we observe that in the presence of the BEC, we are
able to achieve substantial cooling of the mirror and position
squeezing essential for making sensitive measurements. On
the other hand, the SNR with BEC does not appear to increase
the maximally available SNR. Naturally, one would always
like to work where the SNR is the highest but in the present
situation it would be desirable to work off resonant where the
SNR in the presence of BEC is higher, so that one could
take advantage of the fact that substantial cooling of the
mirror is possible in the presence of the BEC. This implies
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FIG. 6. (Color online) Plot of stationary signal-to-noise ratio as a function of ω/ωm in the case of ideal impulsive force [f (ω) = constant].
The parameters used are γm/ωm = 10−5, γc/ωm = 1.5, gsc = −0.5, η′ = 0.8, β = 0.05, kBT /h̄ωm = 105, ν/ωm = 2, gc = 1.42ωm, f (ω) =
10−5ωm, Tm = 106/ωm. Here top left-hand plot shows the stationary signal-to-noise ratio plot for the two values of atomic two-body interaction
Ueff/ωm = 5 (dashed line) and Ueff/ωm = 50 (solid line) and G/ωm = 0.5. The top-right plot shows the noise spectrum for the same parameters
as for the top-left plot. The lower left plot shows the stationary signal-to-noise ratio for two values of atomic two-body interaction Ueff/ωm = 5
(dashed line) and Ueff/ωm = 50 (solid line) and G/ωm = 5.5. The lower right plot shows the noise spectrum for the same parameters as for the
lower left plot.
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that an off-resonant measurement would be suitable for the
measurement of the weak force acting on the mirror and for
designing strategies of state engineering of the mechanical
oscillator. Other schemes such as nonstationary measurements
could be also suitable [54]. The two-body atomic interaction
can be easily tuned using the technique of Feshbach resonance.
This kind of optomechanical interactions yield a quantum
interface between ultracold atoms, optical cavity mode, and
mechanical mode.

In our calculations, all parameters, namely γc, γm, g0,
Ueff , ωm, and ν, are accessible in current experiments as we
discuss in the following. For a BEC containing an order of
106 87Rb atoms [50], interacting with light field of an optical
ultrahigh-finesse Fabry-Perot cavity, the strength of the coher-
ent coupling is g0 = 2π × 5.86 kHz [55] (2π × 14.4 MHz
[29]) and the decay rate of the intracavity field is γc =
2π × 8.75 kHz [55] (2π × 0.66 MHz [29]). The contribution
of the kinetic and potential energy is about ν = 35 kHz [28]
(ν = 49 kHz [29]). Also the coherent amplification or the
damping of atomic motion is neglected as the temperature (Tc)
of the condensate gas Tc � h̄γc/kB . The atom pump detuning
is 2π × 32 GHz. The scattering length of the condensate can
vary from 10a0 to 190a0 (a0 = Bohr radius) [56]. The radii of
the condensate cloud can be 3.3 μm [28] (290 nm [32]) with
length 20 μm [28] (615.5 nm [32]). The mechanical frequency
of the resonator can vary from 2π × 100 Hz [57], 2π × 10 kHz
[32], to 2π × 73.5 MHz [58]. The corresponding damping
rate of the resonator thus can vary from 2π × 10−3 Hz [57],
2π × 3.22 Hz [32], to 2π × 1.3 kHz [58]. The coupling rate is
G = 2π × 2 MHz. The atom field coupling is reduced as there
is decrease in the energy of the cavity mode due to the loss
of photons through the cavity mirrors. By using high quality
factor cavities, this loss of photons can be minimized. For the
perfect homodyne detection, the detector efficiency is η′ = 1
and if the additional noise is taken into account then due to
the inefficient detection, i.e., for the general case, η′ < 1 [54].
Also in typical optomechanical experiments [23,42,59,60], the
limit γm � ωm � kBT /h̄ is always taken.

VI. CONCLUSIONS

In conclusion we have studied how stochastic cooling
scheme together with a gas of ultracold atoms confined in an
optical cavity with a movable end mirror can coherently control
the sensitivity of this hybrid optomechanical device. We have
seen that the atom-atom two-body interaction can effectively
control the cooling process of the mechanical mirror and
also achieve steady-state position squeezing by beating the
standard quantum limit. The atom-photon interaction on the
other hand heats up the mirror. The feedback loop with
the condensate appears as a new tunable handle to control
the mirror dynamics. We have also analyzed the sensitivity
(SNR) of the optomechanical quantum device for the case of
stationary position spectral measurements for the detection of
weak forces. It is found that in the presence of the BEC, the
off-resonant noise decreases. We found that the presence of the
condensate does not change the SNR at resonance. However if
we increase the atomic two-body interaction, the off-resonant
SNR is enhanced and the corresponding noise is suppressed
for a certain spectral range. The system presented here appears

as an optomechanical quantum device to measure weak forces
by a proper choice of system parameters and spectral range.
A coherent control of this device can be achieved through the
two-body atom-atom interaction which can be manipulated
either by the number of atoms or the s-wave scattering length.

ACKNOWLEDGMENTS

A.B. acknowledges financial support from the Department
of Science and Technology, New Delhi, for financial assis-
tance via Grant SR/S2/LOP-0034/2010. S.M. acknowledges
University of Delhi for the University Teaching Assistantship.

APPENDIX A

The input noise operators for the cavity field satisfy the
following correlations [43,52,54]:

〈ain(t)ain(t ′)〉 = 〈a†
in(t)ain(t ′)〉 = 0, (A1)

〈ain(t)a†
in(t ′)〉 = δ(t − t ′). (A2)

The Brownian noise operator, W (t) = i
√

γm[ξ †
m(t) − ξm(t)],

satisfies the following correlation [54]:

〈W (t)W (t ′)〉 = 1

2π

γm

ωm

[fmr (t − t ′) + ifmi(t − t ′)], (A3)

where,

fmr (t) =
∫ ω

0
dω ω cos(ωt) coth

(
h̄ω

2kBT

)
, (A4)

fmi(t) = −
∫ ω

0
dω ω sin(ωt). (A5)

Here, T is the bath temperature, kB is the Boltzmann constant,
and ω is the frequency cutoff of the reservoir spectrum.
Note that the quantum Brownian motion of the mirror is
non-Markovian in nature. Brownian noise is the thermal noise
which arises due to the random motion of the movable mirror.
The thermal noise term in the measured phase noise spectrum
of the light reflected from the cavity is due to the quantum
Brownian motion of the mirror [43]. Here the antisymmetric
part, corresponding to fmi , is a direct consequence of the
commutation relation and it is never a Dirac delta while the
symmetric part corresponding to fmr explicitly depends on
temperature and becomes proportional to a Dirac delta function
only if the high-temperature limit kBT 	 h̄ω first and the
infinite frequency cutoff limit ω → ∞ later are taken [52].

The quadratures Xin(t) and Yin(t) satisfy the following
correlations:

〈Xin(t)Xin(t ′)〉 = 〈Yin(t)Yin(t ′)〉 = δ(t − t ′), (A6)

〈Xin(t)Yin(t ′)〉 = iδ(t − t ′), (A7)

〈Yin(t)Xin(t ′)〉 = −iδ(t − t ′). (A8)
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The generalized input noise, aη′ (t), satisfies the following
correlations [54]:

〈aη′ (t)aη′(t ′)〉 = 〈a†
η′ (t)aη′(t ′)〉 = 0, (A9)

〈aη′ (t)a†
η′(t ′)〉 = δ(t − t ′), (A10)

〈ain(t)a†
η′(t ′)〉 = 〈aη′ (t)a†

in(t ′)〉 =
√

η′δ(t − t ′). (A11)

The corresponding generalized phase input noise is written as
Y

η′
in (t) which satisfies the following correlations:〈

Y
η′
in (t)Y η′

in (t ′)
〉 = δ(t − t ′), (A12)

〈
Xin(t)Y η′

in (t ′)
〉 = i

√
η′δ(t − t ′), (A13)

〈
Y

η′
in (t)Xin(t ′)

〉 = −i
√

η′δ(t − t ′), (A14)

〈
Yin(t)Y η′

in (t ′)
〉 =

√
η′δ(t − t ′), (A15)

〈
Y

η′
in (t)Yin(t ′)

〉 =
√

η′δ(t − t ′). (A16)

APPENDIX B

The various coefficients of Sec. IV are as follows:

C1(t) = L−1

[
(s + γm)[s2 + AB]

C(s)

]
, (B1)

C2(t) = L−1

[
ωm[s2 + AB]

C(s)

]
, (B2)

C3(t) = L−1

[−8gscgcs(s + γm)

C(s)

]
, (B3)

C4(t) = L−1

[−8gscgcA(s + γm)

C(s)

]
, (B4)

C5(t) = L−1

[
4Gβωm[s2 + AB] + 32Agscg

2
c (s + γm)

C(s)
√

γc

]
,

(B5)

C6(t) = L−1

[
s2 + AB

C(s)

]
, (B6)

C7(t) = L−1

[
(s − 8Gβgsc)(s2 + AB)

C(s)

]
, (B7)

C8(t) = L−1

[
8gscgcωms

C(s)

]
, (B8)

C9(t) = L−1

[
8gscgcAωm

C(s)

]
, (B9)

C10(t)

= L−1

[
[4Gβ(s2 + AB)](s − 8Gβgsc) − 32Aωmgscg

2
c

C(s)
√

γc

]
,

(B10)

C11(t) = L−1

[−4Agcω
2
m − 4Agc(s + γm)(s − 8Gβgsc)√

γcC(s)

]
,

(B11)

C(s) = (s2 + AB)
[
ω2

m + (s + γm)(s − 8Gβgsc)
]
, (B12)

A = ν + Ueff, (B13)

B = ν + 3Ueff . (B14)
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